Skip to main content
Erschienen in: Inflammation 5/2022

11.08.2022 | COVID-19 | Review

Innate Immune Response and Inflammasome Activation During SARS-CoV-2 Infection

verfasst von: Mohammad Islamuddin, Salman Ahmad Mustfa, Shehla Nasar Mir Najib Ullah, Usmaan Omer, Kentaro Kato, Shama Parveen

Erschienen in: Inflammation | Ausgabe 5/2022

Einloggen, um Zugang zu erhalten

Abstract

The novel coronavirus SARS-CoV-2, responsible for the COVID-19 outbreak, has become a pandemic threatening millions of lives worldwide. Recently, several vaccine candidates and drugs have shown promising effects in preventing or treating COVID-19, but due to the development of mutant strains through rapid viral evolution, urgent investigations are warranted in order to develop preventive measures and further improve current vaccine candidates. Positive-sense-single-stranded RNA viruses comprise many (re)emerging human pathogens that pose a public health problem. Our innate immune system and, in particular, the interferon response form an important first line of defense against these viruses. Flexibility in the genome aids the virus to develop multiple strategies to evade the innate immune response and efficiently promotes their replication and infective capacity. This review will focus on the innate immune response to SARS-CoV-2 infection and the virus’ evasion of the innate immune system by escaping recognition or inhibiting the production of an antiviral state. Since interferons have been implicated in inflammatory diseases and immunopathology along with their protective role in infection, antagonizing the immune response may have an ambiguous effect on the clinical outcome of the viral disease. This pathology is characterized by intense, rapid stimulation of the innate immune response that triggers activation of the Nod-like receptor family, pyrin-domain-containing 3 (NLRP3) inflammasome pathway, and release of its products including the pro-inflammatory cytokines IL-6, IL-18, and IL-1β. This predictive view may aid in designing an immune intervention or preventive vaccine for COVID-19 in the near future.
Literatur
1.
Zurück zum Zitat Huang, C., et al. 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan China. Lancet 395: 497–506. Huang, C., et al. 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan China. Lancet 395: 497–506.
2.
Zurück zum Zitat Nagaraja, S., et al. 2022. Inflammasome regulation in driving COVID-19 severity in humans and immune tolerance in bats. Journal of Leukocyte Biology 111: 497–508.PubMedCrossRef Nagaraja, S., et al. 2022. Inflammasome regulation in driving COVID-19 severity in humans and immune tolerance in bats. Journal of Leukocyte Biology 111: 497–508.PubMedCrossRef
3.
Zurück zum Zitat Chen, N., et al. 2020. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 395: 507–513.PubMedPubMedCentralCrossRef Chen, N., et al. 2020. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 395: 507–513.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Wu, A., et al. 2020. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host & Microbe 27: 325–328.CrossRef Wu, A., et al. 2020. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host & Microbe 27: 325–328.CrossRef
5.
Zurück zum Zitat Lu, R., et al. 2020. Genomic characterization and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 395: 565–574.PubMedPubMedCentralCrossRef Lu, R., et al. 2020. Genomic characterization and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 395: 565–574.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Hoffmann, et al. 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 18: 271–280.CrossRef Hoffmann, et al. 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 18: 271–280.CrossRef
7.
Zurück zum Zitat Xu, X.W., et al. 2020. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARSCov-2) outside of Wuhan, China: retrospective case series. The BMJ 368: m606. Xu, X.W., et al. 2020. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARSCov-2) outside of Wuhan, China: retrospective case series. The BMJ 368: m606.
8.
Zurück zum Zitat Medzhitov, et al. 2001. Toll-like receptors and innate immunity. Nature Reviews Immunology 1: 135–145.PubMedCrossRef Medzhitov, et al. 2001. Toll-like receptors and innate immunity. Nature Reviews Immunology 1: 135–145.PubMedCrossRef
9.
Zurück zum Zitat Bauernfeind, et al. 2011. Inflammasomes: Current understanding and open questions. Cellular and Molecular Life Sciences 68: 765–783.PubMedCrossRef Bauernfeind, et al. 2011. Inflammasomes: Current understanding and open questions. Cellular and Molecular Life Sciences 68: 765–783.PubMedCrossRef
10.
Zurück zum Zitat Prompetchara, et al. 2020. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pacific Journal of Allergy and Immunology 38: 1–9.PubMed Prompetchara, et al. 2020. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pacific Journal of Allergy and Immunology 38: 1–9.PubMed
11.
Zurück zum Zitat Lim, et al. 2016. Human coronaviruses: a review of virus-host interactions. Diseases 4. Lim, et al. 2016. Human coronaviruses: a review of virus-host interactions. Diseases 4.
12.
Zurück zum Zitat Chen, I.Y., et al. 2019. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Frontiers in Microbiology 10: 50.PubMedPubMedCentralCrossRef Chen, I.Y., et al. 2019. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Frontiers in Microbiology 10: 50.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Ashraf, U.M., et al. 2021. SARS-CoV-2, ACE2 expression, and systemic organ invasion. Physiological Genomics 53: 51–60.PubMedCrossRef Ashraf, U.M., et al. 2021. SARS-CoV-2, ACE2 expression, and systemic organ invasion. Physiological Genomics 53: 51–60.PubMedCrossRef
15.
Zurück zum Zitat De Marcken, M., et al. 2019. TLR7 and TLR8 activate distinct pathways in monocytes during RNA virus infection. Science Signaling 12: eaaw1347. De Marcken, M., et al. 2019. TLR7 and TLR8 activate distinct pathways in monocytes during RNA virus infection. Science Signaling 12: eaaw1347.
16.
Zurück zum Zitat Olejnik, J., et al. 2018. Toll-like receptor 4 in acute viral infection: too much of a good thing. PLoS Pathog 14: e1007390. Olejnik, J., et al. 2018. Toll-like receptor 4 in acute viral infection: too much of a good thing. PLoS Pathog 14: e1007390.
17.
Zurück zum Zitat Zhu, J., et al. 2020. Infectious bronchitis virus inhibits activation of the TLR7 pathway, but not the TLR3 pathway. Archives of Virology 165: 2037–2043.PubMedPubMedCentralCrossRef Zhu, J., et al. 2020. Infectious bronchitis virus inhibits activation of the TLR7 pathway, but not the TLR3 pathway. Archives of Virology 165: 2037–2043.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Kawasaki, T., and T. Kawai. 2014. Toll-like Kawai receptor signaling pathways. Front Immunol 5:461 Keller BC, Fredericksen BL, Samuel MA, Mock RE, Mason PW, Diamond MS, Gale M Jr, 2006 Resistance to alpha/beta interferon is a determinant of West Nile virus replication fitness and virulence. Journal of Virology 80: 9424–9434. Kawasaki, T., and T. Kawai. 2014. Toll-like Kawai receptor signaling pathways. Front Immunol 5:461 Keller BC, Fredericksen BL, Samuel MA, Mock RE, Mason PW, Diamond MS, Gale M Jr, 2006 Resistance to alpha/beta interferon is a determinant of West Nile virus replication fitness and virulence. Journal of Virology 80: 9424–9434.
19.
21.
Zurück zum Zitat Seth, R.B., et al. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell 122: 669–682.PubMedCrossRef Seth, R.B., et al. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell 122: 669–682.PubMedCrossRef
22.
Zurück zum Zitat Li, H., Y. Wang, M. Ji, F. Pei, Q. Zhao, Y. Zhou, Y. Hong, S. Han, J. Wang, Q. Wang, Q. Li, and Y. Wang. 2020. Transmission routes analysis of SARS-CoV-2: A systematic review and case report. Front Cell Dev Biol. 10 (8): 618.CrossRef Li, H., Y. Wang, M. Ji, F. Pei, Q. Zhao, Y. Zhou, Y. Hong, S. Han, J. Wang, Q. Wang, Q. Li, and Y. Wang. 2020. Transmission routes analysis of SARS-CoV-2: A systematic review and case report. Front Cell Dev Biol. 10 (8): 618.CrossRef
23.
Zurück zum Zitat Morrison. J., and A. García-Sastre. 2014. STAT2 signaling and dengue virus infection. JAKSTAT 3: e27715. Morrison. J., and A. García-Sastre. 2014. STAT2 signaling and dengue virus infection. JAKSTAT 3: e27715.
24.
Zurück zum Zitat Qin, S., et al. 2021. Analyzing master regulators and scRNA-seq of COVID-19 patients reveals an underlying anti-SARS-CoV-2 mechanism of ZNF proteins. Brief Bioinformation 27: bbab118. Qin, S., et al. 2021. Analyzing master regulators and scRNA-seq of COVID-19 patients reveals an underlying anti-SARS-CoV-2 mechanism of ZNF proteins. Brief Bioinformation 27: bbab118.
25.
Zurück zum Zitat Mu, J., et al. 2020. SARS-CoV-2 N protein antagonizes type I interferon signaling by suppressing phosphorylation and nuclear translocation of STAT1 and STAT2. Cell Discov 6: 65.PubMedPubMedCentralCrossRef Mu, J., et al. 2020. SARS-CoV-2 N protein antagonizes type I interferon signaling by suppressing phosphorylation and nuclear translocation of STAT1 and STAT2. Cell Discov 6: 65.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Wani, S.A., et al. 2019. Contrasting gene expression profiles of monocytes and lymphocytes from peste-des-petits-ruminants virus infected goats. Frontiers in Immunology 10: 1463.PubMedPubMedCentralCrossRef Wani, S.A., et al. 2019. Contrasting gene expression profiles of monocytes and lymphocytes from peste-des-petits-ruminants virus infected goats. Frontiers in Immunology 10: 1463.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Zhang, C., et al. 2020. The cytokine release syndrome (CRS) of severe COVID-19 and interleukin-6 receptor (IL-6R) antagonist tocilizumab may be the key to reduce the mortality. International Journal of Antimicrobial Agents 55: 105954. Zhang, C., et al. 2020. The cytokine release syndrome (CRS) of severe COVID-19 and interleukin-6 receptor (IL-6R) antagonist tocilizumab may be the key to reduce the mortality. International Journal of Antimicrobial Agents 55: 105954.
32.
Zurück zum Zitat Li, Q., and I.M. Verma. 2002. NF-kappaB regulation in the immune system. Nature Reviews Immunology 2: 725–734.PubMedCrossRef Li, Q., and I.M. Verma. 2002. NF-kappaB regulation in the immune system. Nature Reviews Immunology 2: 725–734.PubMedCrossRef
33.
34.
Zurück zum Zitat De Diego, M.L., et al. 2014. Inhibition of NF-κB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival. Journal of Virology 88: 913.CrossRef De Diego, M.L., et al. 2014. Inhibition of NF-κB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival. Journal of Virology 88: 913.CrossRef
36.
Zurück zum Zitat Wang, W., et al. 2007. Up-regulation of IL-6 and TNF-alpha induced by SARScoronavirus spike protein in murine macrophages via NF-kappaB pathway. Virus Research 128: 1–8.PubMedPubMedCentralCrossRef Wang, W., et al. 2007. Up-regulation of IL-6 and TNF-alpha induced by SARScoronavirus spike protein in murine macrophages via NF-kappaB pathway. Virus Research 128: 1–8.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Sun, B., et al. 2017. Dengue virus activates cGAS through the release of mitochondrial DNA. Science and Reports 7: 3594.CrossRef Sun, B., et al. 2017. Dengue virus activates cGAS through the release of mitochondrial DNA. Science and Reports 7: 3594.CrossRef
39.
Zurück zum Zitat Lessler, J., et al. 2009. Incubation periods of acute respiratory viral infections: A systematic review. The Lancet Infectious Diseases 9: 291–300.PubMedPubMedCentralCrossRef Lessler, J., et al. 2009. Incubation periods of acute respiratory viral infections: A systematic review. The Lancet Infectious Diseases 9: 291–300.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Sa Ribero, M., et al. 2020. Interplay between SARS-CoV-2 and the type I interferon response. PLoS Pathogens 16: e1008737. Sa Ribero, M., et al. 2020. Interplay between SARS-CoV-2 and the type I interferon response. PLoS Pathogens 16: e1008737.
41.
Zurück zum Zitat Cameron, M.J., et al. 2012. Lack of innate interferon responses during SARS coronavirus infection in a vaccination and reinfection ferret model. PLoS One 7: e45842. Cameron, M.J., et al. 2012. Lack of innate interferon responses during SARS coronavirus infection in a vaccination and reinfection ferret model. PLoS One 7: e45842.
42.
Zurück zum Zitat Minakshi, R., et al. 2009. The SARS coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor. PLoS One 4: e8342. Minakshi, R., et al. 2009. The SARS coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor. PLoS One 4: e8342.
44.
45.
Zurück zum Zitat Lowery, S.A. 2021. Innate immune and inflammatory responses to SARS-CoV-2: Implications for COVID-19. Cell Host & Microbe 29: 1052–1062.CrossRef Lowery, S.A. 2021. Innate immune and inflammatory responses to SARS-CoV-2: Implications for COVID-19. Cell Host & Microbe 29: 1052–1062.CrossRef
46.
Zurück zum Zitat Randall, R.E., and S. Goodbourn. 2008. Interferons and viruses: An interplay between induction, signalling, antiviral responses and virus countermeasures. Journal of General Virology 89: 1–47.PubMedCrossRef Randall, R.E., and S. Goodbourn. 2008. Interferons and viruses: An interplay between induction, signalling, antiviral responses and virus countermeasures. Journal of General Virology 89: 1–47.PubMedCrossRef
47.
Zurück zum Zitat Arunachalam, P.S., et al. 2020. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 369: 1210–1220.PubMedPubMedCentralCrossRef Arunachalam, P.S., et al. 2020. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 369: 1210–1220.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Israelow, B., et al. 2020. Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling. Journal of Experimental Medicine 217: e20201241. Israelow, B., et al. 2020. Mouse model of SARS-CoV-2 reveals inflammatory role of type I interferon signaling. Journal of Experimental Medicine 217: e20201241.
49.
Zurück zum Zitat Banerjee, A.K., et al. 2020. SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses. Cell 183: 1325-1339.e21.PubMedPubMedCentralCrossRef Banerjee, A.K., et al. 2020. SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses. Cell 183: 1325-1339.e21.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Gordon, D.E., et al. 2020. A SARS-CoV-2-human protein-protein interaction map reveals drug targets and potential drug-repurposing. Preprint. bioRxiv 03.22.002386. Gordon, D.E., et al. 2020. A SARS-CoV-2-human protein-protein interaction map reveals drug targets and potential drug-repurposing. Preprint. bioRxiv 03.22.002386.
51.
Zurück zum Zitat Xia, H. et al., 2020. Evasion of type I interferon by SARS-CoV-2. Cell Reports 33: 108234. Xia, H. et al., 2020. Evasion of type I interferon by SARS-CoV-2. Cell Reports 33: 108234.
53.
Zurück zum Zitat Mulchandani, R., et al. 2021. Deciphering the COVID-19 cytokine storm: systematic review and meta-analysis. European Journal of Clinical Investigation 51: e13429. Mulchandani, R., et al. 2021. Deciphering the COVID-19 cytokine storm: systematic review and meta-analysis. European Journal of Clinical Investigation 51: e13429.
54.
Zurück zum Zitat de la Rica, R., et al. 2020. COVID-19: in the eye of the cytokine storm. Front Immunology 11: 558898. de la Rica, R., et al. 2020. COVID-19: in the eye of the cytokine storm. Front Immunology 11: 558898.
55.
Zurück zum Zitat Xiong, J., et al. 2020. Impact of COVID-19 pandemic on mental health in the general population: A systematic review. Journal of Affective Disorders 277: 55–64.PubMedPubMedCentralCrossRef Xiong, J., et al. 2020. Impact of COVID-19 pandemic on mental health in the general population: A systematic review. Journal of Affective Disorders 277: 55–64.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Wu, N.C., et al. 2020. An alternative binding mode of IGHV3–53 antibodies to the SARS-CoV-2 receptor binding domain. Cell Reports 33:108274. Wu, N.C., et al. 2020. An alternative binding mode of IGHV3–53 antibodies to the SARS-CoV-2 receptor binding domain. Cell Reports 33:108274.
57.
Zurück zum Zitat Yang, Q., et al. 2020. Inhibition of SARS-CoV-2 viral entry upon blocking N- and O-glycan elaboration. Elife 9: e61552. Yang, Q., et al. 2020. Inhibition of SARS-CoV-2 viral entry upon blocking N- and O-glycan elaboration. Elife 9: e61552.
58.
Zurück zum Zitat Karki, R., et al. 2021. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell 184: 149-168.e17.PubMedCrossRef Karki, R., et al. 2021. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell 184: 149-168.e17.PubMedCrossRef
59.
Zurück zum Zitat Chua, R.L., et al. 2020. COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis. Nature biotechnology 38: 970–979.PubMedCrossRef Chua, R.L., et al. 2020. COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis. Nature biotechnology 38: 970–979.PubMedCrossRef
60.
Zurück zum Zitat Liao, M., et al. 2020. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nature medicine 26: 842–844.PubMedCrossRef Liao, M., et al. 2020. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nature medicine 26: 842–844.PubMedCrossRef
61.
Zurück zum Zitat Mathew, D., et al. 2020. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science 369: eabc8511. Mathew, D., et al. 2020. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science 369: eabc8511.
63.
Zurück zum Zitat Su, H., et al. 2020. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney international 98: 219–227.PubMedPubMedCentralCrossRef Su, H., et al. 2020. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney international 98: 219–227.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Wilk, A.J., et al. 2020. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nature medicine 26: 1070–1076.PubMedPubMedCentralCrossRef Wilk, A.J., et al. 2020. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nature medicine 26: 1070–1076.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Schultze, A., et al. 2020. Risk of COVID-19-related death among patients with chronic obstructive pulmonary disease or asthma prescribed inhaled corticosteroids: An observational cohort study using the OpenSAFELY platform. The Lancet Respiratory Medicine 8: 1106–1120.PubMedPubMedCentralCrossRef Schultze, A., et al. 2020. Risk of COVID-19-related death among patients with chronic obstructive pulmonary disease or asthma prescribed inhaled corticosteroids: An observational cohort study using the OpenSAFELY platform. The Lancet Respiratory Medicine 8: 1106–1120.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Kuri-Cervantes, L., et al. 2020. Comprehensive mapping of immune perturbations associated with severe COVID-19. Science immunology 5: eabd7114. Kuri-Cervantes, L., et al. 2020. Comprehensive mapping of immune perturbations associated with severe COVID-19. Science immunology 5: eabd7114.
67.
Zurück zum Zitat Giamarellos-Bourboulis, E.J., et al. 2020. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell host & microbe 27: 992–1000.CrossRef Giamarellos-Bourboulis, E.J., et al. 2020. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell host & microbe 27: 992–1000.CrossRef
68.
Zurück zum Zitat Swanson, K.V., et al. 2019. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nature Reviews Immunology 19: 477–489.PubMedPubMedCentralCrossRef Swanson, K.V., et al. 2019. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nature Reviews Immunology 19: 477–489.PubMedPubMedCentralCrossRef
69.
70.
Zurück zum Zitat Patton, L.M., et al. 1995. Interleukin-1 beta-induced neutrophil recruitment and acute lung injury in hamsters. Inflammation 19: 23–29.PubMedCrossRef Patton, L.M., et al. 1995. Interleukin-1 beta-induced neutrophil recruitment and acute lung injury in hamsters. Inflammation 19: 23–29.PubMedCrossRef
71.
Zurück zum Zitat Kolb, M., et al. 2001. Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis. The Journal of Clinical Investigation 107: 1529–1536.PubMedPubMedCentralCrossRef Kolb, M., et al. 2001. Transient expression of IL-1beta induces acute lung injury and chronic repair leading to pulmonary fibrosis. The Journal of Clinical Investigation 107: 1529–1536.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Azkur, A.K., et al. 2020. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy 75: 1564–1581.PubMedCrossRef Azkur, A.K., et al. 2020. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy 75: 1564–1581.PubMedCrossRef
73.
Zurück zum Zitat Alosaimi, B., et al. 2020. MERS-CoV infection is associated with downregulation of genes encoding Th1 and Th2 cytokines/chemokines and elevated inflammatory innate immune response in the lower respiratory tract. Cytokine 126: 154895. Alosaimi, B., et al. 2020. MERS-CoV infection is associated with downregulation of genes encoding Th1 and Th2 cytokines/chemokines and elevated inflammatory innate immune response in the lower respiratory tract. Cytokine 126: 154895.
74.
Zurück zum Zitat Min, C.K., et al. 2016. Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity. Science and Reports 6: 25359.CrossRef Min, C.K., et al. 2016. Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity. Science and Reports 6: 25359.CrossRef
75.
Zurück zum Zitat Meduri, G.U., et al. 1995. Persistent elevation of inflammatory cytokines predicts a poor outcome in ARDS. Plasma IL-1 beta and IL-6 levels are consistent and efficient predictors of outcome over time. Chest 107: 1062–1073. Meduri, G.U., et al. 1995. Persistent elevation of inflammatory cytokines predicts a poor outcome in ARDS. Plasma IL-1 beta and IL-6 levels are consistent and efficient predictors of outcome over time. Chest 107: 1062–1073.
76.
Zurück zum Zitat Park, W.Y., et al. 2001. Cytokine balance in the lungs of patients with acute respiratory distress syndrome. American Journal of Respiratory and Critical Care Medicine 164: 1896–1903.PubMedCrossRef Park, W.Y., et al. 2001. Cytokine balance in the lungs of patients with acute respiratory distress syndrome. American Journal of Respiratory and Critical Care Medicine 164: 1896–1903.PubMedCrossRef
77.
Zurück zum Zitat Beigel, J.H., et al. 2005. Avian influenza A (H5N1) infection in humans. New England Journal of Medicine 353: 1374–1385.PubMedCrossRef Beigel, J.H., et al. 2005. Avian influenza A (H5N1) infection in humans. New England Journal of Medicine 353: 1374–1385.PubMedCrossRef
78.
Zurück zum Zitat Tumpey, T.M., et al. 2005. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310: 77–80.PubMedCrossRef Tumpey, T.M., et al. 2005. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310: 77–80.PubMedCrossRef
79.
Zurück zum Zitat Kobasa, D., et al. 2007. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445: 319–323.PubMedCrossRef Kobasa, D., et al. 2007. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445: 319–323.PubMedCrossRef
81.
Zurück zum Zitat Fung, S.Y., et al. 2020. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: Lessons from other pathogenic viruses. Emerg Microbes Infect 9: 558–570.PubMedCrossRef Fung, S.Y., et al. 2020. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: Lessons from other pathogenic viruses. Emerg Microbes Infect 9: 558–570.PubMedCrossRef
82.
Zurück zum Zitat Channappanavar, R., et al. 2016. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host & Microbe 19: 181–193.CrossRef Channappanavar, R., et al. 2016. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host & Microbe 19: 181–193.CrossRef
83.
Zurück zum Zitat Nieto-Torres, J.L., et al. 2014. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathogens 10: e1004077. Nieto-Torres, J.L., et al. 2014. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis. PLoS Pathogens 10: e1004077.
85.
Zurück zum Zitat Kuriakose, T., et al. 2016. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Science Immunology 1: aag2045. Kuriakose, T., et al. 2016. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Science Immunology 1: aag2045.
86.
Zurück zum Zitat Rebsamen, M., et al. 2009. DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-kappaB. EMBO Reports 10: 916–922.PubMedPubMedCentralCrossRef Rebsamen, M., et al. 2009. DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-kappaB. EMBO Reports 10: 916–922.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Yabal, M., et al. 2014. XIAP restricts TNF- and RIP3-dependent cell death and inflammasome activation. Cell Reports 7: 1796–1808.PubMedCrossRef Yabal, M., et al. 2014. XIAP restricts TNF- and RIP3-dependent cell death and inflammasome activation. Cell Reports 7: 1796–1808.PubMedCrossRef
88.
Zurück zum Zitat Allen, I.C., et al. 2009. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30: 556–565.PubMedPubMedCentralCrossRef Allen, I.C., et al. 2009. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30: 556–565.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Hornung, V., et al. 2008. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunology 9: 847–856.PubMedPubMedCentralCrossRef Hornung, V., et al. 2008. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunology 9: 847–856.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Mariathasan, S., et al. 2006. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440: 228–232.PubMedCrossRef Mariathasan, S., et al. 2006. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440: 228–232.PubMedCrossRef
91.
Zurück zum Zitat Petrilli, V., et al. 2007. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death and Differentiation 14: 1583–1589.PubMedCrossRef Petrilli, V., et al. 2007. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death and Differentiation 14: 1583–1589.PubMedCrossRef
92.
Zurück zum Zitat Nieto-Torres, J.L., et al. 2015. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology 485: 330–339.PubMedCrossRef Nieto-Torres, J.L., et al. 2015. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology 485: 330–339.PubMedCrossRef
93.
Zurück zum Zitat Zhou, R., et al. 2011. A role for mitochondria in NLRP3 inflammasome activation. Nature 469: 221–225.PubMedCrossRef Zhou, R., et al. 2011. A role for mitochondria in NLRP3 inflammasome activation. Nature 469: 221–225.PubMedCrossRef
94.
Zurück zum Zitat Chen, C.C., et al. 2011. ORF8a of SARS-CoV forms an ion channel: Experiments and molecular dynamics simulations. Biochimica et Biophysica Acta 1808: 572–579.PubMedCrossRef Chen, C.C., et al. 2011. ORF8a of SARS-CoV forms an ion channel: Experiments and molecular dynamics simulations. Biochimica et Biophysica Acta 1808: 572–579.PubMedCrossRef
95.
Zurück zum Zitat Castaño-Rodriguez, C., et al. 2018. Role of severe acute respiratory syndrome coronavirus viroporins E, 3a, and 8a in replication and pathogenesis. mBio 9: e02325–17. Castaño-Rodriguez, C., et al. 2018. Role of severe acute respiratory syndrome coronavirus viroporins E, 3a, and 8a in replication and pathogenesis. mBio 9: e02325–17.
96.
Zurück zum Zitat Shi, C.S., et al. 2019. SARS-coronavirus open reading frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discov 5: 101.PubMedPubMedCentralCrossRef Shi, C.S., et al. 2019. SARS-coronavirus open reading frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discov 5: 101.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Astuti, I. 2020. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): an overview of viral structure and host response. Diabetes and Metabolic Syndrome 14: 407–412. Astuti, I. 2020. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): an overview of viral structure and host response. Diabetes and Metabolic Syndrome 14: 407–412.
99.
Zurück zum Zitat de Castro-Jorge, L.A., et al. 2019. The NLRP3 inflammasome is involved with the pathogenesis of Mayaro virus. PLoS Pathogens 15: e1007934. de Castro-Jorge, L.A., et al. 2019. The NLRP3 inflammasome is involved with the pathogenesis of Mayaro virus. PLoS Pathogens 15: e1007934.
100.
Zurück zum Zitat Bertocchi, I., et al. 2020. The hidden role of NLRP3 inflammasome in obesity-related COVID-19 exacerbations: lessons for drug repurposing. British Journal of Pharmacology 177: 4921–4930. https://doi.org/10.1111/bph.15229. Epub 2020 Aug 26. PMID: 32776354; PMCID: PMC7436458. Bertocchi, I., et al. 2020. The hidden role of NLRP3 inflammasome in obesity-related COVID-19 exacerbations: lessons for drug repurposing. British Journal of Pharmacology 177: 4921–4930. https://​doi.​org/​10.​1111/​bph.​15229. Epub 2020 Aug 26. PMID: 32776354; PMCID: PMC7436458.
101.
Zurück zum Zitat Yap, J.K., et al. 2020. Inflammasomes and pyroptosis as therapeutic targets for COVID-19. The Journal of Immunology 205: 307–312.PubMedCrossRef Yap, J.K., et al. 2020. Inflammasomes and pyroptosis as therapeutic targets for COVID-19. The Journal of Immunology 205: 307–312.PubMedCrossRef
103.
Zurück zum Zitat Rodrigues, T.S., et al. 2020. Inflammasome activation in COVID-19 patients. medRxiv. Rodrigues, T.S., et al. 2020. Inflammasome activation in COVID-19 patients. medRxiv.
104.
Zurück zum Zitat Wozniak, A.L., et al. 2010. Intracellular proton conductance of the hepatitis C virus p7 protein and its contribution to infectious virus production. PLoS Pathogens 6: e1001087. Wozniak, A.L., et al. 2010. Intracellular proton conductance of the hepatitis C virus p7 protein and its contribution to infectious virus production. PLoS Pathogens 6: e1001087.
105.
Zurück zum Zitat Farag, N., et al., 2020. Viroporins and inflammasomes: a key to understand virus-induced inflammation. The International Journal of Biochemistry & Cell Biology 122: 105738. Farag, N., et al., 2020. Viroporins and inflammasomes: a key to understand virus-induced inflammation. The International Journal of Biochemistry & Cell Biology 122: 105738.
106.
Zurück zum Zitat Issa, E., et al. 2020. SARS-CoV-2 and ORF3a: nonsynonymous mutations, functional domains, and viral pathogenesis. mSystems 5: e00266–20. Issa, E., et al. 2020. SARS-CoV-2 and ORF3a: nonsynonymous mutations, functional domains, and viral pathogenesis. mSystems 5: e00266–20.
107.
Zurück zum Zitat De Diego, M.L., et al. 2014. Inhibition of NF-κBmediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival. Journal of Virology 88: 913–924.CrossRef De Diego, M.L., et al. 2014. Inhibition of NF-κBmediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival. Journal of Virology 88: 913–924.CrossRef
108.
Zurück zum Zitat Ratajczak, M.Z., et al. 2020. SARS-CoV-2 infection and overactivation of Nlrp3 inflammasome as a trigger of cytokine “storm” and risk factor for damage of hematopoietic stem cells. Leukemia 34: 1726–1729.PubMedPubMedCentralCrossRef Ratajczak, M.Z., et al. 2020. SARS-CoV-2 infection and overactivation of Nlrp3 inflammasome as a trigger of cytokine “storm” and risk factor for damage of hematopoietic stem cells. Leukemia 34: 1726–1729.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Ribeiro, D.E., et al. 2020. Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Molecular Psychiatry 1–16. Ribeiro, D.E., et al. 2020. Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Molecular Psychiatry 1–16.
110.
Zurück zum Zitat Rodrigues, T.S., et al. 2021. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. Journal of Experimental Medicine 218: e20201707. Rodrigues, T.S., et al. 2021. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. Journal of Experimental Medicine 218: e20201707.
111.
Zurück zum Zitat Bok, K., et al. 2021. Accelerated COVID-19 vaccine development: milestones, lessons, and prospects. Immunity. Bok, K., et al. 2021. Accelerated COVID-19 vaccine development: milestones, lessons, and prospects. Immunity.
112.
113.
Zurück zum Zitat Crank, M.C., et al. 2019. A proof of concept for structure-based vaccine design targeting RSV in humans. Science 365: 505–509.PubMedCrossRef Crank, M.C., et al. 2019. A proof of concept for structure-based vaccine design targeting RSV in humans. Science 365: 505–509.PubMedCrossRef
114.
Zurück zum Zitat Pallesen, J., et al. 2017. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proceedings of the National Academy of Sciences 114: E7348–E7357.CrossRef Pallesen, J., et al. 2017. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proceedings of the National Academy of Sciences 114: E7348–E7357.CrossRef
115.
Zurück zum Zitat Marian, A.J. 2021. Current state of vaccine development and targeted therapies for COVID-19: impact of basic science discoveries. Cardiovascular Pathology 50: 107278. Marian, A.J. 2021. Current state of vaccine development and targeted therapies for COVID-19: impact of basic science discoveries. Cardiovascular Pathology 50: 107278.
Metadaten
Titel
Innate Immune Response and Inflammasome Activation During SARS-CoV-2 Infection
verfasst von
Mohammad Islamuddin
Salman Ahmad Mustfa
Shehla Nasar Mir Najib Ullah
Usmaan Omer
Kentaro Kato
Shama Parveen
Publikationsdatum
11.08.2022
Verlag
Springer US
Schlagwort
COVID-19
Erschienen in
Inflammation / Ausgabe 5/2022
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-022-01651-y

Weitere Artikel der Ausgabe 5/2022

Inflammation 5/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.