Skip to main content
Erschienen in: Lasers in Medical Science 9/2022

07.07.2022 | Original Article

Effect of ALA-PDT on inhibition of oral precancerous cell growth and its related mechanisms

verfasst von: Jian-qiu Jin, Qian Wang, Yu-xing Zhang, Xing Wang, Zhi-yue Lu, Bo-wen Li

Erschienen in: Lasers in Medical Science | Ausgabe 9/2022

Einloggen, um Zugang zu erhalten

Abstract

Backround

Early treatment of oral precancerous lesions is considered as a key strategy for in oral carcinogenesis prevention. Increasing evidence has suggested that the transforming growth factor beta (TGF-β) signaling pathway is tightly involved in the process of oral-carcinogenesis. In this study, we investigated the inhibition effect and potential mechanism of 5-aminolaevulinic acid photodynamic therapy (ALA-PDT) in human oral precancerous cells via TGF-β pathway.

Materials and methods

Here, the dysplastic oral keratinocyte (DOK) cells were incubated with ALA concentration of 1 mM/mL for 4 h and then irradiated with a Helium–Neon (He–Ne) ion laser at 633 nm (200 mW/cm2). The control cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) medium. We analyzed the differentially expressed genes and correlated pathways in oral precancerous cells following ALA-PDT using Affymetrix microarrays. TGF-β pathway was analyzed by quantitative real-time polymerase chain reaction (RT-qPCR) and western blotting. Bioinformatics analysis was performed to evaluate the expression of TGF-β1 in human oral cancer samples and adjacent normal samples. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), flow cytometry, 2′-7′-dichlorodihydrofluorescein diacetate (DCFH-DA), and wound healing assay were used to assess the effects of ALA-PDT plus TGF-β receptor inhibitor (LY2109761) in DOK cells.

Results

The TGF-β signaling could exert in suppressive effects on DOK cells after ALA-PDT. The cell proliferation and migration rate of DOK cells was significantly reduced and apoptosis and ROS generation induced more effectively by ALA-PDT combined with LY2109761. Furthermore, cell cycle analysis revealed that the combined treatment resulted in G0/G1 phase arrest.

Conclusions

ALA-PDT suppresses the growth of oral precancerous cells by regulating the TGF-β signaling pathway, and its suppressive effect was enhanced using LY2109761. These results indicate that it could be a promising alternative treatment against oral precancerous lesions.
Literatur
1.
Zurück zum Zitat Krishna Rao SV, Mejia G, Roberts-Thomson K, Logan R (2013) Epidemiology of oral cancer in Asia in the past decade–an update (2000–2012). Asian Pac J Cancer Prev 14(10):5567–5577PubMedCrossRef Krishna Rao SV, Mejia G, Roberts-Thomson K, Logan R (2013) Epidemiology of oral cancer in Asia in the past decade–an update (2000–2012). Asian Pac J Cancer Prev 14(10):5567–5577PubMedCrossRef
2.
Zurück zum Zitat Yang Y, Zhou M, Zeng X, Wang C (2021) The burden of oral cancer in China, 1990–2017: an analysis for the Global Burden of Disease, Injuries, and Risk Factors Study 2017. BMC Oral Health 21(1):44PubMedPubMedCentralCrossRef Yang Y, Zhou M, Zeng X, Wang C (2021) The burden of oral cancer in China, 1990–2017: an analysis for the Global Burden of Disease, Injuries, and Risk Factors Study 2017. BMC Oral Health 21(1):44PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Zanoni DK, Montero PH, Migliacci JC, Shah JP, Wong RJ, Ganly I et al (2019) Survival outcomes after treatment of cancer of the oral cavity (1985–2015). Oral Oncol 90:115–121PubMedPubMedCentralCrossRef Zanoni DK, Montero PH, Migliacci JC, Shah JP, Wong RJ, Ganly I et al (2019) Survival outcomes after treatment of cancer of the oral cavity (1985–2015). Oral Oncol 90:115–121PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Iocca O, Sollecito TP, Alawi F, Weinstein GS, Newman JG, De Virgilio A et al (2020) Potentially malignant disorders of the oral cavity and oral dysplasia: A systematic review and meta-analysis of malignant transformation rate by subtype. Head Neck 42(3):539–555PubMedCrossRef Iocca O, Sollecito TP, Alawi F, Weinstein GS, Newman JG, De Virgilio A et al (2020) Potentially malignant disorders of the oral cavity and oral dysplasia: A systematic review and meta-analysis of malignant transformation rate by subtype. Head Neck 42(3):539–555PubMedCrossRef
5.
Zurück zum Zitat Neville BW, Day TA (2002) Oral cancer and precancerous lesions. CA Cancer J Clin 52(4):195–215PubMedCrossRef Neville BW, Day TA (2002) Oral cancer and precancerous lesions. CA Cancer J Clin 52(4):195–215PubMedCrossRef
6.
Zurück zum Zitat Romano A, Di Stasio D, Gentile E, Petruzzi M, Serpico R, Lucchese A (2021) The potential role of Photodynamic therapy in oral premalignant and malignant lesions: a systematic review. J Oral Pathol Med 50(4):333–344PubMedCrossRef Romano A, Di Stasio D, Gentile E, Petruzzi M, Serpico R, Lucchese A (2021) The potential role of Photodynamic therapy in oral premalignant and malignant lesions: a systematic review. J Oral Pathol Med 50(4):333–344PubMedCrossRef
7.
Zurück zum Zitat Ganesh D, Sreenivasan P, Öhman J, Wallström M, Braz-Silva PH, Giglio D et al (2018) Potentially malignant oral disorders and cancer transformation. Anticancer Res 38(6):3223–3229PubMedCrossRef Ganesh D, Sreenivasan P, Öhman J, Wallström M, Braz-Silva PH, Giglio D et al (2018) Potentially malignant oral disorders and cancer transformation. Anticancer Res 38(6):3223–3229PubMedCrossRef
8.
Zurück zum Zitat Ahn PH, Quon H, O’Malley BW, Weinstein G, Chalian A, Malloy K et al (2016) Toxicities and early outcomes in a phase 1 trial of photodynamic therapy for premalignant and early stage head and neck tumors. Oral Oncol 55:37–42PubMedPubMedCentralCrossRef Ahn PH, Quon H, O’Malley BW, Weinstein G, Chalian A, Malloy K et al (2016) Toxicities and early outcomes in a phase 1 trial of photodynamic therapy for premalignant and early stage head and neck tumors. Oral Oncol 55:37–42PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Lin HP, Chen HM, Yu CH, Yang H, Wang YP, Chiang CP (2010) Topical photodynamic therapy is very effective for oral verrucous hyperplasia and oral erythroleukoplakia. J Oral Pathol Med 39(8):624–630PubMedCrossRef Lin HP, Chen HM, Yu CH, Yang H, Wang YP, Chiang CP (2010) Topical photodynamic therapy is very effective for oral verrucous hyperplasia and oral erythroleukoplakia. J Oral Pathol Med 39(8):624–630PubMedCrossRef
10.
Zurück zum Zitat Jin X, Xu H, Deng J, Dan H, Ji P, Chen Q et al (2019) Photodynamic therapy for oral potentially malignant disorders. Photodiagnosis Photodyn Ther 28:146–152PubMedCrossRef Jin X, Xu H, Deng J, Dan H, Ji P, Chen Q et al (2019) Photodynamic therapy for oral potentially malignant disorders. Photodiagnosis Photodyn Ther 28:146–152PubMedCrossRef
11.
Zurück zum Zitat Jayasree RS, Gupta AK, Rathinam K, Mohanan PV, Mohanty M (2001) The influence of photodynamic therapy on the wound healing process in rats. J Biomater Appl 15(3):176–186PubMedCrossRef Jayasree RS, Gupta AK, Rathinam K, Mohanan PV, Mohanty M (2001) The influence of photodynamic therapy on the wound healing process in rats. J Biomater Appl 15(3):176–186PubMedCrossRef
12.
Zurück zum Zitat Philchenkov AA, Shishko ED, Zavelevich MP, Kuiava LM, Miura K, Blokhin DY et al (2014) Photodynamic responsiveness of human leukemia Jurkat/A4 cells with multidrug resistant phenotype. Exp Oncol 36(4):241–245PubMed Philchenkov AA, Shishko ED, Zavelevich MP, Kuiava LM, Miura K, Blokhin DY et al (2014) Photodynamic responsiveness of human leukemia Jurkat/A4 cells with multidrug resistant phenotype. Exp Oncol 36(4):241–245PubMed
13.
Zurück zum Zitat Han Y, Xu S, Jin J, Wang X, Liu X, Hua H et al (2018) Primary clinical evaluation of photodynamic therapy with oral leukoplakia in Chinese patients. Front Physiol 9:1911PubMedCrossRef Han Y, Xu S, Jin J, Wang X, Liu X, Hua H et al (2018) Primary clinical evaluation of photodynamic therapy with oral leukoplakia in Chinese patients. Front Physiol 9:1911PubMedCrossRef
14.
Zurück zum Zitat Casas A (2020) Clinical uses of 5-aminolaevulinic acid in photodynamic treatment and photodetection of cancer: a review. Cancer Lett 490:165–173PubMedCrossRef Casas A (2020) Clinical uses of 5-aminolaevulinic acid in photodynamic treatment and photodetection of cancer: a review. Cancer Lett 490:165–173PubMedCrossRef
15.
Zurück zum Zitat Wang X, Jin J, Li W, Wang Q, Han Y, Liu H (2020) Differential in vitro sensitivity of oral precancerous and squamous cell carcinoma cell lines to 5-aminolevulinic acid-mediated photodynamic therapy. Photodiagnosis Photodyn Ther 29:101554PubMedCrossRef Wang X, Jin J, Li W, Wang Q, Han Y, Liu H (2020) Differential in vitro sensitivity of oral precancerous and squamous cell carcinoma cell lines to 5-aminolevulinic acid-mediated photodynamic therapy. Photodiagnosis Photodyn Ther 29:101554PubMedCrossRef
16.
Zurück zum Zitat Wang YY, Chen YK, Hu CS, Xiao LY, Huang WL, Chi TC et al (2019) MAL-PDT inhibits oral precancerous cells and lesions via autophagic cell death. Oral Dis 25(3):758–771PubMedCrossRef Wang YY, Chen YK, Hu CS, Xiao LY, Huang WL, Chi TC et al (2019) MAL-PDT inhibits oral precancerous cells and lesions via autophagic cell death. Oral Dis 25(3):758–771PubMedCrossRef
17.
Zurück zum Zitat Wang X, Yuan Z, Tao A, Wang P, Xie W, Yang S et al (2022) Hydrogel-based patient-friendly photodynamic therapy of oral potentially malignant disorders. Biomaterials 281:121377PubMedCrossRef Wang X, Yuan Z, Tao A, Wang P, Xie W, Yang S et al (2022) Hydrogel-based patient-friendly photodynamic therapy of oral potentially malignant disorders. Biomaterials 281:121377PubMedCrossRef
18.
Zurück zum Zitat Cirillo N, Hassona Y, Celentano A, Lim KP, Manchella S, Parkinson EK et al (2017) Cancer-associated fibroblasts regulate keratinocyte cell-cell adhesion via TGF-β-dependent pathways in genotype-specific oral cancer. Carcinogenesis 38(1):76–85PubMedCrossRef Cirillo N, Hassona Y, Celentano A, Lim KP, Manchella S, Parkinson EK et al (2017) Cancer-associated fibroblasts regulate keratinocyte cell-cell adhesion via TGF-β-dependent pathways in genotype-specific oral cancer. Carcinogenesis 38(1):76–85PubMedCrossRef
19.
Zurück zum Zitat Nair S, Nayak R, Bhat K, Kotrashetti VS, Babji D (2016) Immunohistochemical expression of CD105 and TGF-β1 in oral squamous cell carcinoma and adjacent apparently normal oral mucosa and its correlation with clinicopathologic features. Appl Immunohistochem Mol Morphol 24(1):35–41PubMedCrossRef Nair S, Nayak R, Bhat K, Kotrashetti VS, Babji D (2016) Immunohistochemical expression of CD105 and TGF-β1 in oral squamous cell carcinoma and adjacent apparently normal oral mucosa and its correlation with clinicopathologic features. Appl Immunohistochem Mol Morphol 24(1):35–41PubMedCrossRef
20.
Zurück zum Zitat Byun JY, Lee GY, Choi HY, Myung KB, Choi YW (2011) The expressions of TGF-β(1) and IL-10 in cultured fibroblasts after ALA-IPL photodynamic treatment. Ann Dermatol 23(1):19–22PubMedPubMedCentralCrossRef Byun JY, Lee GY, Choi HY, Myung KB, Choi YW (2011) The expressions of TGF-β(1) and IL-10 in cultured fibroblasts after ALA-IPL photodynamic treatment. Ann Dermatol 23(1):19–22PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Zhang C, Wang J, Chou A, Gong T, Devine EE, Jiang JJ (2018) Photodynamic therapy induces antifibrotic alterations in primary human vocal fold fibroblasts. Laryngoscope 128(9):E323–E331PubMedCrossRef Zhang C, Wang J, Chou A, Gong T, Devine EE, Jiang JJ (2018) Photodynamic therapy induces antifibrotic alterations in primary human vocal fold fibroblasts. Laryngoscope 128(9):E323–E331PubMedCrossRef
22.
Zurück zum Zitat Wang X, Bai Y, Han Y, Meng J, Liu H (2019) Downregulation of GBAS regulates oral squamous cell carcinoma proliferation and apoptosis via the p53 signaling pathway. Onco Targets Ther 12:3729–3742PubMedPubMedCentralCrossRef Wang X, Bai Y, Han Y, Meng J, Liu H (2019) Downregulation of GBAS regulates oral squamous cell carcinoma proliferation and apoptosis via the p53 signaling pathway. Onco Targets Ther 12:3729–3742PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Yan S, Xuan J, Brajanovski N, Tancock MRC, Madhamshettiwar PB, Simpson KJ et al (2021) The RNA polymerase I transcription inhibitor CX-5461 cooperates with topoisomerase 1 inhibition by enhancing the DNA damage response in homologous recombination-proficient high-grade serous ovarian cancer. Br J Cancer 124(3):616–627PubMedCrossRef Yan S, Xuan J, Brajanovski N, Tancock MRC, Madhamshettiwar PB, Simpson KJ et al (2021) The RNA polymerase I transcription inhibitor CX-5461 cooperates with topoisomerase 1 inhibition by enhancing the DNA damage response in homologous recombination-proficient high-grade serous ovarian cancer. Br J Cancer 124(3):616–627PubMedCrossRef
24.
Zurück zum Zitat Eder AR, Arriaga EA (2006) Capillary electrophoresis monitors enhancement in subcellular reactive oxygen species production upon treatment with doxorubicin. Chem Res Toxicol 19(9):1151–1159PubMedPubMedCentralCrossRef Eder AR, Arriaga EA (2006) Capillary electrophoresis monitors enhancement in subcellular reactive oxygen species production upon treatment with doxorubicin. Chem Res Toxicol 19(9):1151–1159PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Choudhari SK, Chaudhary M, Gadbail AR, Sharma A, Tekade S (2014) Oxidative and antioxidative mechanisms in oral cancer and precancer: a review. Oral Oncol 50(1):10–18PubMedCrossRef Choudhari SK, Chaudhary M, Gadbail AR, Sharma A, Tekade S (2014) Oxidative and antioxidative mechanisms in oral cancer and precancer: a review. Oral Oncol 50(1):10–18PubMedCrossRef
26.
Zurück zum Zitat Hassona Y, Cirillo N, Lim KP, Herman A, Mellone M, Thomas GJ et al (2013) Progression of genotype-specific oral cancer leads to senescence of cancer-associated fibroblasts and is mediated by oxidative stress and TGF-β. Carcinogenesis 34(6):1286–1295PubMedCrossRef Hassona Y, Cirillo N, Lim KP, Herman A, Mellone M, Thomas GJ et al (2013) Progression of genotype-specific oral cancer leads to senescence of cancer-associated fibroblasts and is mediated by oxidative stress and TGF-β. Carcinogenesis 34(6):1286–1295PubMedCrossRef
27.
Zurück zum Zitat Shinoda Y, Kato D, Ando R, Endo H, Takahashi T, Tsuneoka Y et al (2021) Systematic review and meta-analysis of in vitro anti-human cancer experiments investigating the use of 5-aminolevulinic acid (5-ALA) for photodynamic therapy. Pharmaceuticals (Basel) 14(3):229PubMedCrossRef Shinoda Y, Kato D, Ando R, Endo H, Takahashi T, Tsuneoka Y et al (2021) Systematic review and meta-analysis of in vitro anti-human cancer experiments investigating the use of 5-aminolevulinic acid (5-ALA) for photodynamic therapy. Pharmaceuticals (Basel) 14(3):229PubMedCrossRef
28.
Zurück zum Zitat Casas A, Fukuda H, Riley P, del C Batlle AM (1997) Enhancement of aminolevulinic acid based photodynamic therapy by adriamycin. Cancer Lett 121(1):105–113PubMedCrossRef Casas A, Fukuda H, Riley P, del C Batlle AM (1997) Enhancement of aminolevulinic acid based photodynamic therapy by adriamycin. Cancer Lett 121(1):105–113PubMedCrossRef
29.
Zurück zum Zitat Mohammadi Z, Sazgarnia A, Rajabi O, Soudmand S, Esmaily H, Sadeghi HR (2013) An in vitro study on the photosensitivity of 5-aminolevulinic acid conjugated gold nanoparticles. Photodiagnosis Photodyn Ther 10(4):382–388PubMedCrossRef Mohammadi Z, Sazgarnia A, Rajabi O, Soudmand S, Esmaily H, Sadeghi HR (2013) An in vitro study on the photosensitivity of 5-aminolevulinic acid conjugated gold nanoparticles. Photodiagnosis Photodyn Ther 10(4):382–388PubMedCrossRef
31.
Zurück zum Zitat Derynck R, Turley SJ, Akhurst RJ (2021) TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 18(1):9–34PubMedCrossRef Derynck R, Turley SJ, Akhurst RJ (2021) TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 18(1):9–34PubMedCrossRef
32.
Zurück zum Zitat Bagati A, Kumar S, Jiang P, Pyrdol J, Zou AE, Godicelj A et al (2021) Integrin αvβ6-TGFβ-SOX4 pathway drives immune evasion in triple-negative breast cancer. Cancer Cell 39(1):54–67PubMedCrossRef Bagati A, Kumar S, Jiang P, Pyrdol J, Zou AE, Godicelj A et al (2021) Integrin αvβ6-TGFβ-SOX4 pathway drives immune evasion in triple-negative breast cancer. Cancer Cell 39(1):54–67PubMedCrossRef
33.
Zurück zum Zitat Seoane J (2008) The TGFBeta pathway as a therapeutic target in cancer. Clin Transl Oncol 10(1):14–19PubMedCrossRef Seoane J (2008) The TGFBeta pathway as a therapeutic target in cancer. Clin Transl Oncol 10(1):14–19PubMedCrossRef
34.
Zurück zum Zitat Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12(6):325–338PubMedCrossRef Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-β: the master regulator of fibrosis. Nat Rev Nephrol 12(6):325–338PubMedCrossRef
35.
Zurück zum Zitat Xu N, Meng H, Liu T, Feng Y, Qi Y, Zhang D et al (2019) Stent-jailing technique reduces aneurysm recurrence more than stent-jack technique by causing less mechanical forces and angiogenesis and inhibiting TGF-β/Smad2,3,4 signaling pathway in intracranial aneurysm patients. Front Physiol 9:1862PubMedPubMedCentralCrossRef Xu N, Meng H, Liu T, Feng Y, Qi Y, Zhang D et al (2019) Stent-jailing technique reduces aneurysm recurrence more than stent-jack technique by causing less mechanical forces and angiogenesis and inhibiting TGF-β/Smad2,3,4 signaling pathway in intracranial aneurysm patients. Front Physiol 9:1862PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Wang P, Han J, Wei M, Xu Y, Zhang G, Zhang H et al (2018) Remodeling of dermal collagen in photoaged skin using low-dose 5-aminolevulinic acid photodynamic therapy occurs via the transforming growth factor-β pathway. J Biophotonics 11(6):e201700357PubMedPubMedCentralCrossRef Wang P, Han J, Wei M, Xu Y, Zhang G, Zhang H et al (2018) Remodeling of dermal collagen in photoaged skin using low-dose 5-aminolevulinic acid photodynamic therapy occurs via the transforming growth factor-β pathway. J Biophotonics 11(6):e201700357PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Sakurai T, Isogaya K, Sakai S, Morikawa M, Morishita Y, Ehata S et al (2016) RNA-binding motif protein 47 inhibits Nrf2 activity to suppress tumor growth in lung adenocarcinoma. Oncogene 35(38):5000–5009PubMedPubMedCentralCrossRef Sakurai T, Isogaya K, Sakai S, Morikawa M, Morishita Y, Ehata S et al (2016) RNA-binding motif protein 47 inhibits Nrf2 activity to suppress tumor growth in lung adenocarcinoma. Oncogene 35(38):5000–5009PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Majumder M, Ghosh S, Roy B (2012) Association between polymorphisms at N-acetyltransferase 1 (NAT1) & risk of oral leukoplakia & cancer. Indian J Med Res 136(4):605–613PubMedPubMedCentral Majumder M, Ghosh S, Roy B (2012) Association between polymorphisms at N-acetyltransferase 1 (NAT1) & risk of oral leukoplakia & cancer. Indian J Med Res 136(4):605–613PubMedPubMedCentral
39.
Zurück zum Zitat Bu JQ, Chen F (2017) TGF-β1 promotes cells invasion and migration by inducing epithelial mesenchymal transformation in oral squamous cell carcinoma. Eur Rev Med Pharmacol Sci 21(9):2137–2144PubMed Bu JQ, Chen F (2017) TGF-β1 promotes cells invasion and migration by inducing epithelial mesenchymal transformation in oral squamous cell carcinoma. Eur Rev Med Pharmacol Sci 21(9):2137–2144PubMed
40.
Zurück zum Zitat Wang X, Li S, Liu H (2021) Co-delivery of chitosan nanoparticles of 5-aminolevulinic acid and shGBAS for improving photodynamic therapy efficacy in oral squamous cell carcinomas. Photodiagnosis Photodyn Ther 34:102218PubMedCrossRef Wang X, Li S, Liu H (2021) Co-delivery of chitosan nanoparticles of 5-aminolevulinic acid and shGBAS for improving photodynamic therapy efficacy in oral squamous cell carcinomas. Photodiagnosis Photodyn Ther 34:102218PubMedCrossRef
41.
Zurück zum Zitat Wang X, Li N, Meng J, Wen N (2021) The use of topical ALA-photodynamic therapy combined with induction chemotherapy for locally advanced oral squamous cell carcinoma. Am J Otolaryngol 42(6):103112PubMedCrossRef Wang X, Li N, Meng J, Wen N (2021) The use of topical ALA-photodynamic therapy combined with induction chemotherapy for locally advanced oral squamous cell carcinoma. Am J Otolaryngol 42(6):103112PubMedCrossRef
42.
Zurück zum Zitat Wang J, Wang K, Liang J, Jin J, Wang X, Yan S (2021) Chitosan-tripolyphosphate nanoparticles-mediated co-delivery of MTHFD1L shRNA and 5-aminolevulinic acid for combination photodynamic-gene therapy in oral cancer. Photodiagnosis Photodyn Ther 36:102581PubMedCrossRef Wang J, Wang K, Liang J, Jin J, Wang X, Yan S (2021) Chitosan-tripolyphosphate nanoparticles-mediated co-delivery of MTHFD1L shRNA and 5-aminolevulinic acid for combination photodynamic-gene therapy in oral cancer. Photodiagnosis Photodyn Ther 36:102581PubMedCrossRef
43.
Zurück zum Zitat Chung J, Huda MN, Shin Y, Han S, Akter S et al (2021) Correlation between oxidative stress and transforming growth factor-beta in cancers. Int J Mol Sci 22(24):13181PubMedPubMedCentralCrossRef Chung J, Huda MN, Shin Y, Han S, Akter S et al (2021) Correlation between oxidative stress and transforming growth factor-beta in cancers. Int J Mol Sci 22(24):13181PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Barcellos-Hoff MH, Dix TA (1996) Redox-mediated activation of latent transforming growth factor-beta 1. Mol Endocrinol 10(9):1077–1083PubMed Barcellos-Hoff MH, Dix TA (1996) Redox-mediated activation of latent transforming growth factor-beta 1. Mol Endocrinol 10(9):1077–1083PubMed
Metadaten
Titel
Effect of ALA-PDT on inhibition of oral precancerous cell growth and its related mechanisms
verfasst von
Jian-qiu Jin
Qian Wang
Yu-xing Zhang
Xing Wang
Zhi-yue Lu
Bo-wen Li
Publikationsdatum
07.07.2022
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 9/2022
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-022-03607-y

Weitere Artikel der Ausgabe 9/2022

Lasers in Medical Science 9/2022 Zur Ausgabe