Skip to main content
Erschienen in: Cardiovascular Toxicology 8/2022

22.05.2022

Improved Cardiac Function Following Ischemia Reperfusion Injury Using Exercise Preconditioning and L-Arginine Supplementation via Oxidative Stress Mitigation and Angiogenesis Amelioration

verfasst von: Kamal Ranjbar

Erschienen in: Cardiovascular Toxicology | Ausgabe 8/2022

Einloggen, um Zugang zu erhalten

Abstract

The formation of new blood vessels in the ischemic area is a fundamental strategy that can reduce myocardial infarction-induced damage by mitigating hypoxia. This paper set out to investigate the cardioprotective effect of high-intensity interval training preconditioning and L-arginine supplementation on myocardial ischemia–reperfusion-induced angiogenesis and oxidative stress. 50 male rats were randomly distributed into following groups: (1) Sham, (2) Sedentary control (Con, n = 10), 3) L-arginine treatment (La, n = 10), (4) High-Intensity Interval Training (HIIT, n = 10), and High-Intensity Interval Training plus L-arginine supplementation (HIIT + La, n = 10). Rats in the training groups performed high-intensity interval training for 8 weeks (5 day per week). Subjects in La and HIIT + La groups received L-arginine in drinking water (4 g/L). 72 h after treatments, all subjects underwent myocardial ischemia–reperfusion operation. Cardiac function, angiogenesis, stress oxidative, and infarction size were measured after reperfusion. Results showed exercise training and L-arginine supplementation promoted Cat and GSH activities and decreased MDA activity following myocardial ischemia–reperfusion injury in non-infarcted area. Compared with the con group, VEGF and Ang-1 as well as Ang-1 to Ang-2 ratio following myocardial ischemia–reperfusion in the non-infarct area were higher in La + HIIT group. Meanwhile, capillary density and capillary-to-muscle fiber ratio were higher in response to training and L-arginine supplementation. HIIT and L-arginine alone and synergistically decreased ischemia–reperfusion-induced infarction size. Cardiac output and stroke volume ameliorate in response to exercise training and L-arginine supplementation. Taken together, exercise preconditioning and l-arginine supplementation improved left ventricular function following ischemia–reperfusion by stress oxidative mitigation and angiogenesis amelioration.
Literatur
1.
Zurück zum Zitat Kim, Y.-W., & Byzova, T. V. (2014). Oxidative stress in angiogenesis and vascular disease. Blood, the Journal of the American Society of Hematology, 123(5), 625–631. Kim, Y.-W., & Byzova, T. V. (2014). Oxidative stress in angiogenesis and vascular disease. Blood, the Journal of the American Society of Hematology, 123(5), 625–631.
2.
Zurück zum Zitat Banaei, P., et al. (2020). Preconditioning effect of high-intensity interval training (HIIT) and berberine supplementation on the gene expression of angiogenesis regulators and caspase-3 protein in the rats with myocardial ischemia-reperfusion (IR) injury. BioMed Research International, 2020, 1–9.CrossRef Banaei, P., et al. (2020). Preconditioning effect of high-intensity interval training (HIIT) and berberine supplementation on the gene expression of angiogenesis regulators and caspase-3 protein in the rats with myocardial ischemia-reperfusion (IR) injury. BioMed Research International, 2020, 1–9.CrossRef
3.
Zurück zum Zitat Veeranki, S., & Tyagi, S. C. (2017). Mdivi-1 induced acute changes in the angiogenic profile after ischemia-reperfusion injury in female mice. Physiological reports, 5(11), e13298.PubMedPubMedCentralCrossRef Veeranki, S., & Tyagi, S. C. (2017). Mdivi-1 induced acute changes in the angiogenic profile after ischemia-reperfusion injury in female mice. Physiological reports, 5(11), e13298.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Yamauchi, A., et al. (2003). Pre-administration of angiopoietin-1 followed by VEGF induces functional and mature vascular formation in a rabbit ischemic model. The Journal of Gene Medicine: A cross-disciplinary journal for research on the science of gene transfer and its clinical applications, 5(11), 994–1004.CrossRef Yamauchi, A., et al. (2003). Pre-administration of angiopoietin-1 followed by VEGF induces functional and mature vascular formation in a rabbit ischemic model. The Journal of Gene Medicine: A cross-disciplinary journal for research on the science of gene transfer and its clinical applications, 5(11), 994–1004.CrossRef
5.
Zurück zum Zitat Fagiani, E., & Christofori, G. (2013). Angiopoietins in angiogenesis. Cancer letters, 328(1), 18–26.PubMedCrossRef Fagiani, E., & Christofori, G. (2013). Angiopoietins in angiogenesis. Cancer letters, 328(1), 18–26.PubMedCrossRef
6.
Zurück zum Zitat Shim, W. S., et al. (2006). Angiopoietin-1 promotes functional neovascularization that relieves ischemia by improving regional reperfusion in a swine chronic myocardial ischemia model. Journal of biomedical science, 13(4), 579–591.PubMedCrossRef Shim, W. S., et al. (2006). Angiopoietin-1 promotes functional neovascularization that relieves ischemia by improving regional reperfusion in a swine chronic myocardial ischemia model. Journal of biomedical science, 13(4), 579–591.PubMedCrossRef
7.
Zurück zum Zitat Zan, L., et al. (2011). Expression and function of vascular endothelial growth factor and angiopoietins in rat brain after cerebral ischemia. Zhonghua bing li xue za zhi = Chinese Journal of Pathology, 40(12), 834–839.PubMed Zan, L., et al. (2011). Expression and function of vascular endothelial growth factor and angiopoietins in rat brain after cerebral ischemia. Zhonghua bing li xue za zhi = Chinese Journal of Pathology, 40(12), 834–839.PubMed
8.
Zurück zum Zitat Shyu, K.-G., et al. (2003). Increased expression of angiopoietin-2 and Tie2 receptor in a rat model of myocardial ischaemia/reperfusion. Clinical science, 105(3), 287–294.PubMedCrossRef Shyu, K.-G., et al. (2003). Increased expression of angiopoietin-2 and Tie2 receptor in a rat model of myocardial ischaemia/reperfusion. Clinical science, 105(3), 287–294.PubMedCrossRef
9.
Zurück zum Zitat Ray, P. S., et al. (2000). Early effects of hypoxia/reoxygenation on VEGF, ang-1, ang-2 and their receptors in the rat myocardium: Implications for myocardial angiogenesis. Molecular and Cellular Biochemistry, 213(1), 145–153.PubMedCrossRef Ray, P. S., et al. (2000). Early effects of hypoxia/reoxygenation on VEGF, ang-1, ang-2 and their receptors in the rat myocardium: Implications for myocardial angiogenesis. Molecular and Cellular Biochemistry, 213(1), 145–153.PubMedCrossRef
10.
Zurück zum Zitat Weyrich, A. S., Ma, X.-L., & Lefer, A. M. (1992). The role of L-arginine in ameliorating reperfusion injury after myocardial ischemia in the cat. Circulation, 86(1), 279–288.PubMedCrossRef Weyrich, A. S., Ma, X.-L., & Lefer, A. M. (1992). The role of L-arginine in ameliorating reperfusion injury after myocardial ischemia in the cat. Circulation, 86(1), 279–288.PubMedCrossRef
11.
Zurück zum Zitat Zheng, H., et al. (1999). Effects of myocardial ischemia reperfusion injury on L-arginine/nitric oxide system in rat heart. Sheng li xue bao: [Acta physiologica Sinica], 51(1), 25–30. Zheng, H., et al. (1999). Effects of myocardial ischemia reperfusion injury on L-arginine/nitric oxide system in rat heart. Sheng li xue bao: [Acta physiologica Sinica], 51(1), 25–30.
12.
Zurück zum Zitat Chander, V., & Chopra, K. (2005). Role of nitric oxide in resveratrol-induced renal protective effects of ischemic preconditioning. Journal of vascular surgery, 42(6), 1198–1205.PubMedCrossRef Chander, V., & Chopra, K. (2005). Role of nitric oxide in resveratrol-induced renal protective effects of ischemic preconditioning. Journal of vascular surgery, 42(6), 1198–1205.PubMedCrossRef
13.
Zurück zum Zitat Luo, Z., et al. (1997). Vascular endothelial growth factor attenuates myocardial ischemia-reperfusion injury. The Annals of thoracic surgery, 64(4), 993–998.PubMedCrossRef Luo, Z., et al. (1997). Vascular endothelial growth factor attenuates myocardial ischemia-reperfusion injury. The Annals of thoracic surgery, 64(4), 993–998.PubMedCrossRef
14.
Zurück zum Zitat Khalafi, M., et al. (2020). The impact of moderate-intensity continuous or high-intensity interval training on adipogenesis and browning of subcutaneous adipose tissue in obese male rats. Nutrients, 12(4), 925.PubMedCentralCrossRef Khalafi, M., et al. (2020). The impact of moderate-intensity continuous or high-intensity interval training on adipogenesis and browning of subcutaneous adipose tissue in obese male rats. Nutrients, 12(4), 925.PubMedCentralCrossRef
15.
Zurück zum Zitat Ranjbar, K., Nazem, F., & Nazari, A. (2016). Effect of exercise training and L-arginine on oxidative stress and left ventricular function in the post-ischemic failing rat heart. Cardiovascular toxicology, 16(2), 122–129.PubMedCrossRef Ranjbar, K., Nazem, F., & Nazari, A. (2016). Effect of exercise training and L-arginine on oxidative stress and left ventricular function in the post-ischemic failing rat heart. Cardiovascular toxicology, 16(2), 122–129.PubMedCrossRef
16.
Zurück zum Zitat Ranjbar, K., et al. (2018). Cardioprotective effect of resistance training and Crataegus oxyacantha extract on ischemia reperfusion–induced oxidative stress in diabetic rats. Biomedicine & Pharmacotherapy, 100, 455–460.CrossRef Ranjbar, K., et al. (2018). Cardioprotective effect of resistance training and Crataegus oxyacantha extract on ischemia reperfusion–induced oxidative stress in diabetic rats. Biomedicine & Pharmacotherapy, 100, 455–460.CrossRef
17.
Zurück zum Zitat La Bonte, L. R., et al. (2008). Complement inhibition reduces injury in the type 2 diabetic heart following ischemia and reperfusion. American Journal of Physiology-Heart and Circulatory Physiology, 294(3), H1282–H1290.PubMedCrossRef La Bonte, L. R., et al. (2008). Complement inhibition reduces injury in the type 2 diabetic heart following ischemia and reperfusion. American Journal of Physiology-Heart and Circulatory Physiology, 294(3), H1282–H1290.PubMedCrossRef
18.
Zurück zum Zitat Powers, S. K., Quindry, J. C., & Kavazis, A. N. (2008). Exercise-induced cardioprotection against myocardial ischemia–reperfusion injury. Free Radical Biology and Medicine, 44(2), 193–201.PubMedCrossRef Powers, S. K., Quindry, J. C., & Kavazis, A. N. (2008). Exercise-induced cardioprotection against myocardial ischemia–reperfusion injury. Free Radical Biology and Medicine, 44(2), 193–201.PubMedCrossRef
19.
Zurück zum Zitat Quindry, J., et al. (2005). Exercise training provides cardioprotection against ischemia–reperfusion induced apoptosis in young and old animals. Experimental Gerontology, 40(5), 416–425.PubMedCrossRef Quindry, J., et al. (2005). Exercise training provides cardioprotection against ischemia–reperfusion induced apoptosis in young and old animals. Experimental Gerontology, 40(5), 416–425.PubMedCrossRef
20.
Zurück zum Zitat Ranjbar, K., et al., Synergistic effects of nitric oxide and exercise on revascularisation in the infarcted ventricle in a murine model of myocardial infarction. Ranjbar, K., et al., Synergistic effects of nitric oxide and exercise on revascularisation in the infarcted ventricle in a murine model of myocardial infarction.
21.
Zurück zum Zitat Zhang, Y., et al. (2010). Tanshinone IIA pretreatment protects myocardium against ischaemia/reperfusion injury through the phosphatidylinositol 3-kinase/Akt-dependent pathway in diabetic rats. Diabetes, Obesity and Metabolism, 12(4), 316–322.PubMedCrossRef Zhang, Y., et al. (2010). Tanshinone IIA pretreatment protects myocardium against ischaemia/reperfusion injury through the phosphatidylinositol 3-kinase/Akt-dependent pathway in diabetic rats. Diabetes, Obesity and Metabolism, 12(4), 316–322.PubMedCrossRef
22.
Zurück zum Zitat Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The Journal of Laboratory and Clinical Medicine, 70(1), 158–169.PubMed Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The Journal of Laboratory and Clinical Medicine, 70(1), 158–169.PubMed
23.
Zurück zum Zitat Sedlak, J., & Lindsay, R. H. (1968). Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Analytical biochemistry, 25, 192–205.PubMedCrossRef Sedlak, J., & Lindsay, R. H. (1968). Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Analytical biochemistry, 25, 192–205.PubMedCrossRef
25.
Zurück zum Zitat Esterbauer, H., & Zollern, H. (1989). Methods for determination of aldehydic lipid peroxidation products. Free Radical Biology and Medicine, 7(2), 197–203.PubMedCrossRef Esterbauer, H., & Zollern, H. (1989). Methods for determination of aldehydic lipid peroxidation products. Free Radical Biology and Medicine, 7(2), 197–203.PubMedCrossRef
26.
Zurück zum Zitat Ahmadvand, H., et al. (2017). Protective effects of oleuropein against renal injury oxidative damage in alloxan-induced diabetic rats; a histological and biochemical study. Journal of nephropathology, 6(3), 204.PubMedPubMedCentralCrossRef Ahmadvand, H., et al. (2017). Protective effects of oleuropein against renal injury oxidative damage in alloxan-induced diabetic rats; a histological and biochemical study. Journal of nephropathology, 6(3), 204.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Ramez, M., et al. (2020). High-intensity interval training increases myocardial levels of Klotho and protects the heart against ischaemia–reperfusion injury. Experimental physiology, 105(4), 652–665.PubMedCrossRef Ramez, M., et al. (2020). High-intensity interval training increases myocardial levels of Klotho and protects the heart against ischaemia–reperfusion injury. Experimental physiology, 105(4), 652–665.PubMedCrossRef
28.
Zurück zum Zitat Ustunova, S., et al. (2020). Hydrogen sulphide and nitric oxide cooperate in cardioprotection against ischemia/reperfusion injury in isolated rat heart. In Vivo, 34(5), 2507–2516.PubMedPubMedCentralCrossRef Ustunova, S., et al. (2020). Hydrogen sulphide and nitric oxide cooperate in cardioprotection against ischemia/reperfusion injury in isolated rat heart. In Vivo, 34(5), 2507–2516.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Weerateerangkul, P., Chattipakorn, S., & Chattipakorn, N. (2011). Roles of the nitric oxide signaling pathway in cardiac ischemic preconditioning against myocardial ischemia-reperfusion injury. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 17(2), RA44.CrossRef Weerateerangkul, P., Chattipakorn, S., & Chattipakorn, N. (2011). Roles of the nitric oxide signaling pathway in cardiac ischemic preconditioning against myocardial ischemia-reperfusion injury. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 17(2), RA44.CrossRef
30.
Zurück zum Zitat Fallahi, A., et al. (2015). Cardioprotective effect of high intensity interval training and nitric oxide metabolites (NO2−, NO3−). Iranian Journal of Public Health, 44(9), 1270.PubMedPubMedCentral Fallahi, A., et al. (2015). Cardioprotective effect of high intensity interval training and nitric oxide metabolites (NO2−, NO3−). Iranian Journal of Public Health, 44(9), 1270.PubMedPubMedCentral
31.
Zurück zum Zitat Brüne, B., von Knethen, A., & Sandau, K. B. (1998). Nitric oxide and its role in apoptosis. European Journal of Pharmacology, 351(3), 261–272.PubMedCrossRef Brüne, B., von Knethen, A., & Sandau, K. B. (1998). Nitric oxide and its role in apoptosis. European Journal of Pharmacology, 351(3), 261–272.PubMedCrossRef
32.
Zurück zum Zitat Huang, S., et al. (2021). Co-expression of tissue kallikrein 1 and tissue inhibitor of matrix metalloproteinase 1 improves myocardial ischemia-reperfusion injury by promoting angiogenesis and inhibiting oxidative stress. Molecular Medicine Reports, 23(2), 1–1.PubMed Huang, S., et al. (2021). Co-expression of tissue kallikrein 1 and tissue inhibitor of matrix metalloproteinase 1 improves myocardial ischemia-reperfusion injury by promoting angiogenesis and inhibiting oxidative stress. Molecular Medicine Reports, 23(2), 1–1.PubMed
33.
Zurück zum Zitat Xian, D., et al. (2019). Emerging roles of redox-mediated angiogenesis and oxidative stress in dermatoses. Oxidative Medicine and Cellular Longevity, 2019, 1–14. Xian, D., et al. (2019). Emerging roles of redox-mediated angiogenesis and oxidative stress in dermatoses. Oxidative Medicine and Cellular Longevity, 2019, 1–14.
34.
Zurück zum Zitat Matsunaga, T., et al. (2003). Expression of VEGF and angiopoietins-1 and-2 during ischemia-induced coronary angiogenesis. American Journal of Physiology-Heart and Circulatory Physiology, 285(1), H352–H358.PubMedCrossRef Matsunaga, T., et al. (2003). Expression of VEGF and angiopoietins-1 and-2 during ischemia-induced coronary angiogenesis. American Journal of Physiology-Heart and Circulatory Physiology, 285(1), H352–H358.PubMedCrossRef
35.
Zurück zum Zitat Dallabrida, S. M., et al. (2005). Angiopoietin-1 promotes cardiac and skeletal myocyte survival through integrins. Circulation Research, 96(4), e8–e24.PubMedCrossRef Dallabrida, S. M., et al. (2005). Angiopoietin-1 promotes cardiac and skeletal myocyte survival through integrins. Circulation Research, 96(4), e8–e24.PubMedCrossRef
36.
Zurück zum Zitat Lin, W.-T., et al. (2006). L-Arginine attenuates xanthine oxidase and myeloperoxidase activities in hearts of rats during exhaustive exercise. British Journal of Nutrition, 95(1), 67–75.PubMedCrossRef Lin, W.-T., et al. (2006). L-Arginine attenuates xanthine oxidase and myeloperoxidase activities in hearts of rats during exhaustive exercise. British Journal of Nutrition, 95(1), 67–75.PubMedCrossRef
37.
Zurück zum Zitat Ranjbar, K., Nazem, F., & Nazari, A. (2015). Effect of exercise training and L-arginine on oxidative stress and left ventricular function in the post-ischemic failing rat heart. Cardiovascular Toxicology, 16, 122–129.CrossRef Ranjbar, K., Nazem, F., & Nazari, A. (2015). Effect of exercise training and L-arginine on oxidative stress and left ventricular function in the post-ischemic failing rat heart. Cardiovascular Toxicology, 16, 122–129.CrossRef
38.
Zurück zum Zitat Ohta, Y., & Nishida, K. (2001). Protective effect of L-arginine against stress-induced gastric mucosal lesions in rats and its relation to nitric oxide-mediated inhibition of neutrophil infiltration. Pharmacological Research, 43(6), 535–541.PubMedCrossRef Ohta, Y., & Nishida, K. (2001). Protective effect of L-arginine against stress-induced gastric mucosal lesions in rats and its relation to nitric oxide-mediated inhibition of neutrophil infiltration. Pharmacological Research, 43(6), 535–541.PubMedCrossRef
39.
Zurück zum Zitat Duzova, H., et al. (2009). Effects of acute moderate and strenuous exercise bouts on IL-17 production and inflammatory response in trained rats. Journal of Sports Science & Medicine, 8(2), 219. Duzova, H., et al. (2009). Effects of acute moderate and strenuous exercise bouts on IL-17 production and inflammatory response in trained rats. Journal of Sports Science & Medicine, 8(2), 219.
Metadaten
Titel
Improved Cardiac Function Following Ischemia Reperfusion Injury Using Exercise Preconditioning and L-Arginine Supplementation via Oxidative Stress Mitigation and Angiogenesis Amelioration
verfasst von
Kamal Ranjbar
Publikationsdatum
22.05.2022
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 8/2022
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-022-09752-8

Weitere Artikel der Ausgabe 8/2022

Cardiovascular Toxicology 8/2022 Zur Ausgabe