Skip to main content
Erschienen in: Cardiovascular Toxicology 3/2024

07.02.2024 | Research

Downregulation of LILRB4 Promotes Human Aortic Smooth Muscle Cell Contractile Phenotypic Switch and Apoptosis in Aortic Dissection

verfasst von: Jianxian Xiong, Linyuan Wang, Xin Xiong, Yongzhi Deng

Erschienen in: Cardiovascular Toxicology | Ausgabe 3/2024

Einloggen, um Zugang zu erhalten

Abstract

Aortic dissection (AD) is a severe vascular disease with high rates of mortality and morbidity. However, the underlying molecular mechanisms of AD remain unclear. Differentially expressed genes (DEGs) were screened by bioinformatics methods. Alterations of histopathology and inflammatory factor levels in β-aminopropionitrile (BAPN)-induced AD mouse model were evaluated through Hematoxylin–Eosin (HE) staining and Enzyme-linked immunosorbent assay (ELISA), respectively. Reverse transcription quantitative real-time polymerase chain reaction was performed to detect DEGs expression. Furthermore, the role of LILRB4 in AD was investigated through Cell Counting Kit-8 (CCK-8), wound healing, and flow cytometry. Western blotting was employed to assess the phenotypic switch and extracellular matrix (ECM)-associated protein expressions in platelet-derived growth factor-BB (PDGF-BB)-stimulated in vitro model of AD. In the AD mouse model, distinct dissection formation was observed. TNF-α, IL-1β, IL-8, and IL-6 levels were higher in the AD mouse model than in the controls. Six hub genes were identified, including LILRB4, TIMP1, CCR5, CCL7, MSR1, and CLEC4D, all of which were highly expressed. Further exploration revealed that LILRB4 knockdown inhibited the cell vitality and migration of PDGF-BB-induced HASMCs while promoting apoptosis and G0/G1 phase ratio. More importantly, LILRB4 knockdown promoted the protein expression of α-SMA and SM22α, while decreasing the expression of Co1, MMP2, and CTGF, which suggested that LILRB4 silencing promoted contractile phenotypic transition and ECM stability. LILRB4 knockdown inhibits the progression of AD. Our study provides a new potential target for the clinical treatment of AD.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Zha, Z., Pan, Y., Zheng, Z., & Wei, X. (2021). Prognosis and risk factors of stroke after thoracic endovascular aortic repair for stanford type B aortic dissection. Frontiers in Cardiovascular Medicine, 8, 787038.PubMedCrossRef Zha, Z., Pan, Y., Zheng, Z., & Wei, X. (2021). Prognosis and risk factors of stroke after thoracic endovascular aortic repair for stanford type B aortic dissection. Frontiers in Cardiovascular Medicine, 8, 787038.PubMedCrossRef
2.
Zurück zum Zitat Thompson. R., W. (2002). Detection and management of small aortic aneurysms. New England Journal of Medicine, 346(19), 1484-1486 Thompson. R., W. (2002). Detection and management of small aortic aneurysms. New England Journal of Medicine, 346(19), 1484-1486
3.
Zurück zum Zitat Chen, S. W., Lin, Y. S., Wu, V. C., Lin, M. S., Chou, A. H., Chu, P. H., & Chen, T. H. (2020). Effect of beta-blocker therapy on late outcomes after surgical repair of type A aortic dissection. The Journal of Thoracic and Cardiovascular Surgery, 159(5), 1694–1703.PubMedCrossRef Chen, S. W., Lin, Y. S., Wu, V. C., Lin, M. S., Chou, A. H., Chu, P. H., & Chen, T. H. (2020). Effect of beta-blocker therapy on late outcomes after surgical repair of type A aortic dissection. The Journal of Thoracic and Cardiovascular Surgery, 159(5), 1694–1703.PubMedCrossRef
4.
Zurück zum Zitat Zhu, S. B., Zhu, J., Zhou, Z. Z., Xi, E. P., Wang, R. P., & Zhang, Y. (2015). TGF-β1 induces human aortic vascular smooth muscle cell phenotype switch through PI3K/AKT/ID2 signaling. American journal of translational research, 7(12), 2764–2774.PubMedPubMedCentral Zhu, S. B., Zhu, J., Zhou, Z. Z., Xi, E. P., Wang, R. P., & Zhang, Y. (2015). TGF-β1 induces human aortic vascular smooth muscle cell phenotype switch through PI3K/AKT/ID2 signaling. American journal of translational research, 7(12), 2764–2774.PubMedPubMedCentral
5.
Zurück zum Zitat Wang, Y., Dong, C. Q., Peng, G. Y., Huang, H. Y., Yu, Y. S., Ji, Z. C., & Shen, Z. Y. (2019). MicroRNA-134–5p regulates media degeneration through Inhibiting VSMC phenotypic switch and migration in thoracic aortic dissection. Molecular. Therapy-Nucleic Acids., 16, 284–924.PubMedPubMedCentralCrossRef Wang, Y., Dong, C. Q., Peng, G. Y., Huang, H. Y., Yu, Y. S., Ji, Z. C., & Shen, Z. Y. (2019). MicroRNA-134–5p regulates media degeneration through Inhibiting VSMC phenotypic switch and migration in thoracic aortic dissection. Molecular. Therapy-Nucleic Acids., 16, 284–924.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Xu, Z., Zhong, K., Guo, G., Xu, C., Song, Z., Wang, D., & Pan, J. (2021). 2021 circ_TGFBR2 Inhibits vascular smooth muscle cells phenotypic switch and suppresses aortic dissection progression by sponging miR-29a. Journal of Inflammation Research., 14, 5877–5890.PubMedPubMedCentralCrossRef Xu, Z., Zhong, K., Guo, G., Xu, C., Song, Z., Wang, D., & Pan, J. (2021). 2021 circ_TGFBR2 Inhibits vascular smooth muscle cells phenotypic switch and suppresses aortic dissection progression by sponging miR-29a. Journal of Inflammation Research., 14, 5877–5890.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Cao, G., Xuan, X., Hu, J., Zhang, R., Jin, H., & Dong, H. (2022). How vascular smooth muscle cell phenotype switching contributes to vascular disease. Cell Communication and Signaling: CCS, 20(1), 180.PubMedPubMedCentralCrossRef Cao, G., Xuan, X., Hu, J., Zhang, R., Jin, H., & Dong, H. (2022). How vascular smooth muscle cell phenotype switching contributes to vascular disease. Cell Communication and Signaling: CCS, 20(1), 180.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Davis-Dusenbery, B. N., Wu, C., & Hata, A. (2011). Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(11), 2370–2377.PubMedPubMedCentralCrossRef Davis-Dusenbery, B. N., Wu, C., & Hata, A. (2011). Micromanaging vascular smooth muscle cell differentiation and phenotypic modulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(11), 2370–2377.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Huang, W., Huang, C., Ding, H., Luo, J., Liu, Y., Fan, R., Xiao, F., Fan, X., & Jiang, Z. (2020). Involvement of miR-145 in the development of aortic dissection via inducing proliferation, migration, and apoptosis of vascular smooth muscle cells. Journal of clinical laboratory analysis., 34(1), e23028.PubMedCrossRef Huang, W., Huang, C., Ding, H., Luo, J., Liu, Y., Fan, R., Xiao, F., Fan, X., & Jiang, Z. (2020). Involvement of miR-145 in the development of aortic dissection via inducing proliferation, migration, and apoptosis of vascular smooth muscle cells. Journal of clinical laboratory analysis., 34(1), e23028.PubMedCrossRef
10.
Zurück zum Zitat Meng, J., Liu, H. L., Ma, D., Wang, H. Y., Peng, Y., & Wang, H. L. (2020). Upregulation of aurora kinase A promotes vascular smooth muscle cell proliferation and migration by activating the GSK-3beta/beta-catenin pathway in aortic-dissecting aneurysms. Life Sciences, 262, 118491.PubMedCrossRef Meng, J., Liu, H. L., Ma, D., Wang, H. Y., Peng, Y., & Wang, H. L. (2020). Upregulation of aurora kinase A promotes vascular smooth muscle cell proliferation and migration by activating the GSK-3beta/beta-catenin pathway in aortic-dissecting aneurysms. Life Sciences, 262, 118491.PubMedCrossRef
11.
Zurück zum Zitat Hu, C., Huang, W., Xiong, N., & Liu, X. (2021). SP1-mediated transcriptional activation of PTTG1 regulates the migration and phenotypic switching of aortic vascular smooth muscle cells in aortic dissection through MAPK signaling. Archives of Biochemistry and Biophysics, 711, 109007.PubMedCrossRef Hu, C., Huang, W., Xiong, N., & Liu, X. (2021). SP1-mediated transcriptional activation of PTTG1 regulates the migration and phenotypic switching of aortic vascular smooth muscle cells in aortic dissection through MAPK signaling. Archives of Biochemistry and Biophysics, 711, 109007.PubMedCrossRef
12.
Zurück zum Zitat Yang, K., Ren, J., Li, X., Wang, Z., Xue, L., Cui, S., Sang, W., Xu, T., Zhang, J., Yu, J., & Liu, Z. (2020). Prevention of aortic dissection and aneurysm via an ALDH2-mediated switch in vascular smooth muscle cell phenotype. European Heart Journal., 41(26), 2442–2453.PubMedCrossRef Yang, K., Ren, J., Li, X., Wang, Z., Xue, L., Cui, S., Sang, W., Xu, T., Zhang, J., Yu, J., & Liu, Z. (2020). Prevention of aortic dissection and aneurysm via an ALDH2-mediated switch in vascular smooth muscle cell phenotype. European Heart Journal., 41(26), 2442–2453.PubMedCrossRef
13.
14.
Zurück zum Zitat Liu, J., Wu, Q., Shi, J., Guo, W., Jiang, X., & Zhou, B. (2020). Ren C LILRB4, from the immune system to the disease target. Journal of Translational Research., 12(7), 3149–3166. Liu, J., Wu, Q., Shi, J., Guo, W., Jiang, X., & Zhou, B. (2020). Ren C LILRB4, from the immune system to the disease target. Journal of Translational Research., 12(7), 3149–3166.
15.
Zurück zum Zitat Huang, C., Zhu, H., X., Yao, Y., Bian, Z., H., Zheng, Y., J., Li, L., Moutsopoulos, H,. M,. Gershwin, M,. E,. & Lian, Z,. X, (2019) Immune checkpoint molecules. Possible future therapeutic implications in autoimmune diseases. Journal of Autoimmunity, 104, 102333 Huang, C., Zhu, H., X., Yao, Y., Bian, Z., H., Zheng, Y., J., Li, L., Moutsopoulos, H,. M,. Gershwin, M,. E,. & Lian, Z,. X, (2019) Immune checkpoint molecules. Possible future therapeutic implications in autoimmune diseases. Journal of Autoimmunity, 104, 102333
16.
Zurück zum Zitat Inui, M., Sugahara-Tobinai, A., Fujii, H., Itoh-Nakadai, A., Fukuyama, H., Kurosaki, T., Ishii, T., Harigae, H., & Takai, T. (2016) Tolerogenic immunoreceptor ILT3/LILRB4 paradoxically marks pathogenic auto-antibody-producing plasmablasts and plasma cells in non-treated SLE. International Immunology 28(12), 597–604 Inui, M., Sugahara-Tobinai, A., Fujii, H., Itoh-Nakadai, A., Fukuyama, H., Kurosaki, T., Ishii, T., Harigae, H., & Takai, T. (2016) Tolerogenic immunoreceptor ILT3/LILRB4 paradoxically marks pathogenic auto-antibody-producing plasmablasts and plasma cells in non-treated SLE. International Immunology 28(12), 597–604
17.
Zurück zum Zitat Sugahara-Tobinai, A., Inui, M., Metoki, T., Watanabe, Y., Onuma, R., Takai, T., & Kumaki, S. (2019). augmented ILT3/LILRB4 expression of peripheral blood antibody secreting cells in the acute phase of Kawasaki Disease. Pediatric Infectious Disease Journal., 38(4), 431–438.PubMedCrossRef Sugahara-Tobinai, A., Inui, M., Metoki, T., Watanabe, Y., Onuma, R., Takai, T., & Kumaki, S. (2019). augmented ILT3/LILRB4 expression of peripheral blood antibody secreting cells in the acute phase of Kawasaki Disease. Pediatric Infectious Disease Journal., 38(4), 431–438.PubMedCrossRef
18.
Zurück zum Zitat Anami, Y., Deng, M., Gui, X., Yamaguchi, A., Yamazaki, C. M., Zhang, N., Zhang, C. C., An, Z., & Tsuchikama, K. (2020). LILRB4-targeting antibody-drug conjugates for the treatment of acute myeloid Leukemia. Molecular Cancer Therapeutics, 19(11), 2330–2339.PubMedPubMedCentralCrossRef Anami, Y., Deng, M., Gui, X., Yamaguchi, A., Yamazaki, C. M., Zhang, N., Zhang, C. C., An, Z., & Tsuchikama, K. (2020). LILRB4-targeting antibody-drug conjugates for the treatment of acute myeloid Leukemia. Molecular Cancer Therapeutics, 19(11), 2330–2339.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Lu, Y., Jiang, Z., Dai, H., Miao, R., Shu, J., Gu, H., Liu, X., Huang, Z., Yang, G., Chen, A. F., & Yuan, H. (2018). Hepatic leukocyte immunoglobulin-like receptor B4 (LILRB4) attenuates nonalcoholic fatty liver disease via SHP1-TRAF6 pathway. Hepatology, 67(4), 1303–1309.PubMedCrossRef Lu, Y., Jiang, Z., Dai, H., Miao, R., Shu, J., Gu, H., Liu, X., Huang, Z., Yang, G., Chen, A. F., & Yuan, H. (2018). Hepatic leukocyte immunoglobulin-like receptor B4 (LILRB4) attenuates nonalcoholic fatty liver disease via SHP1-TRAF6 pathway. Hepatology, 67(4), 1303–1309.PubMedCrossRef
20.
Zurück zum Zitat Zhou, H., Li, N., Yuan, Y., Jin, Y. G., Wu, Q., Yan, L., Bian, Z. Y., Deng, W., Shen, D. F., Li, H., & Tang, Q. Z. (2020). Leukocyte immunoglobulin-like receptor B4 protects against cardiac hypertrophy via SHP-2-dependent inhibition of the NF-kappaB pathway. Journal of Molecular Medicine (Berl)., 98(5), 691–705.CrossRef Zhou, H., Li, N., Yuan, Y., Jin, Y. G., Wu, Q., Yan, L., Bian, Z. Y., Deng, W., Shen, D. F., Li, H., & Tang, Q. Z. (2020). Leukocyte immunoglobulin-like receptor B4 protects against cardiac hypertrophy via SHP-2-dependent inhibition of the NF-kappaB pathway. Journal of Molecular Medicine (Berl)., 98(5), 691–705.CrossRef
21.
Zurück zum Zitat Katz, H. R. (2007). Inhibition of pathologic inflammation by leukocyte Ig-like receptor B4 and related inhibitory receptors. Immunological Reviews, 217, 222–230.PubMedCrossRef Katz, H. R. (2007). Inhibition of pathologic inflammation by leukocyte Ig-like receptor B4 and related inhibitory receptors. Immunological Reviews, 217, 222–230.PubMedCrossRef
22.
Zurück zum Zitat Liu, W., Zhang, W., Wang, T., Wu, J., Zhong, X., Gao, K., Liu, Y., He, X., Zhou, Y., Wang, H., & Zeng, H. (2019). Obstructive sleep apnea syndrome promotes the progression of aortic dissection via a ROS- HIF-1alpha-MMPs associated pathway International. Journal of Biological Sciences, 15(13), 2774–2782. Liu, W., Zhang, W., Wang, T., Wu, J., Zhong, X., Gao, K., Liu, Y., He, X., Zhou, Y., Wang, H., & Zeng, H. (2019). Obstructive sleep apnea syndrome promotes the progression of aortic dissection via a ROS- HIF-1alpha-MMPs associated pathway International. Journal of Biological Sciences, 15(13), 2774–2782.
23.
Zurück zum Zitat Holycross, B. J., Blank, R. S., Thompson, M. M., Peach, M. J., & Owens, G. K. (1992). Platelet-derived growth factor-BB-induced suppression of smooth muscle cell differentiation. Circulation Research, 71(6), 1525–1532.PubMedCrossRef Holycross, B. J., Blank, R. S., Thompson, M. M., Peach, M. J., & Owens, G. K. (1992). Platelet-derived growth factor-BB-induced suppression of smooth muscle cell differentiation. Circulation Research, 71(6), 1525–1532.PubMedCrossRef
24.
Zurück zum Zitat Su, M., Yue, Z., Wang, H., Jia, M., Bai, C., Qiu, W., & Chen, J. (2018). Ufmylation Is Activated in Vascular Remodeling and Lipopolysaccharide-Induced Endothelial Cell Injury. DNA and cell biology, 37(5), 426–431.PubMedCrossRef Su, M., Yue, Z., Wang, H., Jia, M., Bai, C., Qiu, W., & Chen, J. (2018). Ufmylation Is Activated in Vascular Remodeling and Lipopolysaccharide-Induced Endothelial Cell Injury. DNA and cell biology, 37(5), 426–431.PubMedCrossRef
25.
Zurück zum Zitat Cao, T., Zhang, L., Yao, L.,L., Zheng, F., Wang, L., Yang, J.,Y., Guo, L.,Y., Li, X.,Y., Yan, Y.,W., Pan, Y., M., & Jiang, M. (2017) S100B promotes injury-induced vascular remodeling through modulating smooth muscle phenotype. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1863(11), 2772–2782 Cao, T., Zhang, L., Yao, L.,L., Zheng, F., Wang, L., Yang, J.,Y., Guo, L.,Y., Li, X.,Y., Yan, Y.,W., Pan, Y., M., & Jiang, M. (2017) S100B promotes injury-induced vascular remodeling through modulating smooth muscle phenotype. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1863(11), 2772–2782
26.
Zurück zum Zitat Meng, W., Liu, S., Li, D., Liu, Z., Yang, H., Sun, B., & Liu, H. (2018). Expression of platelet-derived growth factor B is upregulated in patients with thoracic aortic dissection. Journal of vascular surgery, 68, 3S-13S.PubMedCrossRef Meng, W., Liu, S., Li, D., Liu, Z., Yang, H., Sun, B., & Liu, H. (2018). Expression of platelet-derived growth factor B is upregulated in patients with thoracic aortic dissection. Journal of vascular surgery, 68, 3S-13S.PubMedCrossRef
27.
Zurück zum Zitat Zhang, K., Qi, Y., Wang, M., & Chen, Q. (2022). Long non-coding RNA HIF1A-AS2 modulates the proliferation, migration, and phenotypic switch of aortic smooth muscle cells in aortic dissection via sponging microRNA-33b. Bioengineered, 13(3), 6383–6395.PubMedPubMedCentralCrossRef Zhang, K., Qi, Y., Wang, M., & Chen, Q. (2022). Long non-coding RNA HIF1A-AS2 modulates the proliferation, migration, and phenotypic switch of aortic smooth muscle cells in aortic dissection via sponging microRNA-33b. Bioengineered, 13(3), 6383–6395.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Wang, L., Zhang, J., Fu, W., Guo, D., Jiang, J., & Wang, Y. (2012). Association of smooth muscle cell phenotypes with extracellular matrix disorders in thoracic aortic dissection. Journal of Vascular Surgery, 56(6), 1698–1709.PubMedCrossRef Wang, L., Zhang, J., Fu, W., Guo, D., Jiang, J., & Wang, Y. (2012). Association of smooth muscle cell phenotypes with extracellular matrix disorders in thoracic aortic dissection. Journal of Vascular Surgery, 56(6), 1698–1709.PubMedCrossRef
29.
Zurück zum Zitat Grond-Ginsbach, C., Pjontek, R., Aksay, S. S., Hyhlik-Durr, A., Bockler, D., & Gross-Weissmann, M. L. (2010). Spontaneous arterial dissection: Phenotype and molecular pathogenesis. Cellular and Molecular Life Sciences, 67(11), 1799–1815.PubMedCrossRef Grond-Ginsbach, C., Pjontek, R., Aksay, S. S., Hyhlik-Durr, A., Bockler, D., & Gross-Weissmann, M. L. (2010). Spontaneous arterial dissection: Phenotype and molecular pathogenesis. Cellular and Molecular Life Sciences, 67(11), 1799–1815.PubMedCrossRef
30.
Zurück zum Zitat Rizza, A., Negro, F., Mandigers, T. J., Palmieri, C., Berti, S., & Trimarchi, S. (2023). Endovascular Intervention for Aortic Dissection Is “Ascending” International. Journal of Environmental Research and Public Health, 20(5), 4094.PubMedCrossRef Rizza, A., Negro, F., Mandigers, T. J., Palmieri, C., Berti, S., & Trimarchi, S. (2023). Endovascular Intervention for Aortic Dissection Is “Ascending” International. Journal of Environmental Research and Public Health, 20(5), 4094.PubMedCrossRef
31.
Zurück zum Zitat Li, Z., Zhou, C., Tan, L., Chen, P., Cao, Y., Li, X., Yan, J., Zeng, H., Wang, D. W., & Wang, D. W. (2018). A targeted sequencing approach to find novel pathogenic genes associated with sporadic aortic dissection. Science China Life Sciences, 61(12), 1545–1553.PubMedCrossRef Li, Z., Zhou, C., Tan, L., Chen, P., Cao, Y., Li, X., Yan, J., Zeng, H., Wang, D. W., & Wang, D. W. (2018). A targeted sequencing approach to find novel pathogenic genes associated with sporadic aortic dissection. Science China Life Sciences, 61(12), 1545–1553.PubMedCrossRef
32.
Zurück zum Zitat Mitsune, A., Yamada, M., Fujino, N., Numakura, T., Ichikawa, T., Suzuki, A., Matsumoto, S., Mitsuhashi, Y., Itakura, K., Makiguchi, T., & Koarai, A. (2021). Upregulation of leukocyte immunoglobulin-like receptor B4 on interstitial macrophages in COPD; their possible protective role against emphysema formation. Respiratory Research., 22(1), 232.PubMedPubMedCentralCrossRef Mitsune, A., Yamada, M., Fujino, N., Numakura, T., Ichikawa, T., Suzuki, A., Matsumoto, S., Mitsuhashi, Y., Itakura, K., Makiguchi, T., & Koarai, A. (2021). Upregulation of leukocyte immunoglobulin-like receptor B4 on interstitial macrophages in COPD; their possible protective role against emphysema formation. Respiratory Research., 22(1), 232.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Liu, Y., Zou, L., Tang, H., Li, J., Liu, H., Jiang, X., Jiang, B., Dong, Z., & Fu, W. (2022). Sequencing of Immune Cells in Human Aortic Dissection Tissue Provides Insights Into Immune Cell Heterogeneity. Frontiers in Cardiovascular Medicine., 9, 791875.PubMedPubMedCentralCrossRef Liu, Y., Zou, L., Tang, H., Li, J., Liu, H., Jiang, X., Jiang, B., Dong, Z., & Fu, W. (2022). Sequencing of Immune Cells in Human Aortic Dissection Tissue Provides Insights Into Immune Cell Heterogeneity. Frontiers in Cardiovascular Medicine., 9, 791875.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Akama, T., & Chun, T. H. (2018). Transcription factor 21 (TCF21) promotes proinflammatory interleukin 6 expression and extracellular matrix remodeling in visceral adipose stem cells. Journal of Biological Chemistry, 293(17), 6603–6610.PubMedPubMedCentralCrossRef Akama, T., & Chun, T. H. (2018). Transcription factor 21 (TCF21) promotes proinflammatory interleukin 6 expression and extracellular matrix remodeling in visceral adipose stem cells. Journal of Biological Chemistry, 293(17), 6603–6610.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Tang, J., Kang, Y., Huang, L., Wu, L., & Peng, Y. (2020). TIMP1 preserves the blood-brain barrier through interacting with CD63/integrin beta 1 complex and regulating downstream FAK/RhoA signaling. Acta Pharm Sinica B., 10(6), 987–1003.CrossRef Tang, J., Kang, Y., Huang, L., Wu, L., & Peng, Y. (2020). TIMP1 preserves the blood-brain barrier through interacting with CD63/integrin beta 1 complex and regulating downstream FAK/RhoA signaling. Acta Pharm Sinica B., 10(6), 987–1003.CrossRef
36.
Zurück zum Zitat Zhang, X., Wu, D., Choi, J. C., Minard, C. G., Hou, X., Coselli, J. S., Shen, Y. H., & LeMaire, S. A. (2014). Matrix metalloproteinase levels in chronic thoracic aortic dissection. Journal of Surgical Research., 189(2), 348–358.PubMedCrossRef Zhang, X., Wu, D., Choi, J. C., Minard, C. G., Hou, X., Coselli, J. S., Shen, Y. H., & LeMaire, S. A. (2014). Matrix metalloproteinase levels in chronic thoracic aortic dissection. Journal of Surgical Research., 189(2), 348–358.PubMedCrossRef
37.
Zurück zum Zitat Corbitt, H., Morris, S. A., Gravholt, C. H., Mortensen, K. H., Tippner-Hedges, R., Silberbach, M., & Maslen GenTAC Registry Investigators, C. L. (2018). TIMP3 and TIMP1 are risk genes for bicuspid aortic valve and aortopathy in Turner syndrome. PLoS Genetics, 14(10), e1007692.PubMedPubMedCentralCrossRef Corbitt, H., Morris, S. A., Gravholt, C. H., Mortensen, K. H., Tippner-Hedges, R., Silberbach, M., & Maslen GenTAC Registry Investigators, C. L. (2018). TIMP3 and TIMP1 are risk genes for bicuspid aortic valve and aortopathy in Turner syndrome. PLoS Genetics, 14(10), e1007692.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Oppermann, M. (2004). Chemokine receptor CCR5: Insights into structure, function, and regulation. Cellular Signalling, 16(11), 1201–1210.PubMedCrossRef Oppermann, M. (2004). Chemokine receptor CCR5: Insights into structure, function, and regulation. Cellular Signalling, 16(11), 1201–1210.PubMedCrossRef
39.
Zurück zum Zitat Xie, C., Ye, F., Zhang, N., Huang, Y., Pan, Y., & Xie, X. (2021). CCL7 contributes to angiotensin II-induced abdominal aortic aneurysm by promoting macrophage infiltration and pro-inflammatory phenotype. Journal of Cellular and Molecular Medicine, 25(15), 7280–7293.PubMedPubMedCentralCrossRef Xie, C., Ye, F., Zhang, N., Huang, Y., Pan, Y., & Xie, X. (2021). CCL7 contributes to angiotensin II-induced abdominal aortic aneurysm by promoting macrophage infiltration and pro-inflammatory phenotype. Journal of Cellular and Molecular Medicine, 25(15), 7280–7293.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Kelley, J. L., Ozment, T. R., Li, C., Schweitzer, J. B., & Williams, D. L. (2014). Scavenger receptor-A (CD204): A two-edged sword in health and disease Critical. Reviews in Immunology, 34(3), 241–261. Kelley, J. L., Ozment, T. R., Li, C., Schweitzer, J. B., & Williams, D. L. (2014). Scavenger receptor-A (CD204): A two-edged sword in health and disease Critical. Reviews in Immunology, 34(3), 241–261.
41.
Zurück zum Zitat Zhang, Z., Jiang, Y., Zhou, Z., Huang, J., Chen, S., Zhou, W., Yang, Q., Bai, H., Zhang, H., Ben, J., & Zhu, X. (2019). Scavenger receptor A1 attenuates aortic dissection via promoting efferocytosis in macrophages. Biochemical Pharmacology., 168, 392–403.PubMedCrossRef Zhang, Z., Jiang, Y., Zhou, Z., Huang, J., Chen, S., Zhou, W., Yang, Q., Bai, H., Zhang, H., Ben, J., & Zhu, X. (2019). Scavenger receptor A1 attenuates aortic dissection via promoting efferocytosis in macrophages. Biochemical Pharmacology., 168, 392–403.PubMedCrossRef
42.
Zurück zum Zitat Graham, L. M., Gupta, V., Schafer, G., Reid, D. M., Kimberg, M., Dennehy, K. M, Hornsell, W., G,, Guler, R., Campanero-Rhodes, M., A., Palma, A., S., & Feizi, T. (2012) The C-type lectin receptor CLECSF8 (CLEC4D) is expressed by myeloid cells and triggers cellular activation through Syk kinase. Journal of Biological Chemistry 287(31), 25964 2574 Graham, L. M., Gupta, V., Schafer, G., Reid, D. M., Kimberg, M., Dennehy, K. M, Hornsell, W., G,, Guler, R., Campanero-Rhodes, M., A., Palma, A., S., & Feizi, T. (2012) The C-type lectin receptor CLECSF8 (CLEC4D) is expressed by myeloid cells and triggers cellular activation through Syk kinase. Journal of Biological Chemistry 287(31), 25964 2574
43.
Zurück zum Zitat Zhang, H., Chen, T., Zhang, Y., Lin, J., Zhao, W., Shi, Y., Lau, H., Zhang, Y., Yang, M., Xu, C., & Tang, L. (2022). Crucial genes in aortic dissection identified by weighted gene coexpression network analysis. Journal of Immunology Research., 2022, 7585149.PubMedPubMedCentral Zhang, H., Chen, T., Zhang, Y., Lin, J., Zhao, W., Shi, Y., Lau, H., Zhang, Y., Yang, M., Xu, C., & Tang, L. (2022). Crucial genes in aortic dissection identified by weighted gene coexpression network analysis. Journal of Immunology Research., 2022, 7585149.PubMedPubMedCentral
44.
Zurück zum Zitat Zhao, Y., Hong, X., Xie, X., Guo, D., Chen, B., Fu, W., & Wang, L. (2022). Preoperative systemic inflammatory response index predicts long-term outcomes in type B aortic dissection after endovascular repair. Frontiers in Immunology., 13, 992463.PubMedPubMedCentralCrossRef Zhao, Y., Hong, X., Xie, X., Guo, D., Chen, B., Fu, W., & Wang, L. (2022). Preoperative systemic inflammatory response index predicts long-term outcomes in type B aortic dissection after endovascular repair. Frontiers in Immunology., 13, 992463.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Gao, H., Sun, X., Liu, Y., Liang, S., Zhang, B., Wang, L., & Ren, J. (2021). Analysis of Hub Genes and the Mechanism of Immune Infiltration in Stanford Type a Aortic Dissection. Frontiers in cardiovascular medicine., 8, 680065.ADSPubMedPubMedCentralCrossRef Gao, H., Sun, X., Liu, Y., Liang, S., Zhang, B., Wang, L., & Ren, J. (2021). Analysis of Hub Genes and the Mechanism of Immune Infiltration in Stanford Type a Aortic Dissection. Frontiers in cardiovascular medicine., 8, 680065.ADSPubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Del Porto, F., Proietta, M., Tritapepe, L., Miraldi, F., Koverech, A., Cardelli, P., Tabacco, F., De Santis, V., Vecchione, A., Mitterhofer, A. P., & Nofroni, I. (2010). Inflammation and immune response in acute aortic dissection. Annals of Medicine, 42(8), 622–629.PubMedCrossRef Del Porto, F., Proietta, M., Tritapepe, L., Miraldi, F., Koverech, A., Cardelli, P., Tabacco, F., De Santis, V., Vecchione, A., Mitterhofer, A. P., & Nofroni, I. (2010). Inflammation and immune response in acute aortic dissection. Annals of Medicine, 42(8), 622–629.PubMedCrossRef
47.
Zurück zum Zitat Colonna, M., Nakajima, H., & Cella, M. (2000). A family of inhibitory and activating Ig-like receptors that modulate function of lymphoid and myeloid cells. Seminars in Immunology, 12(2), 121–127.PubMedCrossRef Colonna, M., Nakajima, H., & Cella, M. (2000). A family of inhibitory and activating Ig-like receptors that modulate function of lymphoid and myeloid cells. Seminars in Immunology, 12(2), 121–127.PubMedCrossRef
48.
Zurück zum Zitat Chao, Y., & Zhang, L. (2022). Biomimetic design of inhibitors of immune checkpoint LILRB4. Biophysical Chemistry, 282, 106746.PubMedCrossRef Chao, Y., & Zhang, L. (2022). Biomimetic design of inhibitors of immune checkpoint LILRB4. Biophysical Chemistry, 282, 106746.PubMedCrossRef
49.
Zurück zum Zitat Ulges, A., Klein, M., Reuter, S., Gerlitzki, B., Hoffmann, M., Grebe, N., Staudt, V., Stergiou, N., Bohn, T., Brühl, T., J., & Muth, S. (2015) Protein kinase CK2 enables regulatory T cells to suppress excessive TH2 responses in vivo. Nature Immunology 16(3), 267 275 Ulges, A., Klein, M., Reuter, S., Gerlitzki, B., Hoffmann, M., Grebe, N., Staudt, V., Stergiou, N., Bohn, T., Brühl, T., J., & Muth, S. (2015) Protein kinase CK2 enables regulatory T cells to suppress excessive TH2 responses in vivo. Nature Immunology 16(3), 267 275
50.
Zurück zum Zitat Jiang, Z., Qin, J. J., Zhang, Y., Cheng, W. L., Ji, Y. X., Gong, F. H., Zhu, X. Y., Zhang, Y., She, Z. G., Huang, Z., & Li, H. (2017). LILRB4 deficiency aggravates the development of atherosclerosis and plaque instability by increasing the macrophage inflammatory response via NF-kappaB signaling. Clinical Science, 131(17), 2275–2288.PubMedCrossRef Jiang, Z., Qin, J. J., Zhang, Y., Cheng, W. L., Ji, Y. X., Gong, F. H., Zhu, X. Y., Zhang, Y., She, Z. G., Huang, Z., & Li, H. (2017). LILRB4 deficiency aggravates the development of atherosclerosis and plaque instability by increasing the macrophage inflammatory response via NF-kappaB signaling. Clinical Science, 131(17), 2275–2288.PubMedCrossRef
51.
Zurück zum Zitat John, S., Chen, H., Deng, M., Gui, X., Wu, G., Chen, W., Li, Z., Zhang, N., An, Z., & Zhang, C. C. (2018). A Novel Anti-LILRB4 CAR-T Cell for the Treatment of Monocytic AML. Molecular Therapy, 26(10), 2487–2495.PubMedPubMedCentralCrossRef John, S., Chen, H., Deng, M., Gui, X., Wu, G., Chen, W., Li, Z., Zhang, N., An, Z., & Zhang, C. C. (2018). A Novel Anti-LILRB4 CAR-T Cell for the Treatment of Monocytic AML. Molecular Therapy, 26(10), 2487–2495.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Gao, Q., Mo, S., Han, C., Liao, X., Yang, C., Wang, X., et al. (2023). Comprehensive analysis of LILR family genes expression and tumour-infiltrating immune cells in early-stage pancreatic ductal adenocarcinoma. IET Systems Biology, 17(2), 39–57.PubMedPubMedCentralCrossRef Gao, Q., Mo, S., Han, C., Liao, X., Yang, C., Wang, X., et al. (2023). Comprehensive analysis of LILR family genes expression and tumour-infiltrating immune cells in early-stage pancreatic ductal adenocarcinoma. IET Systems Biology, 17(2), 39–57.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Li, J., Gao, A., Zhang, F., Wang, S., Wang, J., Wang, J., Han, S., Yang, Z., Chen, X., Fang, Y., & Jiang, G. (2021). ILT3 promotes tumor cell motility and angiogenesis in non-small cell lung cancer. Cancer Letters, 501, 263–276.PubMedCrossRef Li, J., Gao, A., Zhang, F., Wang, S., Wang, J., Wang, J., Han, S., Yang, Z., Chen, X., Fang, Y., & Jiang, G. (2021). ILT3 promotes tumor cell motility and angiogenesis in non-small cell lung cancer. Cancer Letters, 501, 263–276.PubMedCrossRef
54.
Zurück zum Zitat Kim, J. B., Zhao, Q., Nguyen, T., Pjanic, M., Cheng, P., Wirka, R., Travisano, S., Nagao Kundu, M., & R,. (2020). Environment-Sensing Aryl Hydrocarbon Receptor Inhibits the Chondrogenic Fate of Modulated Smooth Muscle Cells in Atherosclerotic Lesions. Circulation, 142(6), 575–590.PubMedPubMedCentralCrossRef Kim, J. B., Zhao, Q., Nguyen, T., Pjanic, M., Cheng, P., Wirka, R., Travisano, S., Nagao Kundu, M., & R,. (2020). Environment-Sensing Aryl Hydrocarbon Receptor Inhibits the Chondrogenic Fate of Modulated Smooth Muscle Cells in Atherosclerotic Lesions. Circulation, 142(6), 575–590.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Zhang, Y.,N., Xie. B., D., Sun, L., Chen, W., Jiang, S., L., Liu, W., Bian, F., Tian, H., & Li R., K. (2016) Phenotypic switching of vascular smooth muscle cells in the 'normal region' of aorta from atherosclerosis patients is regulated by miR-145. Journal of Cellular and Molecular Medicine 20, (6): 1049 61 Zhang, Y.,N., Xie. B., D., Sun, L., Chen, W., Jiang, S., L., Liu, W., Bian, F., Tian, H., & Li R., K. (2016) Phenotypic switching of vascular smooth muscle cells in the 'normal region' of aorta from atherosclerosis patients is regulated by miR-145. Journal of Cellular and Molecular Medicine 20, (6): 1049 61
56.
Zurück zum Zitat Frismantiene, A., Philippova, M., Erne, P., & Resink, T. J. (2018). Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cellular Signalling, 52(48), 64. Frismantiene, A., Philippova, M., Erne, P., & Resink, T. J. (2018). Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cellular Signalling, 52(48), 64.
58.
Zurück zum Zitat Maguire, E. M., Pearce, S. W. A., Xiao, R., Oo, A. Y., & Xiao, Q. (2019). Matrix metalloproteinase in abdominal aortic aneurysm and aortic dissection. Pharmaceuticals (Basel), 12(3), 118.PubMedCrossRef Maguire, E. M., Pearce, S. W. A., Xiao, R., Oo, A. Y., & Xiao, Q. (2019). Matrix metalloproteinase in abdominal aortic aneurysm and aortic dissection. Pharmaceuticals (Basel), 12(3), 118.PubMedCrossRef
59.
Zurück zum Zitat Zhou, H., Ren, Y., Xiao, J., He, J., Zhang, Y., Qiu, Z., Huang, Q., Hu, Y., & Chen, L. (2021). Changes in aortic collagen in β-aminopropionitrile-induced acute aortic dissection. Annals of Translational Medicine, 9(20), 1574.PubMedPubMedCentralCrossRef Zhou, H., Ren, Y., Xiao, J., He, J., Zhang, Y., Qiu, Z., Huang, Q., Hu, Y., & Chen, L. (2021). Changes in aortic collagen in β-aminopropionitrile-induced acute aortic dissection. Annals of Translational Medicine, 9(20), 1574.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Sun, L., Wang, C., Yuan, Y., Guo, Z., He, Y., Ma, W., & Zhang, J. (2020) Downregulation of HDAC1 suppresses media degeneration by inhibiting the migration and phenotypic switch of aortic vascular smooth muscle cells in aortic dissection. Journal of Cellular Physiology, 235, (11): 8747 56 Sun, L., Wang, C., Yuan, Y., Guo, Z., He, Y., Ma, W., & Zhang, J. (2020) Downregulation of HDAC1 suppresses media degeneration by inhibiting the migration and phenotypic switch of aortic vascular smooth muscle cells in aortic dissection. Journal of Cellular Physiology, 235, (11): 8747 56
61.
Zurück zum Zitat Li, J., Yu, C., Yu, K., Chen, Z., Xing, D., Zha, B., Xie, W., & Ouyang, H. (2023). SPINT2 is involved in the proliferation, migration and phenotypic switching of aortic smooth muscle cells: Implications for the pathogenesis of thoracic aortic dissection. Experimental and Therapeutic Medicine, 26(6), 546.PubMedPubMedCentralCrossRef Li, J., Yu, C., Yu, K., Chen, Z., Xing, D., Zha, B., Xie, W., & Ouyang, H. (2023). SPINT2 is involved in the proliferation, migration and phenotypic switching of aortic smooth muscle cells: Implications for the pathogenesis of thoracic aortic dissection. Experimental and Therapeutic Medicine, 26(6), 546.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Zhi, K., Yin, R., Guo, H., & Qu, L. (2023). PUM2 regulates the formation of thoracic aortic dissection through EFEMP1. Experimental Cell Research, 427(2), 113602.PubMedCrossRef Zhi, K., Yin, R., Guo, H., & Qu, L. (2023). PUM2 regulates the formation of thoracic aortic dissection through EFEMP1. Experimental Cell Research, 427(2), 113602.PubMedCrossRef
63.
Zurück zum Zitat Yang, J., Fang, M., Yu, C., Li, Z., Wang, Q., Li, C., Wu, J., & Fan, R. (2023). Human aortic smooth muscle cell regulation by METTL3 via upregulation of m6A NOTCH1 modification and inhibition of NOTCH1. Annals of Translational Medicine., 11(10), 350.PubMedPubMedCentralCrossRef Yang, J., Fang, M., Yu, C., Li, Z., Wang, Q., Li, C., Wu, J., & Fan, R. (2023). Human aortic smooth muscle cell regulation by METTL3 via upregulation of m6A NOTCH1 modification and inhibition of NOTCH1. Annals of Translational Medicine., 11(10), 350.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Lee, J. H., Kim, J., Lee, S. J., Kim, Y. A., Maeng, Y. I., & Park, K. K. (2020). Apoptosis and fibrosis of vascular smooth muscle cells in aortic dissection: An immunohistochemical study International. Journal of Clinical and Experimental Pathology, 13(8), 1962–1969. Lee, J. H., Kim, J., Lee, S. J., Kim, Y. A., Maeng, Y. I., & Park, K. K. (2020). Apoptosis and fibrosis of vascular smooth muscle cells in aortic dissection: An immunohistochemical study International. Journal of Clinical and Experimental Pathology, 13(8), 1962–1969.
65.
Zurück zum Zitat Zhang, W., Wang, M., Gao, K., Zhong, X., Xie, Y., Dai, L., Liu, W., Liu, Y., He, X., & Li, S. (2022). Pharmacologic IRE1α kinase inhibition alleviates aortic dissection by decreasing vascular smooth muscle cells apoptosis International. Journal of Biological Sciences, 18(3), 1053–1064. Zhang, W., Wang, M., Gao, K., Zhong, X., Xie, Y., Dai, L., Liu, W., Liu, Y., He, X., & Li, S. (2022). Pharmacologic IRE1α kinase inhibition alleviates aortic dissection by decreasing vascular smooth muscle cells apoptosis International. Journal of Biological Sciences, 18(3), 1053–1064.
66.
Zurück zum Zitat Xiao, Y., Sun, Y., Ma, X., Wang, C., Zhang, L., Wang, J., Wang, G., Li, Z., Tian, W., Zhao, Z., & Jing, Q. (2020). MicroRNA-22 inhibits the apoptosis of vascular smooth muscle cell by targeting p38MAPKα in vascular remodeling of aortic dissection. Molecular Therapy-Nucleic Acids, 22, 1051–1062.PubMedPubMedCentralCrossRef Xiao, Y., Sun, Y., Ma, X., Wang, C., Zhang, L., Wang, J., Wang, G., Li, Z., Tian, W., Zhao, Z., & Jing, Q. (2020). MicroRNA-22 inhibits the apoptosis of vascular smooth muscle cell by targeting p38MAPKα in vascular remodeling of aortic dissection. Molecular Therapy-Nucleic Acids, 22, 1051–1062.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Shi, Y., Liu, B., Wang, C. S., & Yang, C. S. (2018). MST1 down-regulation in decreasing apoptosis of aortic dissection smooth muscle cell apoptosis. European Review for Medical and Pharmacological Sciences, 22(7), 2044–2051.PubMed Shi, Y., Liu, B., Wang, C. S., & Yang, C. S. (2018). MST1 down-regulation in decreasing apoptosis of aortic dissection smooth muscle cell apoptosis. European Review for Medical and Pharmacological Sciences, 22(7), 2044–2051.PubMed
Metadaten
Titel
Downregulation of LILRB4 Promotes Human Aortic Smooth Muscle Cell Contractile Phenotypic Switch and Apoptosis in Aortic Dissection
verfasst von
Jianxian Xiong
Linyuan Wang
Xin Xiong
Yongzhi Deng
Publikationsdatum
07.02.2024
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 3/2024
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-023-09824-3

Weitere Artikel der Ausgabe 3/2024

Cardiovascular Toxicology 3/2024 Zur Ausgabe