Skip to main content
Erschienen in: Cardiovascular Toxicology 3/2010

01.09.2010

Cytochrome c Oxidase is Essential for Copper-Induced Regression of Cardiomyocyte Hypertrophy

verfasst von: Xiao Zuo, Huiqi Xie, Daoyin Dong, Nenggang Jiang, Hongming Zhu, Y. James Kang

Erschienen in: Cardiovascular Toxicology | Ausgabe 3/2010

Einloggen, um Zugang zu erhalten

Abstract

Previous studies have shown that both copper (Cu) and vascular endothelial growth factor (VEGF) reduce the size of hypertrophic cardiomyocytes, but the Cu-induced regression is VEGF dependent. Studies in vivo have shown that hypertrophic cardiomyopathy is associated with a depression in cytochrome c oxidase (COX) activity, which could be involved in VEGF-mediated cellular function. The present study was undertaken to test the hypothesis that COX is a determinant factor in Cu-induced regression of cardiomyocyte hypertrophy. Primary cultures of neonatal rat cardiomyocytes were treated with phenylepherine (PE) at a final concentration of l00 μM in cultures for 48 h to induce cell hypertrophy. The hypertrophic cells were then treated with Cu sulfate at a final concentration of 5 μM in cultures for 24 h with a concomitant presence of PE to examine the effect of Cu on the regression of cardiomyocyte hypertrophy. Cell size changes were determined by flow cytometry, protein content, and molecular markers. Gene silencing was applied to study the effect of COX activity change on the regression of cardiomyocyte hypertrophy. PE treatment decreased COX activity in hypertrophic cardiomyocytes, and Cu addition restored the activity along with the regression of cell hypertrophy. Gene silencing using siRNA targeting COX-I significantly inhibited COX activity and blocked the Cu-induced regression of cell hypertrophy. VEGF alone also restored COX activity; but under the condition of COX inhibition by gene silencing, VEGF-induced regression of cell hypertrophy was suppressed. This study demonstrates that both Cu and VEGF can restore COX activity that is depressed in hypertrophic cardiomyocytes, and COX plays a determinant role in both Cu- and VEGF-induced regression of cardiomyocyte hypertrophy.
Literatur
1.
Zurück zum Zitat Jiang, Y., Reynolds, C., Xiao, C., Feng, W., Zhou, Z., Rodriguez, W., et al. (2007). Dietary copper supplementation reverses hypertrophic cardiomyopathy induced by chronic pressure overload in mice. Journal of Experimental Medicine, 204, 657–666.CrossRefPubMed Jiang, Y., Reynolds, C., Xiao, C., Feng, W., Zhou, Z., Rodriguez, W., et al. (2007). Dietary copper supplementation reverses hypertrophic cardiomyopathy induced by chronic pressure overload in mice. Journal of Experimental Medicine, 204, 657–666.CrossRefPubMed
2.
Zurück zum Zitat Zhou, Y., Jiang, Y., & Kang, Y. J. (2008). Copper reverses cardiomyocyte hypertrophy through vascular endothelial growth factor-mediated reduction in the cell size. Journal of Molecular and Cellular Cardiology, 45, 106–117.CrossRefPubMed Zhou, Y., Jiang, Y., & Kang, Y. J. (2008). Copper reverses cardiomyocyte hypertrophy through vascular endothelial growth factor-mediated reduction in the cell size. Journal of Molecular and Cellular Cardiology, 45, 106–117.CrossRefPubMed
3.
Zurück zum Zitat Zhou, Y., Bourcy, K., & Kang, Y. J. (2009). Copper-induced regression of cardiomyocyte hypertrophy is associated with enhanced vascular endothelial growth factor receptor-1 signalling pathway. Cardiovascular Research, 84, 54–63.CrossRefPubMed Zhou, Y., Bourcy, K., & Kang, Y. J. (2009). Copper-induced regression of cardiomyocyte hypertrophy is associated with enhanced vascular endothelial growth factor receptor-1 signalling pathway. Cardiovascular Research, 84, 54–63.CrossRefPubMed
4.
Zurück zum Zitat Calhoun, M. W., Thomas, J. W., & Gennis, R. B. (1994). The cytochrome oxidase superfamily of redox-driven proton pumps. Trends in Biochemical Sciences, 19, 325–330.CrossRefPubMed Calhoun, M. W., Thomas, J. W., & Gennis, R. B. (1994). The cytochrome oxidase superfamily of redox-driven proton pumps. Trends in Biochemical Sciences, 19, 325–330.CrossRefPubMed
5.
Zurück zum Zitat Iwata, S. (1998). Structure and function of bacterial cytochrome c oxidase. Journal of Biochemistry, 123, 369–375.PubMed Iwata, S. (1998). Structure and function of bacterial cytochrome c oxidase. Journal of Biochemistry, 123, 369–375.PubMed
6.
Zurück zum Zitat Poyton, R. O., & McEwen, J. E. (1996). Crosstalk between nuclear and mitochondrial genomes. Annual Review of Biochemistry, 65, 563–607.CrossRefPubMed Poyton, R. O., & McEwen, J. E. (1996). Crosstalk between nuclear and mitochondrial genomes. Annual Review of Biochemistry, 65, 563–607.CrossRefPubMed
7.
Zurück zum Zitat Abramson, J., Svensson-Ek, M., Byrne, B., & Iwata, S. (2001). Structure of cytochrome c oxidase: a comparison of the bacterial and mitochondrial enzymes. Biochimica et Biophysica Acta, 1544, 1–9.PubMed Abramson, J., Svensson-Ek, M., Byrne, B., & Iwata, S. (2001). Structure of cytochrome c oxidase: a comparison of the bacterial and mitochondrial enzymes. Biochimica et Biophysica Acta, 1544, 1–9.PubMed
8.
Zurück zum Zitat Yoshikawa, S., Shinzawa-Itoh, K., & Tsukihara, T. (2000). X-ray structure and the reaction mechanism of bovine heart cytochrome c oxidase. Journal of Inorganic Biochemistry, 82, 1–7.CrossRefPubMed Yoshikawa, S., Shinzawa-Itoh, K., & Tsukihara, T. (2000). X-ray structure and the reaction mechanism of bovine heart cytochrome c oxidase. Journal of Inorganic Biochemistry, 82, 1–7.CrossRefPubMed
9.
Zurück zum Zitat Yoshikawa, S. (2005). Reaction mechanism and phospholipid structures of bovine heart cytochrome c oxidase. Biochemical Society Transactions, 33, 934–937.CrossRefPubMed Yoshikawa, S. (2005). Reaction mechanism and phospholipid structures of bovine heart cytochrome c oxidase. Biochemical Society Transactions, 33, 934–937.CrossRefPubMed
10.
Zurück zum Zitat Poyton, R. O., Goehring, B., Droste, M., Sevarino, K. A., Allen, L. A., & Zhao, X. J. (1995). Cytochrome-c oxidase from Saccharomyces cerevisiae. Methods in Enzymology, 260, 97–116.CrossRefPubMed Poyton, R. O., Goehring, B., Droste, M., Sevarino, K. A., Allen, L. A., & Zhao, X. J. (1995). Cytochrome-c oxidase from Saccharomyces cerevisiae. Methods in Enzymology, 260, 97–116.CrossRefPubMed
11.
Zurück zum Zitat Geier, B. M., Schagger, H., Ortwein, C., Link, T. A., Hagen, W. R., Brandt, U., et al. (1995). Kinetic properties and ligand binding of the eleven-subunit cytochrome-c oxidase from Saccharomyces cerevisiae isolated with a novel large-scale purification method. European Journal of Biochemistry, 227, 296–302.CrossRefPubMed Geier, B. M., Schagger, H., Ortwein, C., Link, T. A., Hagen, W. R., Brandt, U., et al. (1995). Kinetic properties and ligand binding of the eleven-subunit cytochrome-c oxidase from Saccharomyces cerevisiae isolated with a novel large-scale purification method. European Journal of Biochemistry, 227, 296–302.CrossRefPubMed
12.
Zurück zum Zitat Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., & Shinzawa-Itoh, K. (1996). The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science, 272, 1136–1144.CrossRefPubMed Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., & Shinzawa-Itoh, K. (1996). The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å. Science, 272, 1136–1144.CrossRefPubMed
13.
Zurück zum Zitat Barrientos, A., Barros, M. H., Valnot, I., Rotig, A., Rustin, P., & Tzagoloff, A. (2002). Cytochrome oxidase in health and disease. Gene, 286, 53–63.CrossRefPubMed Barrientos, A., Barros, M. H., Valnot, I., Rotig, A., Rustin, P., & Tzagoloff, A. (2002). Cytochrome oxidase in health and disease. Gene, 286, 53–63.CrossRefPubMed
14.
Zurück zum Zitat Das, J., Miller, S. T., & Stern, D. L. (2004). Comparison of diverse protein sequences of the nuclear-encoded subunits of cytochrome c oxidase suggests conservation of Structure underlies evolving functional sites. Molecular Biology and Evolution, 21, 1572–1582.CrossRefPubMed Das, J., Miller, S. T., & Stern, D. L. (2004). Comparison of diverse protein sequences of the nuclear-encoded subunits of cytochrome c oxidase suggests conservation of Structure underlies evolving functional sites. Molecular Biology and Evolution, 21, 1572–1582.CrossRefPubMed
15.
Zurück zum Zitat Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., & Shinzawa-Itoh, K. (1995). Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 28 A. Science, 269, 1069–1074.CrossRefPubMed Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., & Shinzawa-Itoh, K. (1995). Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 28 A. Science, 269, 1069–1074.CrossRefPubMed
16.
Zurück zum Zitat Zeng, H. W., Saari, J. T., & Johnson, W. T. (2007). Copper deficiency decreases complex IV but not complex I, II, III, or V in the mitochondrial respiratory chain in rat heart. Journal of Nutrition, 137, 14–18.PubMed Zeng, H. W., Saari, J. T., & Johnson, W. T. (2007). Copper deficiency decreases complex IV but not complex I, II, III, or V in the mitochondrial respiratory chain in rat heart. Journal of Nutrition, 137, 14–18.PubMed
17.
Zurück zum Zitat Johnson, W. T., & Brown-borg, H. M. (2006). Cardiac cytochrome c oxidase deficiency occurs during late postnatal development in progeny of copper-deficient rats. Experimental Biology and Medicine, 231, 172–180.PubMed Johnson, W. T., & Brown-borg, H. M. (2006). Cardiac cytochrome c oxidase deficiency occurs during late postnatal development in progeny of copper-deficient rats. Experimental Biology and Medicine, 231, 172–180.PubMed
18.
Zurück zum Zitat Prohaska, J. R. (1983). Changes in tissue growth, concentrations of copper, iron, cytochrome oxidase and superoxide dismutase subsequent to subsequent to dietary or genetic copper deficiency in mice. Journal of Nutrition, 113, 2148–2158. Prohaska, J. R. (1983). Changes in tissue growth, concentrations of copper, iron, cytochrome oxidase and superoxide dismutase subsequent to subsequent to dietary or genetic copper deficiency in mice. Journal of Nutrition, 113, 2148–2158.
19.
Zurück zum Zitat Prohaska, J. R. (1991). Changes in Cu, Zn-superoxide dismutase, cytochrome c oxidase, glutathione peroxidase and glutathione transferase activities in copper-deficient mice and rats. Journal of Nutrition, 121, 355–363.PubMed Prohaska, J. R. (1991). Changes in Cu, Zn-superoxide dismutase, cytochrome c oxidase, glutathione peroxidase and glutathione transferase activities in copper-deficient mice and rats. Journal of Nutrition, 121, 355–363.PubMed
20.
Zurück zum Zitat Johnson, W. T., Dufault, S. N., & Thomas, A. C. (1993). Platelet cytochrome c oxidase is an indicator of copper status in rats. Nutrition research, 13, 1153–1162.CrossRef Johnson, W. T., Dufault, S. N., & Thomas, A. C. (1993). Platelet cytochrome c oxidase is an indicator of copper status in rats. Nutrition research, 13, 1153–1162.CrossRef
21.
Zurück zum Zitat Johnson, W. T., & Anderson, C. M. (2008). Cardiac cytochrome c oxidase activity and contents of subunits 1 and 4 Are altered in offspring by low prenatal copper intake by rat dams. Journal of Nutrition, 138, 1269–1273.PubMed Johnson, W. T., & Anderson, C. M. (2008). Cardiac cytochrome c oxidase activity and contents of subunits 1 and 4 Are altered in offspring by low prenatal copper intake by rat dams. Journal of Nutrition, 138, 1269–1273.PubMed
22.
Zurück zum Zitat Hoffmann, P., Richards, D., Heinroth-Hoffmann, I., Mathias, P., Wey, H., & Toraason, M. (1995). Arachidonic acid disrupts calcium dynamics in neonatal rat cardiac myocytes. Cardiovascular Research, 30, 889–898.PubMed Hoffmann, P., Richards, D., Heinroth-Hoffmann, I., Mathias, P., Wey, H., & Toraason, M. (1995). Arachidonic acid disrupts calcium dynamics in neonatal rat cardiac myocytes. Cardiovascular Research, 30, 889–898.PubMed
23.
Zurück zum Zitat Siddiqui, R. A., Shaikh, S. R., Kovacs, R., Stillwell, W., & Zaloga, G. (2004). Inhibition of phenylephrine-induced cardiac hypertrophy by docosahexaenoic acid. Journal of Cellular Biochemistry, 92, 1141–1159.CrossRefPubMed Siddiqui, R. A., Shaikh, S. R., Kovacs, R., Stillwell, W., & Zaloga, G. (2004). Inhibition of phenylephrine-induced cardiac hypertrophy by docosahexaenoic acid. Journal of Cellular Biochemistry, 92, 1141–1159.CrossRefPubMed
24.
Zurück zum Zitat Barron, M., Gao, M., & Lough, J. (2000). Requirement for BMP and FGF signaling during cardiogenic induction in non-precardiac mesoderm is specific, transient, and cooperative. Developmental Dynamics, 218, 383–393.CrossRefPubMed Barron, M., Gao, M., & Lough, J. (2000). Requirement for BMP and FGF signaling during cardiogenic induction in non-precardiac mesoderm is specific, transient, and cooperative. Developmental Dynamics, 218, 383–393.CrossRefPubMed
25.
Zurück zum Zitat Yoshioka, J., Prince, R. N., Huang, H., Perkins, S. B., Cruz, F. U., & Macgillivray, C. (2005). Cardiomyocyte hypertrophy and degradation of connexin43 through spatially restricted autocrine/paracrine heparin- binding EGF. Proceedings of the National Academy of Sciences of the United States of America, 102, 10622–10627.CrossRefPubMed Yoshioka, J., Prince, R. N., Huang, H., Perkins, S. B., Cruz, F. U., & Macgillivray, C. (2005). Cardiomyocyte hypertrophy and degradation of connexin43 through spatially restricted autocrine/paracrine heparin- binding EGF. Proceedings of the National Academy of Sciences of the United States of America, 102, 10622–10627.CrossRefPubMed
26.
Zurück zum Zitat Venditti, C. P., Harris, M. C., Huff, D., Peterside, I., Munson, D., & Weber, H. S. (2004). Congenital cardiomyopathy and pulmonary hypertension: another fatal variant of cytochrome-c oxidase deficiency. Journal of Inherited Metabolic Disease, 27, 735–739.CrossRefPubMed Venditti, C. P., Harris, M. C., Huff, D., Peterside, I., Munson, D., & Weber, H. S. (2004). Congenital cardiomyopathy and pulmonary hypertension: another fatal variant of cytochrome-c oxidase deficiency. Journal of Inherited Metabolic Disease, 27, 735–739.CrossRefPubMed
27.
Zurück zum Zitat Medeiros, D. M., & Jennings, D. (2002). Role of copper in mitochondrial biogenesis via interaction with ATP synthase and cytochrome c oxidase. Journal of Bioenergetics and Biomembranes, 34, 389–395.CrossRefPubMed Medeiros, D. M., & Jennings, D. (2002). Role of copper in mitochondrial biogenesis via interaction with ATP synthase and cytochrome c oxidase. Journal of Bioenergetics and Biomembranes, 34, 389–395.CrossRefPubMed
28.
Zurück zum Zitat Goffart, S., Kleist-Retzowa, J. C., & Wiesnera, R. J. (2004). Regulation of mitochondrial proliferation in the heart: power-plant failure contributes to cardiac failure in hypertrophy. Cardiovascular Research, 64, 198–207.CrossRefPubMed Goffart, S., Kleist-Retzowa, J. C., & Wiesnera, R. J. (2004). Regulation of mitochondrial proliferation in the heart: power-plant failure contributes to cardiac failure in hypertrophy. Cardiovascular Research, 64, 198–207.CrossRefPubMed
29.
Zurück zum Zitat Chen, H., Huang, X. N., Stewart, A. F. R., & Sepulveda, J. L. (2004). Gene expression changes associated with fibronectin-induced cardiac myocyte hypertrophy. Physiological genomics, 18, 273–283.CrossRefPubMed Chen, H., Huang, X. N., Stewart, A. F. R., & Sepulveda, J. L. (2004). Gene expression changes associated with fibronectin-induced cardiac myocyte hypertrophy. Physiological genomics, 18, 273–283.CrossRefPubMed
30.
Zurück zum Zitat Kuo, W. W., Chu, C. Y., Wu, C. H., Lin, J. A., Liu, J. Y., & Ying, T. H. (2005). The profile of cardiac cytochrome c oxidase (COX) expression in an accelerated cardiac-hypertrophy model. Journal of Biomedical Science, 12, 601–610.CrossRefPubMed Kuo, W. W., Chu, C. Y., Wu, C. H., Lin, J. A., Liu, J. Y., & Ying, T. H. (2005). The profile of cardiac cytochrome c oxidase (COX) expression in an accelerated cardiac-hypertrophy model. Journal of Biomedical Science, 12, 601–610.CrossRefPubMed
31.
Zurück zum Zitat Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C., & O’Halloran, T. V. (1999). Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science, 284, 805–808.CrossRefPubMed Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C., & O’Halloran, T. V. (1999). Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science, 284, 805–808.CrossRefPubMed
Metadaten
Titel
Cytochrome c Oxidase is Essential for Copper-Induced Regression of Cardiomyocyte Hypertrophy
verfasst von
Xiao Zuo
Huiqi Xie
Daoyin Dong
Nenggang Jiang
Hongming Zhu
Y. James Kang
Publikationsdatum
01.09.2010
Verlag
Humana Press Inc
Erschienen in
Cardiovascular Toxicology / Ausgabe 3/2010
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-010-9080-0

Weitere Artikel der Ausgabe 3/2010

Cardiovascular Toxicology 3/2010 Zur Ausgabe