Skip to main content
Erschienen in: BMC Cancer 1/2024

Open Access 01.12.2024 | Research

IDH1 mutation is detectable in plasma cell-free DNA and is associated with survival outcome in glioma patients

verfasst von: Stefania Crucitta, Francesco Pasqualetti, Alessandra Gonnelli, Martina Ruglioni, Giovanna Irene Luculli, Martina Cantarella, Valerio Ortenzi, Cristian Scatena, Fabiola Paiar, Antonio Giuseppe Naccarato, Romano Danesi, Marzia Del Re

Erschienen in: BMC Cancer | Ausgabe 1/2024

Abstract

Background

Circulating cell-free DNA (cfDNA, liquid biopsy) is a powerful tool to detect molecular alterations. However, depending on tumor characteristics, biology and anatomic localization, cfDNA detection and analysis may be challenging. Gliomas are enclosed into an anatomic sanctuary, which obstacles the release of cfDNA into the peripheral blood. Therefore, the advantages of using liquid biopsy for brain tumors is still to be confirmed. The present study evaluates the ability of liquid biopsy to detect IDH1 mutations and its correlation with survival and clinical characteristics of glioma patients.

Methods

Blood samples obtained from glioma patients were collected after surgery prior to the adjuvant therapy. cfDNA was extracted from plasma and IDH1 p.R132H mutation analysis was performed on a digital droplet PCR. χ2-test and Cohen k were used to assess the correlation between plasma and tissue IDH1 status, while Kaplan Meier curve and Cox regression analysis were applied to survival analysis. Statistical calculations were performed by MedCalc and GraphPad Prism software.

Results

A total of 67 samples were collected. A concordance between IDH1 status in tissue and in plasma was found (p = 0.0024), and the presence of the IDH1 mutation both in tissue (138.8 months vs 24.4, p < 0.0001) and cfDNA (116.3 months vs 35.8, p = 0.016) was associated with longer median OS. A significant association between IDH1 mutation both in tissue and cfDNA, age, tumor grade and OS was demonstrated by univariate Cox regression analysis. No statistically significant association between IDH1 mutation and tumor grade was found (p = 0.10).

Conclusions

The present study demonstrates that liquid biopsy may be used in brain tumors to detect IDH1 mutation which represents an important prognostic biomarker in patients with different types of gliomas, being associated to OS.
Hinweise
Stefania Crucitta, Francesco Pasqualetti and Alessandra Gonnelli contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
cfDNA
circulating free DNA
CSF
cerebrospinal fluid
EVs
extracellular vesicles
BBB
blood–brain barrier
WHO
World Health Organization
OS
Overall survival
GBM
glioblastoma
AF
Allelic Fraction

Background

Liquid biopsy recently emerged as a new approach to investigate the molecular profile of solid tumors by detecting gene alterations and obtaining potential prognostic and predictive biomarkers across different cancers [13]. Liquid biopsy has gained interest due to its advantages being a minimally invasive, sensitive, repeatable, and feasible alternative to tissue biopsy, having the ability to capture heterogeneity across multiple areas of tumors [2, 46]. The term “liquid biopsy” is mainly referred to the analysis of circulating free DNA (cfDNA) extracted from plasma, which contains a small amount of tumor DNA (ctDNA); however, this concept is also applied to different biological fluids such as blood, cerebrospinal fluid (CSF), urine, saliva, and to several analytes such as cell-free RNA, circulating tumor cells, extracellular vesicles (EVs), RNA and non-coding miRNA [713]. Nowadays, several national and international recommendations are available, regarding the use of liquid biopsy in clinical practice, which mainly refer to the use of plasma cfDNA, and suggest the use of alternative sources only in specific clinical trials and research studies [14, 15]. However, when using liquid biopsy, one of the major challenge is represented by the false negative results, mainly related to anatomic barriers and disease biological characteristics [16, 17]. While cfDNA has been detected in several types of cancers including breast, lung, pancreatic, melanoma and colorectal cancer [1827], few studies have been able to identify cfDNA in peripheral blood in patients with glioma, due to cfDNA difficulties of crossing the blood–brain barrier (BBB), and since its release can change depending on histopathology, localization, and tumor grade [17, 2832].
Ideally, the use of the liquid source close to the disease site would be the optimal solution; therefore, the CSF-derived cfDNA would be the best source of biological material to study the molecular profile of brain tumors through liquid biopsy [3338]. Published studies using sensitive methods, such as digital PCR, demonstrated that higher concentrations of cfDNA may be found in CSF compared to plasma, suggesting that cfDNA in CSF could be used as a molecular marker to identify mutations and longitudinally monitor changes in brain tumors [3942]. However, CSF is an invasive, complex, and uncomfortable approach, requiring specific expertise and associated with additional risks following its repeated use [34].
Among brain tumors, high-grade gliomas are considered the most common malignancies in adults and their classification has traditionally been based on histopathological findings supplemented by tissue-based tests, grade, and genomic alterations [4346]. In particular, the presence of the IDH1 p.R132H amino acid substitution in tissue has been found to be the most common subtype with a 90% of prevalence among IDH1-mutant tumors [4750]. Different studies suggested that IDH-mutant gliomas have a significantly improved prognosis, independently of age and grade, as compared to IDH-wild-type tumors [5154]. Accordingly, the World Health Organization (WHO) classification of diffuse gliomas under the 2021 update has been dependent largely on IDH1 mutation status together with 1p/19q-codeletion [5557]. In particular, the new classification includes astrocytoma, IDH-mutant (Grade 2, 3, 4), oligodendroglioma, IDH-mutant, and 1p/19q-codeleted (Grade 2, 3) and GBM, IDH-wildtype (Grade 4) [57].
Therefore, the use of IDH1 mutation status as a prognostic biomarker of tumor molecular evolution has allowed easier and more accurate risk stratification of glioma patients and could be a key tool to improve their personalization of treatments. Moreover, IDH-1 and -2 recently became a predictive biomarker of response to specific IDH inhibitors, such as vorasidenib for low grade glioma [58].
In the present study, we assessed the feasibility of detecting plasma-cfDNA IDH1 mutation in gliomas and the results were correlated with survival and clinical characteristics of patients affected by gliomas.

Methods

Patients and data collection

The present retrospective pharmacogenetic study included patients with glioma referred to the University Hospital of Pisa (Italy) from 2016 to 2019.
Patients were selected according to the following criteria: histologic neuronal-glial tumors diagnosis according to the fourth edition of the WHO classification (2016); IDH1 status previously determined by Sanger sequencing of tumor DNA as per standard laboratory procedures; clinical data and follow-up available in the neuro-oncology database; and written informed consent before enrollment in the study [57].
Blood samples were collected after surgery prior to the adjuvant therapy. The study has been approved by the local Human Investigations Committee in accordance with the Declaration of Helsinki (Comitato Etico Area Vasta Nord Ovest Toscana, Prot. Number 560/2015).

Circulating free DNA extraction and IDH1 mutation analysis

Twelve ml of blood were collected in EDTA tubes and centrifuged for 10 min at 1900×g within 2 h from sampling to collect plasma and stored at − 80 °C until analysis. Plasma samples were centrifuged again for 15 min at 1900×g to remove cellular debris. cfDNA was isolated from 3 ml of plasma using the QIAamp Circulating Nucleic Acid Kit (Qiagen, Valencia, CA). The analysis of IDH1 p.R132H mutation was performed by the QX200 digital droplet PCR (Bio-Rad, Hercules, CA) as previously reported [59].

Statistical analysis

Categorical variables and patient clinical outcomes were described by absolute and relative frequencies, while quantitative factors such as age by mean ± standard deviation (STD). Overall survival (OS) was measured as the length of time from the diagnosis to death from any cause or last follow-up. To find which IDH genomic factors are related to OS, survival curves were estimated according to the Kaplan-Meier method, and differences between curves were calculated using the log-rank test. Univariate analysis was performed by Cox hazard regression model to evaluate independent risk factors for OS. The associations between IDH1 somatic mutation and the other categorical variables in the sample were assessed using χ2-test. Specificity and sensitivity were also calculated using ROC analysis. Agreement between IDH1 mutation detection in tissue and plasma was calculated with the Cohen κ test. Differences were considered significant at p < 0.05. All statistical calculations were performed with MedCalc Statistical Software version 14.8.1 (MedCalc Software bvba, Ostend, Belgium; http://​www.​medcalc.​org; 2014) and GraphPad Prism 9.0.0 (GraphPad Software, San Diego, California USA, www.​graphpad.​com).

Results

Patients’ characteristics

A total of 67 samples from patients affected by a glioma were collected; the average patient age at the time of first blood collection was 54 years old (range 28–84); sex ratio was 0.86 (31 males and 36 females). The majority of patients (64%) presented newly diagnosed tumors, while a subset (3%), comprising 2 cases of oligoastrocytoma and 1 of anaplastic astrocytoma, underwent analysis subsequent to a diagnosis of recurrence and prior to treatment initiation. Histopathological subtypes of brain tumors analyzed according with the fourth edition of the WHO Classification (2016) included oligodendroglioma, diffuse astrocytoma, anaplastic astrocytoma, ganglion astrocytoma, oligo-astrocytoma and glioblastoma (GBM), with the latter being the most frequent diagnosis in our cohort (64.1%). Table 1 reports the clinical characteristics of the cohort analyzed.
Table 1
Clinical characteristics of patients
 
Total of patients
(n = 67)
Age at the diagnosis, median (range)
54 (24–84)
Gender, n (%)
 
Male
31 (46.3)
Female
36 (53.7)
Astrocytic, oligodendroglial and neuronal-glial tumors, n (%)
 
Oligodendroglioma
3 (4.5)
Diffuse astrocytoma
5 (7.5)
Astrocytoma, anaplastic
10 (14.9)
Ganglion astrocytoma
1 (1.5)
Oligoastrocytoma
5 (7.5)
Glioblastoma
43 (64.1)
Tumour grade, n (%)
 
Low (I, II)
11 (16.4)
High (III, IV)
56 (83.6)
Tumor Site, n (%)
 
Frontal
29 (43.3)
Temporal
7 (10.4)
Parietal
9 (13.4)
Occipital
1 (1.5)
Multiple
19 (28.4)
Other
2 (3)
Type of surgery, n (%)
 
STR
40 (59.7)
GTR
27 (40.3)
Tissue IDH1 mutational status, n (%)
 
No mutation
46 (68.7)
Mutation
21 (31.3)
1p19q co-deletion status
 
Co-deletion
6 (8.6)
No co-deletion
58 (86.9)
Unknown
3 (4.5)
MGMT methylation status
 
Methylated
29 (43.3)
Unmethylated
15 (22.4)
Unknown
23 (34.3)
Abbreviations: STR subtotal resection, GTR gross total resection
Tissue IDH1 mutational status was available for all patients included in the study; 21 patients (31.3%) were carriers of the IDH1 p.R132H mutation and 46 patients (68.7%) were IDH1 wild type. More specifically, the highest number of patients with IDH1 mutation in tissue was found in the anaplastic astrocytoma group (38.1%), following by diffuse astrocytoma (23.8%), GBM (14.3%), oligodendroglioma (14.3%), and oligoastrocytoma (9.5%).
Twelve out of twenty-one cases (57.2%) with IDH1 mutation were located in the frontal lobe, while 2/21 (9.5%) involved the temporal and parietal lobes, and 7/21 (33.3%) were multifocal. Moreover, 11/21 (52.4%) of patients underwent a subtotal resection (STR), whereas 10/21 (47.6%) patients had a gross total resection (GTR).
Based on the 2021 WHO Classification of Tumors of the Central Nervous System, brain tumors were classified into seven different subgroups [55]. According to this, patients were grouped in GBM (65.6%), oligodendroglioma (4.5%), astrocytoma grade 2 (7.5%), astrocytoma G III (11.9%), astrocytoma G IV (4.5%) and ganglion astrocytoma (1.5%). However, 1p19q co-deletion status was not available for 3 patients (4.5%) identified as oligoastrocytoma in the WHO 2016 classification. For this reason, the 2021 update could not be applied to these patients.
More specifically, the highest number of patients with IDH1 mutation in tissue was found in the astrocytoma grade (G) III (38.1%), following by astrocytoma G II (23.8%), oligodendroglioma (14.3%), astrocytoma G IV (9.5%), and oligoastrocytoma (9.5%) (Table 2).
Table 2
Detection of IDH1 mutation in tissue and plasma according to the WHO classification 2016 and 2021 update
WHO Classification (2016)
Distribution of IDH1 p.R132H mutation
Only Tissue
Only Plasma
Both Tissue and Plasma
N. samples
N. samples
Median AF
N. samples
Median AF
Oligodendroglioma (n = 3)
1
2
0,36
Diffuse astrocytoma (n = 5)
1
4
0,21
Anaplastic astrocytoma (n = 8)
5
3
0,20
Oligo-astrocytoma (n = 2)a
2
GBM (n = 8)
2
5
0,16
1
0,12
WHO Classification (2021)
Distribution of IDH1 p.R132H mutation
Only Tissue
Only Plasma
Both Tissue and Plasma
 
N. samples
N. samples
Median AF
N. samples
Median AF
Oligodendroglioma (n = 3)
1
2
0,36
Astrocytoma G II (n = 5)
1
4
0,21
Astrocytoma GIII (n = 8)
5
3
0,20
Astrocytoma G IV (n = 3)
2
1
0,12
GBM (n = 5)
5
0,16
a No information about 1p19q co-deletion status was available for this subgroup of patients

Detection of IDH1 p.R132H mutation in plasma cfDNA

Sixty-seven samples were analyzed for IDH1 p.R132H mutation in cfDNA and tissue; in particular, 10 samples (15%) were positive both in tissue and in cfDNA (T+/P+), while five patients (7.3%) were IDH1 wild type in tumor tissue but positive in cfDNA (T−/P+). Finally, 11 patients were found to have IDH1 mutated tumor tissue and no IDH1 mutation in plasma (16.4%) (Fig. 1a). A Chi-squared test was conducted and a statistically significant difference across the two groups was observed (p = 0.0024), indicating a potential relationship between the two categorical variables (tissue and plasma). Compared to tissue, the sensitivity and specificity for IDH1 mutation in plasma was 47.6% (CI 25.7–70.2) and 89.1% (CI 76.6–96.4), respectively. Moreover, a fair agreement between IDH1 mutation status detected in tissue and plasma was found, with a Cohen κ of 0.40 (95% CI, 0.16–0.64). Figure 1b reports the IDH1 Fractional Abundance (AF), expressed as percentage, in T+/P+ and T−/P+ group of patients. In particular, for T+/P+ patients, the median AF% was 0.17 (0.12–1.60), whereas for the T−/P+ group, the median AF% was 0.16 (0.06–0.75).
Table 3 summarizes the characteristics of discordant cases (T−/P+, T+/P-). Among T−/P+ group, the blood sample of 1 patient was collected during the follow-up, in concomitance of the progression of the disease.
Table 3
Clinical characteristics of IDH1 mutant discordant cases
 
T−/P+ group
(n = 5)
T+/P- group
(n = 11)
Age at the diagnosis, median (range)
58 (44–70)
41 (24–73)
Gender, n (%)
  
Male
2 (40)
7 (63.7)
Female
3 (60)
4 (36.3)
Astrocytic, oligodendroglial and neuronal-glial tumors, n (%)
  
Oligodendroglioma
1 (9.1)
Diffuse astrocytoma
1 (9.1)
Astrocytoma, anaplastic
5 (45.4)
Ganglion astrocytoma
Oligoastrocytoma
2 (18.2)
Glioblastoma
5 (100)
2 (18.2)
Tumour grade, n (%)
  
Low (I, II)
3 (27.3)
High (III, IV)
5 (100)
8 (72.7)
Tumor Site, n (%)
  
Frontal
1 (20)
6 (54.6)
Temporal
2 (40)
Parietal
1 (20)
Occipital
Multiple
1 (20)
4 (36.3)
Other
1 (9.1)
Type of surgery, n (%)
  
STR
5 (100)
5 (45.4)
GTR
6 (54.6)
Tissue IDH1 mutational status, n (%)
  
No mutation
5 (100)
Mutation
11 (100)
1p19q co-deletion status
  
Co-deleted
2 (18.2)
Non-co-deleted
5 (100)
8 (72.7)
Unknown
1 (9.1)
MGMT methylation status
  
Methylated
1 (20)
7 (63.7)
Unmethylated
3 (60)
Unknown
1 (20)
4 (36.3)
Considering the T+/P+ group (n = 10), the highest number of patients with IDH1 mutations in cfDNA were found in the diffuse astrocytoma (40%), following the anaplastic astrocytoma (30%), oligodendroglioma (20%), and GBM (10%) (Table 2). According to the 2021 WHO Classification, the highest number of patients with IDH1 mutation in plasma was found in the astrocytoma G II (40%), and G III (30%), oligodendroglioma (20%), astrocytoma G IV (10%) (Table 2). Six of ten patients (60%) underwent a STR and 4/10 (40%) had a GTR.
Focusing on the T−/P+ group (n = 5), all patients presented a GBM high grade tumor (Table 2) involving the temporal lobe (2/5, 40%), frontal lobe (1/5, 20%), parietal lobe (1/5, 20%), or multiple sites (1/5, 20%). Interestingly, all the patients underwent a STR (100%).
Overall, a correlation analysis of the presence of IDH1 mutation in cfDNA with the histological grade of tumor was also performed (Fig. 2a). Five of 11 low-grade gliomas had the IDH1 p.R132H mutation in tissue and plasma. Among the 56 patients with high-grade glioma, the mutation was detected in the plasma of 5 patients (8.9%) with an IDH1 p.R132H mutant tumor. A Chi-squared test was conducted to evaluate the potential association between tumor grade and the presence of IDH1 mutation in cfDNA. No statistically significant difference across the two examined groups was observed (p = 0.10).
Figure 2B reported the correlation analysis of the histological grade with the presence of the IDH1 (AF%) mutation in plasma cfDNA, no statistically significant association was found (p = 0.8).
Figure 3 reports the IDH1 alteration rate in plasma (Fig. 3A) and the median AF% (IC 95%) per patient stratified by histologic subtype (Fig. 3B). Diffuse astrocytoma, oligodendroglioma and glioblastoma revealed greater AF% than other subtypes.

IDH1 mutation in plasma and tissue predicts overall survival in glioma tumors

Median overall survival of the entire population was 40.3 months. Considering the patients whose IDH1 status was assessed on tissue, as expected, median OS was significantly longer in patients with IDH1 p.R132H mutation vs IDH wild type (138.8 months vs 24.4; p < 0.0001; Fig. 4A). Accordingly, also for patients with the IDH1 assessment on cfDNA, median OS was significantly longer in patients with IDH1 p.R132H mutation vs IDH wild type (116.3 months vs 35.8, p = 0.016; Fig. 4B).
We conducted univariate cox regression analysis using clinical variables such as age, gender, tumor grade, type of surgery and IDH1 mutation status finding a statistically significant association between IDH1 mutation both in tissue and cfDNA, age, tumor grade and OS (Table 4). Sample size was unfortunately not large enough to allow a multivariate analysis.
Table 4
Univariate analysis for overall survival
Variables
HR (95% CI)
p-value
Age (years)
  
≤54
Reference
 
> 54
2.83 (1.51–5.33)
0.0013
Gender
  
Male
Reference
 
Female
0.82 (0.46–1.45)
0.49
Tumour grade
  
Low (I, II)
Reference
 
High (III, IV)
5.54 (1.68–18.26)
0.005
Type of Surgery
  
STR
Reference
 
GTR
0.98 (0.54–1.80)
0.97
Tissue IDH1 mutation status
  
No mutation
Reference
 
Mutation
0.22 (0.10–0.45)
0.0001
Plasma cfDNA IDH1 mutation status
  
No mutation
Reference
 
Abbreviations: STR subtotal resection, GTR gross total resection, CI confidence interval, HR hazard ratio
Considering patients with wild-type IDH1 status in tissue but a mutant IDH1 status in plasma (n = 5), median OS was 65.8 months. Despite a subgroup analysis was not performed due to the limited sample size, the longer PFS may confirm the presence of the IDH1 mutation, or the presence of a higher level of tumor molecular heterogeneity.

Discussion

Our study examined the feasibility of using liquid biopsy for patients affected by a brain tumor, and the association between the mutational status of IDH1 in plasma, survival outcomes and clinical characteristics of a cohort of glioma patients. In our study, a statistically significant concordance between IDH1 mutation detection in tissue and cfDNA was found (p = 0.0024), suggesting that liquid biopsy is a technique capable of integrating tissue biopsy, especially in elderly patients or patients with tumors close to critical areas. In particular, IDH1 mutation was detected in the cfDNA of 10 out of 21 patients harboring an IDH1 mutant tumor, and in 5 patients with IDH1 wild type tumor tissue (n = 41), suggesting that liquid biopsy may support tissue biopsy in the detection of IDH1 mutation. Similarly, previous studies were able to identify the IDH1 mutation using a digital PCR technology in the plasma of 50–60% of patients with IDH-mutant gliomas [29, 30]. Interestingly, all patients with IDH1 wild type tumor but with detectable IDH1 mutation in cfDNA had a subtotal resection, and a residual tumor burden was still present in the brain. Therefore, a shedding of cfDNA in the circulation could be expected as a consequence of this type of surgery [60, 61]. For this reason, our analysis could more accurately represent the entire heterogeneity of the tumor compared to tissue biopsy, explaining the detection of the IDH1 mutation in the cfDNA of a subgroup of patients negative on tissue. On the other hand, in our cohort eleven patients presented IDH1 mutated tumor tissue and no IDH1 mutation in plasma, suggesting that the blood-brain barrier could limit the release of cfDNA and consequently, the detection of IDH1 mutation. Recently, a meta-analysis highlighted the complexity of cfDNA analysis to detect the mutational status in glioma patients [28]. cfDNA analysis resulted to have high specificity (0.98; 95% CI 0.96–0.99) but a relatively moderate sensitivity (0.69; 95% CI 0.66–0.73) and a high grade of heterogeneity (I2 = 73.1%, p < 0.05) of sample source and assay methods [28]. These latter could affect the sensitivity of the cfDNA and the accuracy of the findings, suggesting that cfDNA could be used only as an auxiliary tool for molecular assessment of glioma [62].
In our study, patients were divided into different groups depending on the brain tumor’s histopathological subtypes and tumor grade, finding a higher rate of IDH1 mutation (AF%) in the diffuse astrocytoma, glioblastoma and oligodendroglioma. However, the association between tumor grade and the presence of IDH1 mutation (p = 0.10) was not statistically significant. Specifically, the majority of patients with a low-grade brain tumor correlated with the presence of the p.R132H mutation, while the high-grade group, which counted about 82% of patients, did not show IDH1 mutation. This is in accordance with previous studies, which reported that IDH1 mutation occurs in the majority of low-grade gliomas and less frequently in high-grade gliomas [50, 63, 64]. Accordingly, Yan et al. confirmed that IDH1 mutations are more frequent in G II–III astrocytomas and oligodendrogliomas and less frequently in GBM, underlining the correlation between the presence of IDH1 mutation and tumor grade [63].
To date, few data have reported the association between IDH1 mutations with tumor localization [65]. In the present study, we found that the majority of gliomas (57.2%) with IDH1 mutations were located in the frontal lobe, followed by gliomas affecting multiple sites (33.3%) and temporal or parietal tumors (9.5%), suggesting a potential relationship between IDH1 mutations and tumor localization.
Interestingly, our study evaluated the role of the IDH1 mutation detected in tissue and plasma and the survival outcome. Patients carrying IDH1 mutation p.R132H have a higher survival rate than patients not carrying the mutation. Accordingly, several studies highlighted the positive correlation between IDH1 p.R132H mutation and survival of patients with gliomas [6668]. Sanson et al. highlighted that the IDH1 codon 132 mutation is associated with the genomic profile of the tumor and constitutes an independent prognostic marker in G II to IV gliomas (p = 0.00021) [66]. Similarly, Polivka et al. affirmed that patients with IDH1 p.R132H mutation had a significantly longer OS than patients with wild-type IDH1 (270 versus 130 days; p < 0.024) [67].
A survival rate of 65.8 months was found in patients with a wild type IDH1 status in tissue but a mutant IDH1 status in plasma (T−/P+), which is approximately twice as long than the median OS of tissue (24.4 months) or plasma (35.8 months) IDH1 wild type patients of our cohort, assuming the real presence of the IDH1 mutation. However, due to the small sample size, appropriate statistical analyses could not be performed.
In our study, the evaluation of the O-6-methylguanine-DNA methyltransferase (MGMT) status was not available for all patients. In this context, different studies suggested the importance of combined IDH1 and MGMT analysis to predict survival in patients with different types of gliomas [65, 69]. Patients harboring IDH1 mutation and MGMT methylation had the more favorable outcomes, followed by patients with IDH1 mutation and unmethylated MGMT promoter, and patients without IDH1 mutation and unmethylated MGMT promoter [69]. There is compelling evidence that liquid biopsy, especially using cfDNA, offers an accurate and accessible approach to capture the landscape of brain tumor-related molecular alterations, allowing diagnosis and characterization of glioma patients [35, 38]. Liquid biopsy is already used in several tumors, especially for treatment monitoring, and recent several studies reported its usefulness in the management of glioma patients [38, 7073]. Moreover, liquid biopsy has found applicability as potential minimally invasive alternative to traditional tissue surgery, especially in difficult scenarios (i.e unavailable tissue, poor clinical conditions of patients), bypassing its spatial and temporal biases, and for the research of diagnostic and prognostic biomarkers, enabling clinicians to improve the neuro-oncology traditional monitoring of glioma patients [32, 33, 3537, 7476]. Moreover, the assessment of the IDH-1 and -2 status will become crucial since vorasidenib, a new oral brain-penetrant IDH-1/2 inhibitor inhibitor, showed linical activity in IDH-mutant gliomas [58]; therefore, its assessment will be relevant in order to treat patients with appropriate targeted treatments.

Conclusions

Our study confirms that liquid biopsy and cfDNA could be a complementary methods to tissue biopsy in the detection of IDH1 mutation, which can be used as a strong prognostic and predictive biomarker for a favorable clinical outcome in patients with glioma. The potential use of liquid biopsy opens an innovative field of circulating biomarkers research with a relevant impact on the characterization, prognosis, and clinical management of brain cancer.

Acknowledgements

None.

Declarations

All patients gave their signed informed consent before blood collection and data analysis. This study was conducted in accordance with the Declaration of Helsinki and approved by the local Ethics Committee of Area Vasta Nord-Ovest, Tuscany Region, Italy.
Not applicable.

Competing interests

MDR consultant/speaker: Astellas, Astra Zeneca, Celgene, Novartis, Pfizer, Bio-Rad, Janssen, Sanofi-Aventis, Roche, Lilly, MSD and Ipsen. RD consultant/speaker: Ipsen, Novartis, Pfizer, Sanofi Genzyme, AstraZeneca, Janssen, Gilead, Lilly, and EUSA Pharma. All other authors report no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Donaldson J, Park BH. Circulating tumor DNA: measurement and clinical utility. Annu Rev Med. 2018;69:223–34.PubMedCrossRef Donaldson J, Park BH. Circulating tumor DNA: measurement and clinical utility. Annu Rev Med. 2018;69:223–34.PubMedCrossRef
2.
Zurück zum Zitat Ossandon MR, Agrawal L, Bernhard EJ, Conley BA, Dey SM, Divi RL, et al. Circulating tumor DNA assays in clinical Cancer research. J Natl Cancer Inst. 2018;110(9):929–34.PubMedPubMedCentralCrossRef Ossandon MR, Agrawal L, Bernhard EJ, Conley BA, Dey SM, Divi RL, et al. Circulating tumor DNA assays in clinical Cancer research. J Natl Cancer Inst. 2018;110(9):929–34.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Mader S, Pantel K. Liquid biopsy: current status and future perspectives. Oncol Res Treat. 2017;40(7–8):404–8.PubMedCrossRef Mader S, Pantel K. Liquid biopsy: current status and future perspectives. Oncol Res Treat. 2017;40(7–8):404–8.PubMedCrossRef
5.
Zurück zum Zitat Poulet G, Massias J, Taly V. Liquid biopsy: general concepts. Acta Cytol. 2019;63(6):449–55.PubMedCrossRef Poulet G, Massias J, Taly V. Liquid biopsy: general concepts. Acta Cytol. 2019;63(6):449–55.PubMedCrossRef
6.
Zurück zum Zitat Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol. 2013;10(8):472–84.PubMedCrossRef Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol. 2013;10(8):472–84.PubMedCrossRef
7.
Zurück zum Zitat Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14(9):531–48.PubMedCrossRef Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14(9):531–48.PubMedCrossRef
8.
Zurück zum Zitat Shohdy KS, West HJ. Circulating tumor DNA testing-liquid biopsy of a Cancer. JAMA Oncol. 2020;6(5):792.PubMedCrossRef Shohdy KS, West HJ. Circulating tumor DNA testing-liquid biopsy of a Cancer. JAMA Oncol. 2020;6(5):792.PubMedCrossRef
9.
Zurück zum Zitat Pascual J, Attard G, Bidard FC, Curigliano G, De Mattos-Arruda L, Diehn M, et al. ESMO recommendations on the use of circulating tumour DNA assays for patients with cancer: a report from the ESMO precision medicine working group. Ann Oncol. 2022;33(8):750–68.PubMedCrossRef Pascual J, Attard G, Bidard FC, Curigliano G, De Mattos-Arruda L, Diehn M, et al. ESMO recommendations on the use of circulating tumour DNA assays for patients with cancer: a report from the ESMO precision medicine working group. Ann Oncol. 2022;33(8):750–68.PubMedCrossRef
10.
Zurück zum Zitat Michela B. Liquid biopsy: a family of possible diagnostic tools. Diagnostics (Basel). 2021;11(8). Michela B. Liquid biopsy: a family of possible diagnostic tools. Diagnostics (Basel). 2021;11(8).
11.
Zurück zum Zitat Urabe F, Kosaka N, Ito K, Kimura T, Egawa S, Ochiya T. Extracellular vesicles as biomarkers and therapeutic targets for cancer. Am J Phys Cell Physiol. 2020;318(1):C29–39.CrossRef Urabe F, Kosaka N, Ito K, Kimura T, Egawa S, Ochiya T. Extracellular vesicles as biomarkers and therapeutic targets for cancer. Am J Phys Cell Physiol. 2020;318(1):C29–39.CrossRef
12.
Zurück zum Zitat Vasconcelos MH, Caires HR, Abols A, Xavier CPR, Line A. Extracellular vesicles as a novel source of biomarkers in liquid biopsies for monitoring cancer progression and drug resistance. Drug Resist Updat. 2019;47:100647.PubMedCrossRef Vasconcelos MH, Caires HR, Abols A, Xavier CPR, Line A. Extracellular vesicles as a novel source of biomarkers in liquid biopsies for monitoring cancer progression and drug resistance. Drug Resist Updat. 2019;47:100647.PubMedCrossRef
13.
Zurück zum Zitat Taverna S, Giallombardo M, Gil-Bazo I, Carreca AP, Castiglia M, Chacartegui J, et al. Exosomes isolation and characterization in serum is feasible in non-small cell lung cancer patients: critical analysis of evidence and potential role in clinical practice. Oncotarget. 2016;7(19):28748–60.PubMedPubMedCentralCrossRef Taverna S, Giallombardo M, Gil-Bazo I, Carreca AP, Castiglia M, Chacartegui J, et al. Exosomes isolation and characterization in serum is feasible in non-small cell lung cancer patients: critical analysis of evidence and potential role in clinical practice. Oncotarget. 2016;7(19):28748–60.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Rolfo C, Mack P, Scagliotti GV, Aggarwal C, Arcila ME, Barlesi F, et al. Liquid biopsy for advanced NSCLC: a consensus statement from the International Association for the Study of Lung Cancer. J Thorac Oncol. 2021;16(10):1647–62.PubMedCrossRef Rolfo C, Mack P, Scagliotti GV, Aggarwal C, Arcila ME, Barlesi F, et al. Liquid biopsy for advanced NSCLC: a consensus statement from the International Association for the Study of Lung Cancer. J Thorac Oncol. 2021;16(10):1647–62.PubMedCrossRef
15.
Zurück zum Zitat Passiglia F, Pilotto S, Facchinetti F, Bertolaccini L, Del Re M, Ferrara R, et al. Treatment of advanced non-small-cell lung cancer: the 2019 AIOM (Italian Association of Medical Oncology) clinical practice guidelines. Crit Rev Oncol Hematol. 2020;146:102858.PubMedCrossRef Passiglia F, Pilotto S, Facchinetti F, Bertolaccini L, Del Re M, Ferrara R, et al. Treatment of advanced non-small-cell lung cancer: the 2019 AIOM (Italian Association of Medical Oncology) clinical practice guidelines. Crit Rev Oncol Hematol. 2020;146:102858.PubMedCrossRef
16.
Zurück zum Zitat Heidrich I, Ackar L, Mossahebi Mohammadi P, Pantel K. Liquid biopsies: potential and challenges. Int J Cancer. 2021;148(3):528–45.PubMedCrossRef Heidrich I, Ackar L, Mossahebi Mohammadi P, Pantel K. Liquid biopsies: potential and challenges. Int J Cancer. 2021;148(3):528–45.PubMedCrossRef
17.
Zurück zum Zitat Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2020;20(1):26–41.PubMedCrossRef Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2020;20(1):26–41.PubMedCrossRef
18.
Zurück zum Zitat Rolfo C, Mack PC, Scagliotti GV, Baas P, Barlesi F, Bivona TG, et al. Liquid biopsy for advanced non-Small cell lung Cancer (NSCLC): a statement paper from the IASLC. J Thorac Oncol. 2018;13(9):1248–68.PubMedCrossRef Rolfo C, Mack PC, Scagliotti GV, Baas P, Barlesi F, Bivona TG, et al. Liquid biopsy for advanced non-Small cell lung Cancer (NSCLC): a statement paper from the IASLC. J Thorac Oncol. 2018;13(9):1248–68.PubMedCrossRef
19.
Zurück zum Zitat Del Re M, Bordi P, Rofi E, Restante G, Valleggi S, Minari R, et al. The amount of activating EGFR mutations in circulating cell-free DNA is a marker to monitor osimertinib response. Br J Cancer. 2018;119(10):1252–8.PubMedPubMedCentralCrossRef Del Re M, Bordi P, Rofi E, Restante G, Valleggi S, Minari R, et al. The amount of activating EGFR mutations in circulating cell-free DNA is a marker to monitor osimertinib response. Br J Cancer. 2018;119(10):1252–8.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Del Re M, Petrini I, Mazzoni F, Valleggi S, Gianfilippo G, Pozzessere D, et al. Incidence of T790M in patients with NSCLC progressed to Gefitinib, Erlotinib, and Afatinib: a study on circulating cell-free DNA. Clin Lung Cancer. 2020;21(3):232–7.PubMedCrossRef Del Re M, Petrini I, Mazzoni F, Valleggi S, Gianfilippo G, Pozzessere D, et al. Incidence of T790M in patients with NSCLC progressed to Gefitinib, Erlotinib, and Afatinib: a study on circulating cell-free DNA. Clin Lung Cancer. 2020;21(3):232–7.PubMedCrossRef
21.
22.
Zurück zum Zitat Groot VP, Mosier S, Javed AA, Teinor JA, Gemenetzis G, Ding D, et al. Circulating tumor DNA as a clinical test in resected pancreatic Cancer. Clin Cancer Res. 2019;25(16):4973–84.PubMedPubMedCentralCrossRef Groot VP, Mosier S, Javed AA, Teinor JA, Gemenetzis G, Ding D, et al. Circulating tumor DNA as a clinical test in resected pancreatic Cancer. Clin Cancer Res. 2019;25(16):4973–84.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Schwaederle M, Chattopadhyay R, Kato S, Fanta PT, Banks KC, Choi IS, et al. Genomic alterations in circulating tumor DNA from diverse Cancer patients identified by next-generation sequencing. Cancer Res. 2017;77(19):5419–27.PubMedPubMedCentralCrossRef Schwaederle M, Chattopadhyay R, Kato S, Fanta PT, Banks KC, Choi IS, et al. Genomic alterations in circulating tumor DNA from diverse Cancer patients identified by next-generation sequencing. Cancer Res. 2017;77(19):5419–27.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Zill OA, Banks KC, Fairclough SR, Mortimer SA, Vowles JV, Mokhtari R, et al. The landscape of actionable genomic alterations in cell-free circulating tumor DNA from 21,807 advanced Cancer patients. Clin Cancer Res. 2018;24(15):3528–38.PubMedCrossRef Zill OA, Banks KC, Fairclough SR, Mortimer SA, Vowles JV, Mokhtari R, et al. The landscape of actionable genomic alterations in cell-free circulating tumor DNA from 21,807 advanced Cancer patients. Clin Cancer Res. 2018;24(15):3528–38.PubMedCrossRef
25.
Zurück zum Zitat Gracie L, Pan Y, Atenafu EG, Ward DG, Teng M, Pallan L, et al. Circulating tumour DNA (ctDNA) in metastatic melanoma, a systematic review and meta-analysis. Eur J Cancer. 2021;158:191–207.PubMedCrossRef Gracie L, Pan Y, Atenafu EG, Ward DG, Teng M, Pallan L, et al. Circulating tumour DNA (ctDNA) in metastatic melanoma, a systematic review and meta-analysis. Eur J Cancer. 2021;158:191–207.PubMedCrossRef
26.
Zurück zum Zitat Marczynski GT, Laus AC, Dos Reis MB, Reis RM, Vazquez VL. Circulating tumor DNA (ctDNA) detection is associated with shorter progression-free survival in advanced melanoma patients. Sci Rep. 2020;10(1):18682.PubMedPubMedCentralCrossRef Marczynski GT, Laus AC, Dos Reis MB, Reis RM, Vazquez VL. Circulating tumor DNA (ctDNA) detection is associated with shorter progression-free survival in advanced melanoma patients. Sci Rep. 2020;10(1):18682.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Malla M, Loree JM, Kasi PM, Parikh AR. Using circulating tumor DNA in colorectal Cancer: current and evolving practices. J Clin Oncol. 2022;40(24):2846–57.PubMedPubMedCentralCrossRef Malla M, Loree JM, Kasi PM, Parikh AR. Using circulating tumor DNA in colorectal Cancer: current and evolving practices. J Clin Oncol. 2022;40(24):2846–57.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Kang Y, Lin X, Kang D. Diagnostic value of circulating tumor DNA in molecular characterization of glioma: a meta-analysis. Medicine (Baltimore). 2020;99(33):e21196.PubMedCrossRef Kang Y, Lin X, Kang D. Diagnostic value of circulating tumor DNA in molecular characterization of glioma: a meta-analysis. Medicine (Baltimore). 2020;99(33):e21196.PubMedCrossRef
29.
Zurück zum Zitat Boisselier B, Gallego Perez-Larraya J, Rossetto M, Labussiere M, Ciccarino P, Marie Y, et al. Detection of IDH1 mutation in the plasma of patients with glioma. Neurology. 2012;79(16):1693–8.PubMedCrossRef Boisselier B, Gallego Perez-Larraya J, Rossetto M, Labussiere M, Ciccarino P, Marie Y, et al. Detection of IDH1 mutation in the plasma of patients with glioma. Neurology. 2012;79(16):1693–8.PubMedCrossRef
30.
Zurück zum Zitat Cabezas-Camarero S, Garcia-Barberan V, Perez-Alfayate R, Casado-Farinas I, Sloane H, Jones FS, et al. Detection of IDH1 mutations in plasma using BEAMing Technology in Patients with gliomas. Cancers (Basel). 2022;14(12). Cabezas-Camarero S, Garcia-Barberan V, Perez-Alfayate R, Casado-Farinas I, Sloane H, Jones FS, et al. Detection of IDH1 mutations in plasma using BEAMing Technology in Patients with gliomas. Cancers (Basel). 2022;14(12).
31.
Zurück zum Zitat Nassiri F, Chakravarthy A, Feng S, Shen SY, Nejad R, Zuccato JA, et al. Detection and discrimination of intracranial tumors using plasma cell-free DNA methylomes. Nat Med. 2020;26(7):1044–7.PubMedPubMedCentralCrossRef Nassiri F, Chakravarthy A, Feng S, Shen SY, Nejad R, Zuccato JA, et al. Detection and discrimination of intracranial tumors using plasma cell-free DNA methylomes. Nat Med. 2020;26(7):1044–7.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Piccioni DE, Achrol AS, Kiedrowski LA, Banks KC, Boucher N, Barkhoudarian G, et al. Analysis of cell-free circulating tumor DNA in 419 patients with glioblastoma and other primary brain tumors. CNS. Oncol. 2019;8(2):CNS34. Piccioni DE, Achrol AS, Kiedrowski LA, Banks KC, Boucher N, Barkhoudarian G, et al. Analysis of cell-free circulating tumor DNA in 419 patients with glioblastoma and other primary brain tumors. CNS. Oncol. 2019;8(2):CNS34.
33.
Zurück zum Zitat Yi Z, Qu C, Zeng Y, Liu Z. Liquid biopsy: early and accurate diagnosis of brain tumor. J Cancer Res Clin Oncol. 2022;148(9):2347–73.PubMedCrossRef Yi Z, Qu C, Zeng Y, Liu Z. Liquid biopsy: early and accurate diagnosis of brain tumor. J Cancer Res Clin Oncol. 2022;148(9):2347–73.PubMedCrossRef
34.
Zurück zum Zitat Simonelli M, Dipasquale A, Orzan F, Lorenzi E, Persico P, Navarria P, et al. Cerebrospinal fluid tumor DNA for liquid biopsy in glioma patients' management: close to the clinic? Crit Rev Oncol Hematol. 2020;146:102879.PubMedCrossRef Simonelli M, Dipasquale A, Orzan F, Lorenzi E, Persico P, Navarria P, et al. Cerebrospinal fluid tumor DNA for liquid biopsy in glioma patients' management: close to the clinic? Crit Rev Oncol Hematol. 2020;146:102879.PubMedCrossRef
35.
Zurück zum Zitat Sareen H, Garrett C, Lynch D, Powter B, Brungs D, Cooper A, et al. The role of liquid biopsies in detecting molecular tumor biomarkers in brain Cancer patients. Cancers (Basel). 2020;12(7). Sareen H, Garrett C, Lynch D, Powter B, Brungs D, Cooper A, et al. The role of liquid biopsies in detecting molecular tumor biomarkers in brain Cancer patients. Cancers (Basel). 2020;12(7).
36.
Zurück zum Zitat Eibl RH, Schneemann M. Liquid biopsy and primary brain tumors. Cancers (Basel). 2021;13(21). Eibl RH, Schneemann M. Liquid biopsy and primary brain tumors. Cancers (Basel). 2021;13(21).
37.
Zurück zum Zitat Ray A. Liquid biopsy in gliomas- a review. Neurol India. 2020;68(6):1295–300.PubMed Ray A. Liquid biopsy in gliomas- a review. Neurol India. 2020;68(6):1295–300.PubMed
38.
Zurück zum Zitat Orzan F, De Bacco F, Lazzarini E, Crisafulli G, Gasparini A, Dipasquale A, et al. Liquid biopsy of cerebrospinal fluid enables selective profiling of glioma molecular subtypes at first clinical presentation. Clin Cancer Res. 2023;29(7):1252–66.PubMedPubMedCentralCrossRef Orzan F, De Bacco F, Lazzarini E, Crisafulli G, Gasparini A, Dipasquale A, et al. Liquid biopsy of cerebrospinal fluid enables selective profiling of glioma molecular subtypes at first clinical presentation. Clin Cancer Res. 2023;29(7):1252–66.PubMedPubMedCentralCrossRef
39.
40.
Zurück zum Zitat De Mattos-Arruda L, Mayor R, Ng CKY, Weigelt B, Martinez-Ricarte F, Torrejon D, et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat Commun. 2015;6:8839.PubMedPubMedCentralCrossRef De Mattos-Arruda L, Mayor R, Ng CKY, Weigelt B, Martinez-Ricarte F, Torrejon D, et al. Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat Commun. 2015;6:8839.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Seoane J, De Mattos-Arruda L, Le Rhun E, Bardelli A, Weller M. Cerebrospinal fluid cell-free tumour DNA as a liquid biopsy for primary brain tumours and central nervous system metastases. Ann Oncol. 2019;30(2):211–8.PubMedCrossRef Seoane J, De Mattos-Arruda L, Le Rhun E, Bardelli A, Weller M. Cerebrospinal fluid cell-free tumour DNA as a liquid biopsy for primary brain tumours and central nervous system metastases. Ann Oncol. 2019;30(2):211–8.PubMedCrossRef
42.
Zurück zum Zitat Miller AM, Shah RH, Pentsova EI, Pourmaleki M, Briggs S, Distefano N, et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature. 2019;565(7741):654–8.PubMedPubMedCentralCrossRef Miller AM, Shah RH, Pentsova EI, Pourmaleki M, Briggs S, Distefano N, et al. Tracking tumour evolution in glioma through liquid biopsies of cerebrospinal fluid. Nature. 2019;565(7741):654–8.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Perry A, Wesseling P. Histologic classification of gliomas. Handb Clin Neurol. 2016;134:71–95.PubMedCrossRef Perry A, Wesseling P. Histologic classification of gliomas. Handb Clin Neurol. 2016;134:71–95.PubMedCrossRef
44.
Zurück zum Zitat Lapointe S, Perry A, Butowski NA. Primary brain tumours in adults. Lancet. 2018;392(10145):432–46.PubMedCrossRef Lapointe S, Perry A, Butowski NA. Primary brain tumours in adults. Lancet. 2018;392(10145):432–46.PubMedCrossRef
45.
Zurück zum Zitat Wesseling P, Capper D. WHO 2016 classification of gliomas. Neuropathol Appl Neurobiol. 2018;44(2):139–50.PubMedCrossRef Wesseling P, Capper D. WHO 2016 classification of gliomas. Neuropathol Appl Neurobiol. 2018;44(2):139–50.PubMedCrossRef
46.
47.
Zurück zum Zitat Picca A, Berzero G, Di Stefano AL, Sanson M. The clinical use of IDH1 and IDH2 mutations in gliomas. Expert Rev Mol Diagn. 2018;18(12):1041–51.PubMedCrossRef Picca A, Berzero G, Di Stefano AL, Sanson M. The clinical use of IDH1 and IDH2 mutations in gliomas. Expert Rev Mol Diagn. 2018;18(12):1041–51.PubMedCrossRef
48.
Zurück zum Zitat Sonoda Y, Kumabe T, Nakamura T, Saito R, Kanamori M, Yamashita Y, et al. Analysis of IDH1 and IDH2 mutations in Japanese glioma patients. Cancer Sci. 2009;100(10):1996–8.PubMedCrossRef Sonoda Y, Kumabe T, Nakamura T, Saito R, Kanamori M, Yamashita Y, et al. Analysis of IDH1 and IDH2 mutations in Japanese glioma patients. Cancer Sci. 2009;100(10):1996–8.PubMedCrossRef
49.
Zurück zum Zitat Liu Y, Lang F, Chou FJ, Zaghloul KA, Yang C. Isocitrate dehydrogenase mutations in glioma: genetics, biochemistry, and clinical indications. Biomedicines. 2020;8(9). Liu Y, Lang F, Chou FJ, Zaghloul KA, Yang C. Isocitrate dehydrogenase mutations in glioma: genetics, biochemistry, and clinical indications. Biomedicines. 2020;8(9).
51.
Zurück zum Zitat Khan I, Waqas M, Shamim MS. Prognostic significance of IDH 1 mutation in patients with glioblastoma multiforme. J Pak Med Assoc. 2017;67(5):816–7.PubMed Khan I, Waqas M, Shamim MS. Prognostic significance of IDH 1 mutation in patients with glioblastoma multiforme. J Pak Med Assoc. 2017;67(5):816–7.PubMed
52.
Zurück zum Zitat Hartmann C, Hentschel B, Wick W, Capper D, Felsberg J, Simon M, et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol. 2010;120(6):707–18.PubMedCrossRef Hartmann C, Hentschel B, Wick W, Capper D, Felsberg J, Simon M, et al. Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol. 2010;120(6):707–18.PubMedCrossRef
53.
Zurück zum Zitat Xia L, Wu B, Fu Z, Feng F, Qiao E, Li Q, et al. Prognostic role of IDH mutations in gliomas: a meta-analysis of 55 observational studies. Oncotarget. 2015;6(19):17354–65.PubMedPubMedCentralCrossRef Xia L, Wu B, Fu Z, Feng F, Qiao E, Li Q, et al. Prognostic role of IDH mutations in gliomas: a meta-analysis of 55 observational studies. Oncotarget. 2015;6(19):17354–65.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Pappula AL, Rasheed S, Mirzaei G, Petreaca RC, Bouley RA. A genome-wide profiling of glioma patients with an IDH1 mutation using the catalogue of somatic mutations in Cancer database. Cancers (Basel). 2021;13(17). Pappula AL, Rasheed S, Mirzaei G, Petreaca RC, Bouley RA. A genome-wide profiling of glioma patients with an IDH1 mutation using the catalogue of somatic mutations in Cancer database. Cancers (Basel). 2021;13(17).
55.
Zurück zum Zitat Stoyanov GS, Lyutfi E, Georgieva R, Georgiev R, Dzhenkov DL, Petkova L, et al. Reclassification of glioblastoma Multiforme according to the 2021 World Health Organization classification of central nervous system tumors: a single institution report and practical significance. Cureus. 2022;14(2):e21822.PubMedPubMedCentral Stoyanov GS, Lyutfi E, Georgieva R, Georgiev R, Dzhenkov DL, Petkova L, et al. Reclassification of glioblastoma Multiforme according to the 2021 World Health Organization classification of central nervous system tumors: a single institution report and practical significance. Cureus. 2022;14(2):e21822.PubMedPubMedCentral
56.
Zurück zum Zitat Sledzinska P, Bebyn M, Szczerba E, Furtak J, Harat M, Olszewska N, et al. Glioma 2021 WHO classification: the superiority of NGS over IHC in routine diagnostics. Mol Diagn Ther. 2022;26(6):699–713.PubMedPubMedCentralCrossRef Sledzinska P, Bebyn M, Szczerba E, Furtak J, Harat M, Olszewska N, et al. Glioma 2021 WHO classification: the superiority of NGS over IHC in routine diagnostics. Mol Diagn Ther. 2022;26(6):699–713.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-Oncology. 2021;23(8):1231–51.PubMedPubMedCentralCrossRef Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro-Oncology. 2021;23(8):1231–51.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Mellinghoff IK, van den Bent MJ, Blumenthal DT, Touat M, Peters KB, Clarke J, et al. Vorasidenib in IDH1- or IDH2-mutant low-grade glioma. N Engl J Med. 2023;389(7):589–601.PubMedCrossRef Mellinghoff IK, van den Bent MJ, Blumenthal DT, Touat M, Peters KB, Clarke J, et al. Vorasidenib in IDH1- or IDH2-mutant low-grade glioma. N Engl J Med. 2023;389(7):589–601.PubMedCrossRef
59.
Zurück zum Zitat Crucitta S, Ruglioni M, Novi C, Manganiello M, Arici R, Petrini I, et al. Comparison of digital PCR systems for the analysis of liquid biopsy samples of patients affected by lung and colorectal cancer. Clin Chim Acta. 2023;541:117239.PubMedCrossRef Crucitta S, Ruglioni M, Novi C, Manganiello M, Arici R, Petrini I, et al. Comparison of digital PCR systems for the analysis of liquid biopsy samples of patients affected by lung and colorectal cancer. Clin Chim Acta. 2023;541:117239.PubMedCrossRef
60.
Zurück zum Zitat Nørøxe DS, Østrup O, Yde CW, Ahlborn LB, Nielsen FC, Michaelsen SR, et al. Cell-free DNA in newly diagnosed patients with glioblastoma - a clinical prospective feasibility study. Oncotarget. 2019;10(43):4397–406.PubMedPubMedCentralCrossRef Nørøxe DS, Østrup O, Yde CW, Ahlborn LB, Nielsen FC, Michaelsen SR, et al. Cell-free DNA in newly diagnosed patients with glioblastoma - a clinical prospective feasibility study. Oncotarget. 2019;10(43):4397–406.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11(6):426–37.PubMedCrossRef Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11(6):426–37.PubMedCrossRef
62.
Zurück zum Zitat Husain A, Mishra S, Siddiqui MH, Husain N. Detection of IDH1 mutation in cfDNA and tissue of adult diffuse glioma with allele-specific qPCR. Asian Pac J Cancer Prev. 2023;24(3):961–8.PubMedPubMedCentralCrossRef Husain A, Mishra S, Siddiqui MH, Husain N. Detection of IDH1 mutation in cfDNA and tissue of adult diffuse glioma with allele-specific qPCR. Asian Pac J Cancer Prev. 2023;24(3):961–8.PubMedPubMedCentralCrossRef
63.
64.
Zurück zum Zitat Deng L, Xiong P, Luo Y, Bu X, Qian S, Zhong W, et al. Association between IDH1/2 mutations and brain glioma grade. Oncol Lett. 2018;16(4):5405–9.PubMedPubMedCentral Deng L, Xiong P, Luo Y, Bu X, Qian S, Zhong W, et al. Association between IDH1/2 mutations and brain glioma grade. Oncol Lett. 2018;16(4):5405–9.PubMedPubMedCentral
65.
Zurück zum Zitat Yan W, Zhang W, You G, Bao Z, Wang Y, Liu Y, et al. Correlation of IDH1 mutation with clinicopathologic factors and prognosis in primary glioblastoma: a report of 118 patients from China. PLoS One. 2012;7(1):e30339.PubMedPubMedCentralCrossRef Yan W, Zhang W, You G, Bao Z, Wang Y, Liu Y, et al. Correlation of IDH1 mutation with clinicopathologic factors and prognosis in primary glioblastoma: a report of 118 patients from China. PLoS One. 2012;7(1):e30339.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Sanson M, Marie Y, Paris S, Idbaih A, Laffaire J, Ducray F, et al. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol. 2009;27(25):4150–4.PubMedCrossRef Sanson M, Marie Y, Paris S, Idbaih A, Laffaire J, Ducray F, et al. Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol. 2009;27(25):4150–4.PubMedCrossRef
67.
Zurück zum Zitat Polivka J, Polivka J Jr, Rohan V, Pesta M, Repik T, Pitule P, et al. Isocitrate dehydrogenase-1 mutations as prognostic biomarker in glioblastoma multiforme patients in West Bohemia. Biomed Res Int. 2014;2014:735659.PubMedPubMedCentralCrossRef Polivka J, Polivka J Jr, Rohan V, Pesta M, Repik T, Pitule P, et al. Isocitrate dehydrogenase-1 mutations as prognostic biomarker in glioblastoma multiforme patients in West Bohemia. Biomed Res Int. 2014;2014:735659.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Wang J, Zhao YY, Li JF, Guo CC, Chen FR, Su HK, et al. IDH1 mutation detection by droplet digital PCR in glioma. Oncotarget. 2015;6(37):39651–60.PubMedPubMedCentralCrossRef Wang J, Zhao YY, Li JF, Guo CC, Chen FR, Su HK, et al. IDH1 mutation detection by droplet digital PCR in glioma. Oncotarget. 2015;6(37):39651–60.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Minniti G, Scaringi C, Arcella A, Lanzetta G, Di Stefano D, Scarpino S, et al. IDH1 mutation and MGMT methylation status predict survival in patients with anaplastic astrocytoma treated with temozolomide-based chemoradiotherapy. J Neuro-Oncol. 2014;118(2):377–83.CrossRef Minniti G, Scaringi C, Arcella A, Lanzetta G, Di Stefano D, Scarpino S, et al. IDH1 mutation and MGMT methylation status predict survival in patients with anaplastic astrocytoma treated with temozolomide-based chemoradiotherapy. J Neuro-Oncol. 2014;118(2):377–83.CrossRef
70.
Zurück zum Zitat Muralidharan K, Yekula A, Small JL, Rosh ZS, Kang KM, Wang L, et al. Promoter mutation analysis for blood-based diagnosis and monitoring of gliomas. Clin Cancer Res. 2021;27(1):169–78.PubMedCrossRef Muralidharan K, Yekula A, Small JL, Rosh ZS, Kang KM, Wang L, et al. Promoter mutation analysis for blood-based diagnosis and monitoring of gliomas. Clin Cancer Res. 2021;27(1):169–78.PubMedCrossRef
71.
Zurück zum Zitat Fontanilles M, Marguet F, Beaussire L, Magne N, Pépin LF, Alexandru C, et al. Cell-free DNA and circulating TERT promoter mutation for disease monitoring in newly-diagnosed glioblastoma. Acta Neuropathol Commun. 2020;8(1):179.PubMedPubMedCentralCrossRef Fontanilles M, Marguet F, Beaussire L, Magne N, Pépin LF, Alexandru C, et al. Cell-free DNA and circulating TERT promoter mutation for disease monitoring in newly-diagnosed glioblastoma. Acta Neuropathol Commun. 2020;8(1):179.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Husain A, Mishra S, Hadi R, Sahu A, Kumari S, Rastogi M, et al. Dynamics of cell-free DNA in predicting response in adult diffuse glioma on chemoradiotherapy. Cancer Gene Ther. 2022;268-269:55–63.CrossRef Husain A, Mishra S, Hadi R, Sahu A, Kumari S, Rastogi M, et al. Dynamics of cell-free DNA in predicting response in adult diffuse glioma on chemoradiotherapy. Cancer Gene Ther. 2022;268-269:55–63.CrossRef
73.
Zurück zum Zitat Riviere-Cazaux C, Dong X, Mo W, Luo S, Wang A, Du P, et al. Biom-16. Longitudinal glioma cerebrospinal fluid cell-free dna for monitoring and treatment response assessment. Neuro-Oncology. 2023;25(Supplement_5):v7-v.CrossRef Riviere-Cazaux C, Dong X, Mo W, Luo S, Wang A, Du P, et al. Biom-16. Longitudinal glioma cerebrospinal fluid cell-free dna for monitoring and treatment response assessment. Neuro-Oncology. 2023;25(Supplement_5):v7-v.CrossRef
75.
Zurück zum Zitat Saenz-Antonanzas A, Auzmendi-Iriarte J, Carrasco-Garcia E, Moreno-Cugnon L, Ruiz I, Villanua J, et al. Liquid biopsy in glioblastoma: opportunities, applications and challenges. Cancers (Basel). 2019;11(7). Saenz-Antonanzas A, Auzmendi-Iriarte J, Carrasco-Garcia E, Moreno-Cugnon L, Ruiz I, Villanua J, et al. Liquid biopsy in glioblastoma: opportunities, applications and challenges. Cancers (Basel). 2019;11(7).
76.
Zurück zum Zitat Pasqualetti F, Rizzo M, Franceschi S, Lessi F, Paiar F, Buffa FM. New perspectives in liquid biopsy for glioma patients. Curr Opin Oncol. 2022;34(6):705–12.PubMedCrossRef Pasqualetti F, Rizzo M, Franceschi S, Lessi F, Paiar F, Buffa FM. New perspectives in liquid biopsy for glioma patients. Curr Opin Oncol. 2022;34(6):705–12.PubMedCrossRef
Metadaten
Titel
IDH1 mutation is detectable in plasma cell-free DNA and is associated with survival outcome in glioma patients
verfasst von
Stefania Crucitta
Francesco Pasqualetti
Alessandra Gonnelli
Martina Ruglioni
Giovanna Irene Luculli
Martina Cantarella
Valerio Ortenzi
Cristian Scatena
Fabiola Paiar
Antonio Giuseppe Naccarato
Romano Danesi
Marzia Del Re
Publikationsdatum
01.12.2024
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2024
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-11726-0

Weitere Artikel der Ausgabe 1/2024

BMC Cancer 1/2024 Zur Ausgabe

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Viel pflanzliche Nahrung, seltener Prostata-Ca.-Progression

12.05.2024 Prostatakarzinom Nachrichten

Ein hoher Anteil pflanzlicher Nahrung trägt möglicherweise dazu bei, das Progressionsrisiko von Männern mit Prostatakarzinomen zu senken. In einer US-Studie war das Risiko bei ausgeprägter pflanzlicher Ernährung in etwa halbiert.

Alter verschlechtert Prognose bei Endometriumkarzinom

11.05.2024 Endometriumkarzinom Nachrichten

Ein höheres Alter bei der Diagnose eines Endometriumkarzinoms ist mit aggressiveren Tumorcharakteristika assoziiert, scheint aber auch unabhängig von bekannten Risikofaktoren die Prognose der Erkrankung zu verschlimmern.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.