Skip to main content
Erschienen in: Odontology 3/2023

08.12.2022 | Original Article

Histone-deacetylase-inhibitory effects of periodontopathic-bacterial metabolites induce human gingival epithelial Ca9-22 cell death

verfasst von: Kazuki Uemichi, Yoshikazu Mikami, Takayasu Watanabe, Keiji Shinozuka, Morio Tonogi, Hiromasa Tsuda

Erschienen in: Odontology | Ausgabe 3/2023

Einloggen, um Zugang zu erhalten

Abstract

Dental plaque bacteria produce high concentrations of short-chain fatty acids (SCFAs), as bacterial metabolites. SCFA-treated gingival epithelial cells undergo cell death. Our previous reports demonstrated that butyrate-induced cell death depends on autophagy and reactive oxygen species (ROS). However, the precise mechanisms underlying SCFA-induced gingival epithelial cell death is poorly understood. Butyrate is a strong histone deacetylase (HDAC) inhibitor. Therefore, we determined the involvement of HDAC inhibitory activity in SCFA-induced gingival epithelial cells. Ca9-22 cells were used as an in vitro counterpart of gingival epithelial cells. Ca9-22 cells were treated with HDAC inhibitors in the presence or absence of C646, a P300 histone acetyltransferase (HAT) inhibitor, and compared the number of dead cells, which are measured using SYTOX Green dye. Acetylation levels of histone H3 were examined using western blotting. Changes in transcriptomes during the butyrate and C646 treatment were examined using RNA sequencing analysis. The butyrate or propionate-treatment of Ca9-22 cells induced acetylation of histone H3, while the C646 treatment strongly reduced the elevated acetylation levels. Accordingly, butyrate or propionate-induced cell death was inhibited by the C646 treatment. Similar results were obtained when other HDAC inhibitors were used. Whole transcriptome analysis revealed that the expression of numerous genes was altered by butyrate-induced histone acetylation. Moreover, some autophagy and ROS-related genes found in the altered genes might induce cell death. This study suggests the need for HDAC-inhibitory activity of bacterial metabolites to induce cell death, and the effects might enhance autophagy and ROS production.
Literatur
1.
Zurück zum Zitat Pollanen MT, Salonen JI, Uitto VJ. Structure and function of the tooth-epithelial interface in health and disease. Periodontol. 2000;2003(31):12–31. Pollanen MT, Salonen JI, Uitto VJ. Structure and function of the tooth-epithelial interface in health and disease. Periodontol. 2000;2003(31):12–31.
2.
Zurück zum Zitat Tsuda H, Ochiai K, Suzuki N, Otsuka K. Butyrate, a bacterial metabolite, induces apoptosis and autophagic cell death in gingival epithelial cells. J Periodontal Res. 2010;45(5):626–34.CrossRefPubMed Tsuda H, Ochiai K, Suzuki N, Otsuka K. Butyrate, a bacterial metabolite, induces apoptosis and autophagic cell death in gingival epithelial cells. J Periodontal Res. 2010;45(5):626–34.CrossRefPubMed
3.
Zurück zum Zitat Evans M, Murofushi T, Tsuda H, Mikami Y, Zhao N, Ochiai K, et al. Combined effects of starvation and butyrate on autophagy-dependent gingival epithelial cell death. J Periodontal Res. 2017;52(3):522–31.CrossRefPubMed Evans M, Murofushi T, Tsuda H, Mikami Y, Zhao N, Ochiai K, et al. Combined effects of starvation and butyrate on autophagy-dependent gingival epithelial cell death. J Periodontal Res. 2017;52(3):522–31.CrossRefPubMed
4.
Zurück zum Zitat Fujiwara Y, Murofushi T, Koshi R, Mikami Y, Tsuda H. Reactive oxygen species-dependent release of damage-associated molecular patterns from human gingival epithelial Ca9-22 cells during butyrate or propionate exposure. J Oral Sci. 2021;63(2):195–7.CrossRefPubMed Fujiwara Y, Murofushi T, Koshi R, Mikami Y, Tsuda H. Reactive oxygen species-dependent release of damage-associated molecular patterns from human gingival epithelial Ca9-22 cells during butyrate or propionate exposure. J Oral Sci. 2021;63(2):195–7.CrossRefPubMed
5.
Zurück zum Zitat Kumar V, Thakur JK, Prasad M. Histone acetylation dynamics regulating plant development and stress responses. Cell Mol Life Sci. 2021;78(10):4467–86.CrossRefPubMed Kumar V, Thakur JK, Prasad M. Histone acetylation dynamics regulating plant development and stress responses. Cell Mol Life Sci. 2021;78(10):4467–86.CrossRefPubMed
6.
Zurück zum Zitat Davie JR. Inhibition of histone deacetylase activity by butyrate. J Nutr. 2003;133(7 Suppl):2485S-S2493.CrossRefPubMed Davie JR. Inhibition of histone deacetylase activity by butyrate. J Nutr. 2003;133(7 Suppl):2485S-S2493.CrossRefPubMed
7.
Zurück zum Zitat Hirose K, Isogai E, Mizugai H, Ueda I. Adhesion of Porphyromonas gingivalis fimbriae to human gingival cell line Ca9-22. Oral Microbiol Immunol. 1996;11(6):402–6.CrossRefPubMed Hirose K, Isogai E, Mizugai H, Ueda I. Adhesion of Porphyromonas gingivalis fimbriae to human gingival cell line Ca9-22. Oral Microbiol Immunol. 1996;11(6):402–6.CrossRefPubMed
8.
Zurück zum Zitat Ohshima M, Noguchi Y, Ito M, Maeno M, Otsuka K. Hepatocyte growth factor secreted by periodontal ligament and gingival fibroblasts is a major chemoattractant for gingival epithelial cells. J Periodontal Res. 2001;36(6):377–83.CrossRefPubMed Ohshima M, Noguchi Y, Ito M, Maeno M, Otsuka K. Hepatocyte growth factor secreted by periodontal ligament and gingival fibroblasts is a major chemoattractant for gingival epithelial cells. J Periodontal Res. 2001;36(6):377–83.CrossRefPubMed
9.
Zurück zum Zitat Saito A, Inagaki S, Kimizuka R, Okuda K, Hosaka Y, Nakagawa T, et al. Fusobacterium nucleatum enhances invasion of human gingival epithelial and aortic endothelial cells by Porphyromonas gingivalis. FEMS Immunol Med Microbiol. 2008;54(3):349–55.CrossRefPubMed Saito A, Inagaki S, Kimizuka R, Okuda K, Hosaka Y, Nakagawa T, et al. Fusobacterium nucleatum enhances invasion of human gingival epithelial and aortic endothelial cells by Porphyromonas gingivalis. FEMS Immunol Med Microbiol. 2008;54(3):349–55.CrossRefPubMed
10.
Zurück zum Zitat Takeuchi H, Setoguchi T, Machigashira M, Kanbara K, Izumi Y. Hydrogen sulfide inhibits cell proliferation and induces cell cycle arrest via an elevated p21 Cip1 level in Ca9-22 cells. J Periodontal Res. 2008;43(1):90–5.CrossRefPubMed Takeuchi H, Setoguchi T, Machigashira M, Kanbara K, Izumi Y. Hydrogen sulfide inhibits cell proliferation and induces cell cycle arrest via an elevated p21 Cip1 level in Ca9-22 cells. J Periodontal Res. 2008;43(1):90–5.CrossRefPubMed
11.
Zurück zum Zitat Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523.CrossRefPubMedPubMedCentral Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48(3):452–8.CrossRefPubMed Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48(3):452–8.CrossRefPubMed
13.
15.
Zurück zum Zitat Kotani T, Kirisako H, Koizumi M, Ohsumi Y, Nakatogawa H. The Atg2–Atg18 complex tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation. Proc Natl Acad Sci U S A. 2018;115(41):10363–8.CrossRefPubMedPubMedCentral Kotani T, Kirisako H, Koizumi M, Ohsumi Y, Nakatogawa H. The Atg2–Atg18 complex tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation. Proc Natl Acad Sci U S A. 2018;115(41):10363–8.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Ebe N, Hara-Yokoyama M, Iwasaki K, Iseki S, Okuhara S, Podyma-Inoue KA, et al. Pocket epithelium in the pathological setting for HMGB1 release. J Dent Res. 2011;90(2):235–40.CrossRefPubMed Ebe N, Hara-Yokoyama M, Iwasaki K, Iseki S, Okuhara S, Podyma-Inoue KA, et al. Pocket epithelium in the pathological setting for HMGB1 release. J Dent Res. 2011;90(2):235–40.CrossRefPubMed
18.
19.
Zurück zum Zitat Azad MB, Chen Y, Gibson SB. Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid Redox Signal. 2009;11(4):777–90.CrossRefPubMed Azad MB, Chen Y, Gibson SB. Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid Redox Signal. 2009;11(4):777–90.CrossRefPubMed
20.
Zurück zum Zitat Liu J, Wang Y, Meng H, Yu J, Lu H, Li W, et al. Butyrate rather than LPS subverts gingival epithelial homeostasis by downregulation of intercellular junctions and triggering pyroptosis. J Clin Periodontol. 2019;46(9):894–907.CrossRefPubMed Liu J, Wang Y, Meng H, Yu J, Lu H, Li W, et al. Butyrate rather than LPS subverts gingival epithelial homeostasis by downregulation of intercellular junctions and triggering pyroptosis. J Clin Periodontol. 2019;46(9):894–907.CrossRefPubMed
21.
Zurück zum Zitat Berthelot F, Fattoum L, Casulli S, Gozlan J, Marechal V, Elbim C. The effect of HMGB1, a damage-associated molecular pattern molecule, on polymorphonuclear neutrophil migration depends on its concentration. J Innate Immun. 2012;4(1):41–58.CrossRefPubMed Berthelot F, Fattoum L, Casulli S, Gozlan J, Marechal V, Elbim C. The effect of HMGB1, a damage-associated molecular pattern molecule, on polymorphonuclear neutrophil migration depends on its concentration. J Innate Immun. 2012;4(1):41–58.CrossRefPubMed
22.
Zurück zum Zitat Huang W, Tang Y, Li L. HMGB1, a potent proinflammatory cytokine in sepsis. Cytokine. 2010;51(2):119–26.CrossRefPubMed Huang W, Tang Y, Li L. HMGB1, a potent proinflammatory cytokine in sepsis. Cytokine. 2010;51(2):119–26.CrossRefPubMed
Metadaten
Titel
Histone-deacetylase-inhibitory effects of periodontopathic-bacterial metabolites induce human gingival epithelial Ca9-22 cell death
verfasst von
Kazuki Uemichi
Yoshikazu Mikami
Takayasu Watanabe
Keiji Shinozuka
Morio Tonogi
Hiromasa Tsuda
Publikationsdatum
08.12.2022
Verlag
Springer Nature Singapore
Erschienen in
Odontology / Ausgabe 3/2023
Print ISSN: 1618-1247
Elektronische ISSN: 1618-1255
DOI
https://doi.org/10.1007/s10266-022-00775-9

Weitere Artikel der Ausgabe 3/2023

Odontology 3/2023 Zur Ausgabe

Parodontalbehandlung verbessert Prognose bei Katheterablation

19.04.2024 Vorhofflimmern Nachrichten

Werden Personen mit Vorhofflimmern in der Blanking-Periode nach einer Katheterablation gegen eine bestehende Parodontitis behandelt, verbessert dies die Erfolgsaussichten. Dafür sprechen die Resultate einer prospektiven Untersuchung.

Invasive Zahnbehandlung: Wann eine Antibiotikaprophylaxe vor infektiöser Endokarditis schützt

11.04.2024 Endokarditis Nachrichten

Bei welchen Personen eine Antibiotikaprophylaxe zur Prävention einer infektiösen Endokarditis nach invasiven zahnärztlichen Eingriffen sinnvoll ist, wird diskutiert. Neue Daten stehen im Einklang mit den europäischen Leitlinienempfehlungen.

Zell-Organisatoren unter Druck: Mechanismen des embryonalen Zahnwachstums aufgedeckt

08.04.2024 Zahnmedizin Nachrichten

Der Aufbau von Geweben und Organen während der Embryonalentwicklung wird von den Zellen bemerkenswert choreografiert. Für diesen Prozess braucht es spezielle sogenannte „Organisatoren“. In einer aktuellen Veröffentlichung im Fachjournal Nature Cell Biology berichten Forschende durch welchen Vorgang diese Organisatoren im Gewebe entstehen und wie sie dann die Bildung von Zähnen orchestrieren.

Die Oralprophylaxe & Kinderzahnheilkunde umbenannt

11.03.2024 Kinderzahnmedizin Nachrichten

Infolge der Umbenennung der Deutschen Gesellschaft für Kinderzahnheilkunde in Deutsche Gesellschaft für Kinderzahnmedizin (DGKiZ) wird deren Mitgliederzeitschrift Oralprophylaxe & Kinderzahnheilkunde in Oralprophylaxe & Kinderzahnmedizin umbenannt. Aus diesem Grunde trägt die erste Ausgabe in 2024 erstmalig den neuen Titel.

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Zahnmedizin und bleiben Sie gut informiert – ganz bequem per eMail.