Skip to main content
Erschienen in: European Radiology 2/2023

24.08.2022 | Imaging Informatics and Artificial Intelligence

Image-based deep learning identifies glioblastoma risk groups with genomic and transcriptomic heterogeneity: a multi-center study

verfasst von: Jing Yan, Qiuchang Sun, Xiangliang Tan, Chaofeng Liang, Hongmin Bai, Wenchao Duan, Tianhao Mu, Yang Guo, Yuning Qiu, Weiwei Wang, Qiaoli Yao, Dongling Pei, Yuanshen Zhao, Danni Liu, Jingxian Duan, Shifu Chen, Chen Sun, Wenqing Wang, Zhen Liu, Xuanke Hong, Xiangxiang Wang, Yu Guo, Yikai Xu, Xianzhi Liu, Jingliang Cheng, Zhi-Cheng Li, Zhenyu Zhang

Erschienen in: European Radiology | Ausgabe 2/2023

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To develop and validate a deep learning imaging signature (DLIS) for risk stratification in patients with multiforme (GBM), and to investigate the biological pathways and genetic alterations underlying the DLIS.

Methods

The DLIS was developed from multi-parametric MRI based on a training set (n = 600) and validated on an internal validation set (n = 164), an external test set 1 (n = 100), an external test set 2 (n = 161), and a public TCIA set (n = 88). A co-profiling framework based on a radiogenomics analysis dataset (n = 127) using multiscale high-dimensional data, including imaging, transcriptome, and genome, was established to uncover the biological pathways and genetic alterations underpinning the DLIS.

Results

The DLIS was associated with survival (log-rank p < 0.001) and was an independent predictor (p < 0.001). The integrated nomogram incorporating the DLIS achieved improved C indices than the clinicomolecular nomogram (net reclassification improvement 0.39, p < 0.001). DLIS significantly correlated with core pathways of GBM (apoptosis and cell cycle-related P53 and RB pathways, and cell proliferation-related RTK pathway), as well as key genetic alterations (del_CDNK2A). The prognostic value of DLIS-correlated genes was externally confirmed on TCGA/CGGA sets (p < 0.01).

Conclusions

Our study offers a biologically interpretable deep learning predictor of survival outcomes in patients with GBM, which is crucial for better understanding GBM patient’s prognosis and guiding individualized treatment.

Key Points

• MRI-based deep learning imaging signature (DLIS) stratifies GBM into risk groups with distinct molecular characteristics.
• DLIS is associated with P53, RB, and RTK pathways and del_CDNK2A mutation.
• The prognostic value of DLIS-correlated pathway genes is externally demonstrated.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS (2020) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013-2017. Neuro Oncol 22:iv1-iv96 Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS (2020) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013-2017. Neuro Oncol 22:iv1-iv96
2.
Zurück zum Zitat Stupp R, Mason WP, van den Bent MJ et al (2005) European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRef Stupp R, Mason WP, van den Bent MJ et al (2005) European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRef
3.
Zurück zum Zitat Park AK, Kim P, Ballester LY, Esquenazi Y, Zhao Z (2019) Subtype-specific signaling pathways and genomic aberrations associated with prognosis of glioblastoma. Neuro Oncol 21:59–70CrossRef Park AK, Kim P, Ballester LY, Esquenazi Y, Zhao Z (2019) Subtype-specific signaling pathways and genomic aberrations associated with prognosis of glioblastoma. Neuro Oncol 21:59–70CrossRef
4.
Zurück zum Zitat Sottoriva A, Spiteri I, Piccirillo SG et al (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A 110:4009–4014 Sottoriva A, Spiteri I, Piccirillo SG et al (2013) Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci U S A 110:4009–4014
5.
Zurück zum Zitat The Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068CrossRef The Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068CrossRef
6.
Zurück zum Zitat Verhaak RG, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110CrossRef Verhaak RG, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110CrossRef
7.
Zurück zum Zitat Mazurowski MA (2015) Radiogenomics: what it is and why it is important. J Am Coll Radiol 12:862–866CrossRef Mazurowski MA (2015) Radiogenomics: what it is and why it is important. J Am Coll Radiol 12:862–866CrossRef
8.
Zurück zum Zitat Shen D, Wu G, Suk HI (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19:221–248CrossRef Shen D, Wu G, Suk HI (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19:221–248CrossRef
9.
Zurück zum Zitat Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577CrossRef Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577CrossRef
10.
Zurück zum Zitat Bismeijer T, van der Velden BH, Canisius S et al (2020) Radiogenomic analysis of breast cancer by linking MRI phenotypes with tumor gene expression. Radiology 296:277–287CrossRef Bismeijer T, van der Velden BH, Canisius S et al (2020) Radiogenomic analysis of breast cancer by linking MRI phenotypes with tumor gene expression. Radiology 296:277–287CrossRef
11.
Zurück zum Zitat Fan M, Xia P, Clarke R, Wang Y, Li L (2020) Radiogenomic signatures reveal multiscale intratumour heterogeneity associated with biological functions and survival in breast cancer. Nat Commun 11:4861CrossRef Fan M, Xia P, Clarke R, Wang Y, Li L (2020) Radiogenomic signatures reveal multiscale intratumour heterogeneity associated with biological functions and survival in breast cancer. Nat Commun 11:4861CrossRef
12.
Zurück zum Zitat Yan J, Zhang S, Li KK et al (2020) Incremental prognostic value and underlying biological pathways of radiomics patterns in medulloblastoma. EBioMedicine 61:103093CrossRef Yan J, Zhang S, Li KK et al (2020) Incremental prognostic value and underlying biological pathways of radiomics patterns in medulloblastoma. EBioMedicine 61:103093CrossRef
13.
Zurück zum Zitat Beig N, Bera K, Prasanna P et al (2020) Radiogenomic-based survival risk stratification of tumor habitat on Gd-T1w MRI is associated with biological processes in glioblastoma. Clin Cancer Res 26:1866–1876CrossRef Beig N, Bera K, Prasanna P et al (2020) Radiogenomic-based survival risk stratification of tumor habitat on Gd-T1w MRI is associated with biological processes in glioblastoma. Clin Cancer Res 26:1866–1876CrossRef
14.
Zurück zum Zitat Beig N, Singh S, Bera K et al (2021) Sexually dimorphic radiogenomic models identify distinct imaging and biological pathways that are prognostic of overall survival in Glioblastoma. Neuro Oncol 23:251–263CrossRef Beig N, Singh S, Bera K et al (2021) Sexually dimorphic radiogenomic models identify distinct imaging and biological pathways that are prognostic of overall survival in Glioblastoma. Neuro Oncol 23:251–263CrossRef
15.
Zurück zum Zitat Sun Q, Chen Y, Liang C et al (2021) Biologic pathways underlying prognostic radiomics phenotypes from paired MRI and RNA sequencing in glioblastoma. Radiology 14:203281 Sun Q, Chen Y, Liang C et al (2021) Biologic pathways underlying prognostic radiomics phenotypes from paired MRI and RNA sequencing in glioblastoma. Radiology 14:203281
16.
Zurück zum Zitat Park JE, Kim HS, Park SY et al (2020) Prediction of core signaling pathway by using diffusion-and perfusion-based MRI radiomics and next-generation sequencing in isocitrate dehydrogenase wild-type glioblastoma. Radiology 294:388–397CrossRef Park JE, Kim HS, Park SY et al (2020) Prediction of core signaling pathway by using diffusion-and perfusion-based MRI radiomics and next-generation sequencing in isocitrate dehydrogenase wild-type glioblastoma. Radiology 294:388–397CrossRef
17.
Zurück zum Zitat Truhn D, Schrading S, Haarburger C, Schneider H, Merhof D, Kuhl C (2019) Radiomic versus convolutional neural networks analysis for classification of contrast-enhancing lesions at multiparametric breast MRI. Radiology 290:290–297CrossRef Truhn D, Schrading S, Haarburger C, Schneider H, Merhof D, Kuhl C (2019) Radiomic versus convolutional neural networks analysis for classification of contrast-enhancing lesions at multiparametric breast MRI. Radiology 290:290–297CrossRef
18.
Zurück zum Zitat Sun Q, Lin X, Zhao Y et al (2020) Deep learning vs. radiomics for predicting axillary lymph node metastasis of breast cancer using ultrasound images: don’t forget the peritumoral region. Front Oncol 10:53 Sun Q, Lin X, Zhao Y et al (2020) Deep learning vs. radiomics for predicting axillary lymph node metastasis of breast cancer using ultrasound images: don’t forget the peritumoral region. Front Oncol 10:53
19.
Zurück zum Zitat Yan J, Zhao Y, Chen Y et al (2021) Deep learning features from diffusion tensor imaging improve glioma stratification and identify risk groups with distinct molecular pathway activities. EBioMedicine 72:103583CrossRef Yan J, Zhao Y, Chen Y et al (2021) Deep learning features from diffusion tensor imaging improve glioma stratification and identify risk groups with distinct molecular pathway activities. EBioMedicine 72:103583CrossRef
20.
Zurück zum Zitat Tomaszewski MR, Gillies RJ (2021) The biological meaning of radiomic features. Radiology 5:202553 Tomaszewski MR, Gillies RJ (2021) The biological meaning of radiomic features. Radiology 5:202553
21.
Zurück zum Zitat Itakura H, Achrol AS, Mitchell LA, et al (2015) Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities. Sci Transl Med 7:303ra138 Itakura H, Achrol AS, Mitchell LA, et al (2015) Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities. Sci Transl Med 7:303ra138
22.
Zurück zum Zitat Bi WL, Hosny A, Schabath MB et al (2019) Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin 69:127–157 Bi WL, Hosny A, Schabath MB et al (2019) Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin 69:127–157
23.
Zurück zum Zitat Kickingereder P, Burth S, Wick A et al (2016) Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 280:880–889 Kickingereder P, Burth S, Wick A et al (2016) Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 280:880–889
24.
Zurück zum Zitat Kickingereder P, Neuberger U, Bonekamp D et al (2018) Radiomic subtyping improves disease stratification beyond key molecular, clinical, and standard imaging characteristics in patients with glioblastoma. Neuro Oncol 20:848–857 Kickingereder P, Neuberger U, Bonekamp D et al (2018) Radiomic subtyping improves disease stratification beyond key molecular, clinical, and standard imaging characteristics in patients with glioblastoma. Neuro Oncol 20:848–857
25.
Zurück zum Zitat Bae S, Choi YS, Ahn SS, et al (2018) Radiomic MRI Phenotyping of Glioblastoma: Improving Survival Prediction. Radiology 289:797-806 Bae S, Choi YS, Ahn SS, et al (2018) Radiomic MRI Phenotyping of Glioblastoma: Improving Survival Prediction. Radiology 289:797-806
26.
Zurück zum Zitat Lao J, Chen Y, Li ZC et al (2017) A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci Rep 7:10353 Lao J, Chen Y, Li ZC et al (2017) A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci Rep 7:10353
27.
Zurück zum Zitat Han W, Qin L, Bay C et al (2020) Deep transfer learning and radiomics feature prediction of survival of patients with high-grade gliomas. AJNR Am J Neuroradiol 41:40–48 Han W, Qin L, Bay C et al (2020) Deep transfer learning and radiomics feature prediction of survival of patients with high-grade gliomas. AJNR Am J Neuroradiol 41:40–48
28.
Zurück zum Zitat Nie D, Lu J, Zhang H et al (2019) Multi-channel 3D deep feature learning for survival time prediction of brain tumor patients using multi-modal neuroimages. Sci Rep 9:1103 Nie D, Lu J, Zhang H et al (2019) Multi-channel 3D deep feature learning for survival time prediction of brain tumor patients using multi-modal neuroimages. Sci Rep 9:1103
29.
Zurück zum Zitat Tang Z, Xu Y, Jin L et al (2020) Deep learning of imaging phenotype and genotype for predicting overall survival time of glioblastoma patients. IEEE Trans Med Imaging 39:2100–2109 Tang Z, Xu Y, Jin L et al (2020) Deep learning of imaging phenotype and genotype for predicting overall survival time of glioblastoma patients. IEEE Trans Med Imaging 39:2100–2109
30.
Zurück zum Zitat Yoon HG, Cheon W, Jeong SW et al (2020) Multi-parametric deep learning model for prediction of overall survival after postoperative concurrent chemoradiotherapy in glioblastoma patients. Cancers (Basel) 12:2284 Yoon HG, Cheon W, Jeong SW et al (2020) Multi-parametric deep learning model for prediction of overall survival after postoperative concurrent chemoradiotherapy in glioblastoma patients. Cancers (Basel) 12:2284
31.
Zurück zum Zitat Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812 Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812
32.
Zurück zum Zitat Kotliarova S, Fine HA (2012) SnapShot: glioblastoma multiforme. Cancer Cell 21:710–710 Kotliarova S, Fine HA (2012) SnapShot: glioblastoma multiforme. Cancer Cell 21:710–710
33.
Zurück zum Zitat Pearson JRD, Regad T (2017) Targeting cellular pathways in glioblastoma multiforme. Signal Transduct Target Ther 2:17040 Pearson JRD, Regad T (2017) Targeting cellular pathways in glioblastoma multiforme. Signal Transduct Target Ther 2:17040
34.
Zurück zum Zitat Bangalore Yogananda CG, Shah BR, Vejdani-Jahromi M et al (2020) A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas. Neuro Oncol 22:402–411 Bangalore Yogananda CG, Shah BR, Vejdani-Jahromi M et al (2020) A novel fully automated MRI-based deep-learning method for classification of IDH mutation status in brain gliomas. Neuro Oncol 22:402–411
35.
Zurück zum Zitat Li ZC, Bai H, Sun Q, et al (2018) Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: a multicentre study. Eur Radiol 28:3640–3650 Li ZC, Bai H, Sun Q, et al (2018) Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: a multicentre study. Eur Radiol 28:3640–3650
36.
Zurück zum Zitat Hong EK, Choi SH, Shin DJ et al (2018) Radiogenomics correlation between MR imaging features and major genetic profiles in glioblastoma. Eur Radiol 28:4350–4361 Hong EK, Choi SH, Shin DJ et al (2018) Radiogenomics correlation between MR imaging features and major genetic profiles in glioblastoma. Eur Radiol 28:4350–4361
37.
Zurück zum Zitat Chen CH, Chen PY, Lin YY et al (2019) Suppression of tumor growth via IGFBP3 depletion as a potential treatment in glioma. J Neurosurg 132:168–179 Chen CH, Chen PY, Lin YY et al (2019) Suppression of tumor growth via IGFBP3 depletion as a potential treatment in glioma. J Neurosurg 132:168–179
38.
Zurück zum Zitat Si D, Yin F, Peng J, Zhang G (2020) High expression of CD44 predicts a poor prognosis in glioblastomas. Cancer Manag Res 12:769–775 Si D, Yin F, Peng J, Zhang G (2020) High expression of CD44 predicts a poor prognosis in glioblastomas. Cancer Manag Res 12:769–775
39.
Zurück zum Zitat Shin CH, Robinson JP, Sonnen JA et al (2017) HBEGF promotes gliomagenesis in the context of Ink4a/Arf and Pten loss. Oncogene 36:4610–4618 Shin CH, Robinson JP, Sonnen JA et al (2017) HBEGF promotes gliomagenesis in the context of Ink4a/Arf and Pten loss. Oncogene 36:4610–4618
40.
Zurück zum Zitat Kulkarni S, Goel-Bhattacharya S, Sengupta S, Cochran BH (2018) A large-scale RNAi screen identifies SGK1 as a key survival kinase for GBM stem cells. Mol Cancer Res 16:103–114 Kulkarni S, Goel-Bhattacharya S, Sengupta S, Cochran BH (2018) A large-scale RNAi screen identifies SGK1 as a key survival kinase for GBM stem cells. Mol Cancer Res 16:103–114
41.
Zurück zum Zitat Chen J, Hou C, Zheng Z, Lin H, Lv G, Zhou D (2019) Identification of secreted phosphoprotein 1 (SPP1) as a prognostic factor in lower-grade gliomas. World Neurosurg 130:e775–e785 Chen J, Hou C, Zheng Z, Lin H, Lv G, Zhou D (2019) Identification of secreted phosphoprotein 1 (SPP1) as a prognostic factor in lower-grade gliomas. World Neurosurg 130:e775–e785
42.
Zurück zum Zitat Demuth T, Reavie LB, Rennert JL et al (2007) MAP-ing glioma invasion: mitogen-activated protein kinase kinase 3 and p38 drive glioma invasion and progression and predict patient survival. Mol Cancer Ther 6:1212–1222 Demuth T, Reavie LB, Rennert JL et al (2007) MAP-ing glioma invasion: mitogen-activated protein kinase kinase 3 and p38 drive glioma invasion and progression and predict patient survival. Mol Cancer Ther 6:1212–1222
Metadaten
Titel
Image-based deep learning identifies glioblastoma risk groups with genomic and transcriptomic heterogeneity: a multi-center study
verfasst von
Jing Yan
Qiuchang Sun
Xiangliang Tan
Chaofeng Liang
Hongmin Bai
Wenchao Duan
Tianhao Mu
Yang Guo
Yuning Qiu
Weiwei Wang
Qiaoli Yao
Dongling Pei
Yuanshen Zhao
Danni Liu
Jingxian Duan
Shifu Chen
Chen Sun
Wenqing Wang
Zhen Liu
Xuanke Hong
Xiangxiang Wang
Yu Guo
Yikai Xu
Xianzhi Liu
Jingliang Cheng
Zhi-Cheng Li
Zhenyu Zhang
Publikationsdatum
24.08.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 2/2023
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-022-09066-x

Weitere Artikel der Ausgabe 2/2023

European Radiology 2/2023 Zur Ausgabe

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.