Skip to main content

27.04.2024 | RESEARCH

Inflammatory Protein Signatures as Predictive Disease-Specific Markers for Non-Alcoholic Steatohepatitis (NASH)

verfasst von: Nadella Mounika, Suraj Bhausaheb Mungase, Shivangi Verma, Savneet Kaur, Utpal Jyoti Deka, Tarini Shankar Ghosh, Ramu Adela

Erschienen in: Inflammation

Einloggen, um Zugang zu erhalten

Abstract

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic disease worldwide, consisting of a broad spectrum of diseases such as simple steatosis (NAFL), non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. Hepatic inflammation plays a key role in the pathophysiology of NAFLD. Inflammatory mediators such as cytokines and chemokines are considered as contributing factors to NAFLD development and progression. In the present study, we aimed to investigate the inflammatory protein signatures as predictive disease-specific markers for non-alcoholic fatty liver disease (NAFLD). This cross-sectional study included healthy control (n = 64), NAFL (n = 109), and NASH (n = 60) human subjects. Serum concentrations of various cytokines and chemokines were evaluated using sensitive multiplex assays. We used principal component analysis (PCoA) to reveal distinct differences in the levels of cytokines and chemokines between each of the study groups. Further, a random forest classification model was developed to identify the panel of markers that could predict diseases. The protein–protein network analysis was performed to determine the various signaling pathways associated with the disease-specific panel of markers. Serum concentrations of TNF-α, IL-1β, IL-1ra, G-CSF, PDGF-BB, MCP-1, MIP-1a, MIP-1b, RANTES, eotaxin, IL-8 and IP-10 were significantly increased in NASH group as compared to control group. Furthermore, serum concentrations of IL-9 and IL-13 were significantly lower in the NASH group, whereas IL-2 levels were significantly decreased in the NAFL group when compared to the control group. PCoA results demonstrated statistically significant differences in cytokines and chemokines between each of the study groups (PERMANOVA p = 0.001; R2 = 0.102). RANTES, IL-1ra, MIP-1b, IL-2, and G-CSF could differentiate the NAFL group from the controls; G-CSF, IL-1ra, TNF-α, RANTES, and IL-9 could differentiate the NASH group from the controls; and G-CSF, IL-9, IL-13, eotaxin, and TNF- α could differentiate the NASH group from the NAFL group. Our protein–protein network revealed that these markers are involved in cytokine-cytokine receptor interaction, Th1 and Th2 cell differentiation, TNF, chemokine, JAK/STAT, P13K/Akt, TLR, NOD-like receptor, NF-kB, and adipocytokine signaling pathways which might be responsible for disease pathogenesis. Our study findings revealed a set of distinct cytokine and chemokine markers and they might be considered as biomarkers in distinguishing NASH from NAFL. Future multicentre studies with larger sample size are recommended to determine the potential utility of these panels of markers.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Younossi, Z., Q.M. Anstee, M. Marietti, et al. 2018. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nature Reviews. Gastroenterology & Hepatology 15 (1): 11–20.CrossRef Younossi, Z., Q.M. Anstee, M. Marietti, et al. 2018. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nature Reviews. Gastroenterology & Hepatology 15 (1): 11–20.CrossRef
2.
Zurück zum Zitat Estes, C., H. Razavi, R. Loomba, Z. Younossi, A.J. Sanyal, et al. 2018. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in the burden of disease: Estes, et al. Hepatology 67 (1): 123–133.PubMedCrossRef Estes, C., H. Razavi, R. Loomba, Z. Younossi, A.J. Sanyal, et al. 2018. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in the burden of disease: Estes, et al. Hepatology 67 (1): 123–133.PubMedCrossRef
3.
Zurück zum Zitat Francisco, V., M.J. Sanz, J.T. Real, et al. 2022. Adipokines in non-alcoholic fatty liver disease: are we on the road toward new biomarkers and therapeutic targets? Biology 11 (8): 1237.PubMedPubMedCentralCrossRef Francisco, V., M.J. Sanz, J.T. Real, et al. 2022. Adipokines in non-alcoholic fatty liver disease: are we on the road toward new biomarkers and therapeutic targets? Biology 11 (8): 1237.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Kleiner, D.E., E.M. Brunt, M. Van Natta, et al. 2005. Design and Validation of a Histological Scoring System for Nonalcoholic Fatty Liver Disease. Hepatology 41 (6): 1313–1321.PubMedCrossRef Kleiner, D.E., E.M. Brunt, M. Van Natta, et al. 2005. Design and Validation of a Histological Scoring System for Nonalcoholic Fatty Liver Disease. Hepatology 41 (6): 1313–1321.PubMedCrossRef
5.
Zurück zum Zitat Poynard, T., V. Ratziu, S. Naveau, et al. 2005. The diagnostic value of biomarkers (SteatoTest) for the prediction of liver steatosis. Comparative Hepatology 4: 10.PubMedPubMedCentralCrossRef Poynard, T., V. Ratziu, S. Naveau, et al. 2005. The diagnostic value of biomarkers (SteatoTest) for the prediction of liver steatosis. Comparative Hepatology 4: 10.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Lee, J.-H., D. Kim, H.J. Kim, et al. 2010. Hepatic steatosis index: A simple screening tool reflecting nonalcoholic fatty liver disease. Digestive and Liver Disease 42 (7): 503–508.PubMedCrossRef Lee, J.-H., D. Kim, H.J. Kim, et al. 2010. Hepatic steatosis index: A simple screening tool reflecting nonalcoholic fatty liver disease. Digestive and Liver Disease 42 (7): 503–508.PubMedCrossRef
7.
Zurück zum Zitat Fedchuk, L., F. Nascimbeni, R. Pais, F. Charlotte, C. Housset, and V. Ratziu. 2014. Performance and limitations of steatosis biomarkers in patients with nonalcoholic fatty liver disease. Alimentary Pharmacology & Therapeutics 40 (10): 1209–1222.CrossRef Fedchuk, L., F. Nascimbeni, R. Pais, F. Charlotte, C. Housset, and V. Ratziu. 2014. Performance and limitations of steatosis biomarkers in patients with nonalcoholic fatty liver disease. Alimentary Pharmacology & Therapeutics 40 (10): 1209–1222.CrossRef
8.
Zurück zum Zitat Sterling, R.K., E. Lissen, N. Clumeck, et al. 2006. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 43 (6): 1317–1325.PubMedCrossRef Sterling, R.K., E. Lissen, N. Clumeck, et al. 2006. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 43 (6): 1317–1325.PubMedCrossRef
9.
Zurück zum Zitat Kim, D., W.R. Kim, H.J. Kim, and T.M. Therneau. 2013. Association between non-invasive fibrosis markers and mortality among adults with non-alcoholic fatty liver disease in the United States. Hepatology 57 (4): 1357–1365.PubMedCrossRef Kim, D., W.R. Kim, H.J. Kim, and T.M. Therneau. 2013. Association between non-invasive fibrosis markers and mortality among adults with non-alcoholic fatty liver disease in the United States. Hepatology 57 (4): 1357–1365.PubMedCrossRef
10.
Zurück zum Zitat Wai, C.-T., J.K. Greenson, R.J. Fontana, et al. 2003. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 38 (2): 518–526.PubMedCrossRef Wai, C.-T., J.K. Greenson, R.J. Fontana, et al. 2003. A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 38 (2): 518–526.PubMedCrossRef
11.
Zurück zum Zitat Byrne, C.D., and G. Targher. 2015. NAFLD: A multisystem disease. Journal of Hepatology 62: S47–S64.PubMedCrossRef Byrne, C.D., and G. Targher. 2015. NAFLD: A multisystem disease. Journal of Hepatology 62: S47–S64.PubMedCrossRef
12.
Zurück zum Zitat Foroughi, M., Z. Maghsoudi, S. Khayyatzadeh, R. Ghiasvand, G. Askari, and B. Iraj. 2016. Relationship between non-alcoholic fatty liver disease and inflammation in patients with non-alcoholic fatty liver. Advanced Biomedical Research 5: 28.PubMedPubMedCentralCrossRef Foroughi, M., Z. Maghsoudi, S. Khayyatzadeh, R. Ghiasvand, G. Askari, and B. Iraj. 2016. Relationship between non-alcoholic fatty liver disease and inflammation in patients with non-alcoholic fatty liver. Advanced Biomedical Research 5: 28.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Stojsavljevic, S., M. Gomercic Palcic, L. Virovic Jukic, L. Smircic Duvnjak, and M. Duvnjak. 2014. Adipokines and proinflammatory cytokines, the key mediators in the pathogenesis of nonalcoholic fatty liver disease. World Journal of Gastroenterology 20 (48): 18070–18091.PubMedPubMedCentralCrossRef Stojsavljevic, S., M. Gomercic Palcic, L. Virovic Jukic, L. Smircic Duvnjak, and M. Duvnjak. 2014. Adipokines and proinflammatory cytokines, the key mediators in the pathogenesis of nonalcoholic fatty liver disease. World Journal of Gastroenterology 20 (48): 18070–18091.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Fricker, Z.P., A. Pedley, J.M. Massaro, et al. 2019. Liver fat is associated with markers of inflammation and oxidative stress in analysis of data from the framingham heart study. Clinical Gastroenterology and Hepatology 17 (6): 1157-1164.e4.PubMedCrossRef Fricker, Z.P., A. Pedley, J.M. Massaro, et al. 2019. Liver fat is associated with markers of inflammation and oxidative stress in analysis of data from the framingham heart study. Clinical Gastroenterology and Hepatology 17 (6): 1157-1164.e4.PubMedCrossRef
15.
Zurück zum Zitat Auguet, T., L. Bertran, J. Binetti, et al. 2020. Relationship between IL-8 circulating levels and TLR2 hepatic expression in women with morbid obesity and nonalcoholic steatohepatitis. International Journal of Molecular Sciences 21 (11): 4189.PubMedPubMedCentralCrossRef Auguet, T., L. Bertran, J. Binetti, et al. 2020. Relationship between IL-8 circulating levels and TLR2 hepatic expression in women with morbid obesity and nonalcoholic steatohepatitis. International Journal of Molecular Sciences 21 (11): 4189.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Darmadi, D., and R.H. Ruslie. 2021. Association between serum interleukin (IL)-12 level and severity of non-alcoholic fatty liver disease (NAFLD). Romanian Journal of Internal Medicine 59 (1): 66–72.PubMedCrossRef Darmadi, D., and R.H. Ruslie. 2021. Association between serum interleukin (IL)-12 level and severity of non-alcoholic fatty liver disease (NAFLD). Romanian Journal of Internal Medicine 59 (1): 66–72.PubMedCrossRef
17.
Zurück zum Zitat Flisiak-Jackiewicz, M., A. Bobrus-Chociej, E. Tarasów, M. Wojtkowska, I. Białokoz-Kalinowska, and D.M. Lebensztejn. 2018. Predictive role of interleukin-18 in liver steatosis in obese children. Canadian Journal of Gastroenterology & Hepatology 2018: 3870454.CrossRef Flisiak-Jackiewicz, M., A. Bobrus-Chociej, E. Tarasów, M. Wojtkowska, I. Białokoz-Kalinowska, and D.M. Lebensztejn. 2018. Predictive role of interleukin-18 in liver steatosis in obese children. Canadian Journal of Gastroenterology & Hepatology 2018: 3870454.CrossRef
18.
Zurück zum Zitat Shoji, H., S. Yoshio, Y. Mano, et al. 2016. Interleukin-34 as a fibroblast-derived marker of liver fibrosis in patients with non-alcoholic fatty liver disease. Science and Reports 6: 28814.CrossRef Shoji, H., S. Yoshio, Y. Mano, et al. 2016. Interleukin-34 as a fibroblast-derived marker of liver fibrosis in patients with non-alcoholic fatty liver disease. Science and Reports 6: 28814.CrossRef
19.
Zurück zum Zitat Rabelo, F., C.P.M.S. Oliveira, J. Faintuch, et al. 2010. Pro-and Anti-Inflammatory Cytokines in Steatosis and Steatohepatitis. Obesity Surgery 20 (7): 906–912.PubMedCrossRef Rabelo, F., C.P.M.S. Oliveira, J. Faintuch, et al. 2010. Pro-and Anti-Inflammatory Cytokines in Steatosis and Steatohepatitis. Obesity Surgery 20 (7): 906–912.PubMedCrossRef
20.
Zurück zum Zitat Niederreiter, L., and H. Tilg. 2018. Cytokines and Fatty Liver Diseases. Liver Research 2 (1): 14–20.CrossRef Niederreiter, L., and H. Tilg. 2018. Cytokines and Fatty Liver Diseases. Liver Research 2 (1): 14–20.CrossRef
21.
Zurück zum Zitat Majeed, N.A.A., K.S. Ramadan, and O.A. Khalil. 2012. Level of pro-and anti-inflammatory cytokines in non-alcoholic fatty liver disease in Egyptian patients. IRACST International Journal of Research in Management & Technology 2 (2): 2249–9563. Majeed, N.A.A., K.S. Ramadan, and O.A. Khalil. 2012. Level of pro-and anti-inflammatory cytokines in non-alcoholic fatty liver disease in Egyptian patients. IRACST International Journal of Research in Management & Technology 2 (2): 2249–9563.
22.
Zurück zum Zitat Borroni, G., R. Ceriani, M. Cazzaniga, et al. 2006. Comparison of simple tests for the non-invasive diagnosis of clinically silent cirrhosis in chronic hepatitis C. Alimentary Pharmacology & Therapeutics 24: 797–804.CrossRef Borroni, G., R. Ceriani, M. Cazzaniga, et al. 2006. Comparison of simple tests for the non-invasive diagnosis of clinically silent cirrhosis in chronic hepatitis C. Alimentary Pharmacology & Therapeutics 24: 797–804.CrossRef
23.
Zurück zum Zitat Angulo, P., J.M. Hui, G. Marchesini, et al. 2007. The NAFLD fibrosis score: A noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 45: 846–854.PubMedCrossRef Angulo, P., J.M. Hui, G. Marchesini, et al. 2007. The NAFLD fibrosis score: A noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 45: 846–854.PubMedCrossRef
24.
Zurück zum Zitat Zeng, Y., H. He, and Z. An. 2022. Advance of Serum Biomarkers and Combined Diagnostic Panels in Nonalcoholic Fatty Liver Disease. Disease Markers 2022: 1254014.PubMedPubMedCentralCrossRef Zeng, Y., H. He, and Z. An. 2022. Advance of Serum Biomarkers and Combined Diagnostic Panels in Nonalcoholic Fatty Liver Disease. Disease Markers 2022: 1254014.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Fan, J.G., T. Saibara, S. Chitturi, B.I. Kim, J.J. Sung, and A. Chutaputti. 2007. What are the risk factors and settings for non-alcoholic fatty liver disease in Asia-Pacific? Journal of Gastroenterology and Hepatology 22: 794–800.PubMedCrossRef Fan, J.G., T. Saibara, S. Chitturi, B.I. Kim, J.J. Sung, and A. Chutaputti. 2007. What are the risk factors and settings for non-alcoholic fatty liver disease in Asia-Pacific? Journal of Gastroenterology and Hepatology 22: 794–800.PubMedCrossRef
26.
Zurück zum Zitat Hadizadeh, F., E. Faghihimani, and P. Adibi. 2017. Nonalcoholic fatty liver disease: Diagnostic biomarkers. World Journal of Gastrointestinal Pathophysiology 8 (2): 11–26.PubMedPubMedCentralCrossRef Hadizadeh, F., E. Faghihimani, and P. Adibi. 2017. Nonalcoholic fatty liver disease: Diagnostic biomarkers. World Journal of Gastrointestinal Pathophysiology 8 (2): 11–26.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Díez-Vallejo, J., and A. Comas-Fuentes. 2011. Asymptomatic hypertransaminasemia in patients in primary care. Revista Espanola de Enfermedades Digestivas 103: 530–535.PubMedCrossRef Díez-Vallejo, J., and A. Comas-Fuentes. 2011. Asymptomatic hypertransaminasemia in patients in primary care. Revista Espanola de Enfermedades Digestivas 103: 530–535.PubMedCrossRef
28.
Zurück zum Zitat Charatcharoenwitthaya, P., K.D. Lindor, and P. Angulo. 2012. The spontaneous course of liver enzymes and its correlation in nonalcoholic fatty liver disease. Digestive Diseases and Sciences 57: 1925–1931.PubMedCrossRef Charatcharoenwitthaya, P., K.D. Lindor, and P. Angulo. 2012. The spontaneous course of liver enzymes and its correlation in nonalcoholic fatty liver disease. Digestive Diseases and Sciences 57: 1925–1931.PubMedCrossRef
29.
Zurück zum Zitat Mahaling, D.U., M.M. Basavaraj, and A.J. Bika. 2013. Comparison of lipid profile in different grades of non-alcoholic fatty liver disease diagnosed on ultrasound. Asian Pacific Journal of Tropical Biomedicine 3 (11): 907–912.PubMedCentralCrossRef Mahaling, D.U., M.M. Basavaraj, and A.J. Bika. 2013. Comparison of lipid profile in different grades of non-alcoholic fatty liver disease diagnosed on ultrasound. Asian Pacific Journal of Tropical Biomedicine 3 (11): 907–912.PubMedCentralCrossRef
30.
Zurück zum Zitat Camell, C., E. Goldberg, and V.D. Dixit. 2015. Regulation of Nlrp3 inflammasome by dietary metabolites. Seminars in Immunology 27 (5): 334–342.PubMedPubMedCentralCrossRef Camell, C., E. Goldberg, and V.D. Dixit. 2015. Regulation of Nlrp3 inflammasome by dietary metabolites. Seminars in Immunology 27 (5): 334–342.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Marra, F., and F. Tacke. 2014. Roles for chemokines in liver disease. Gastroenterology 147 (3): 577–594.PubMedCrossRef Marra, F., and F. Tacke. 2014. Roles for chemokines in liver disease. Gastroenterology 147 (3): 577–594.PubMedCrossRef
32.
Zurück zum Zitat Luci, C., M. Bourinet, P.S. Leclère, R. Anty, and P. Gual. 2020. Chronic inflammation in non-alcoholic steatohepatitis: molecular mechanisms and therapeutic strategies. Frontiers in Endocrinology (Lausanne) 11.PubMedCrossRef Luci, C., M. Bourinet, P.S. Leclère, R. Anty, and P. Gual. 2020. Chronic inflammation in non-alcoholic steatohepatitis: molecular mechanisms and therapeutic strategies. Frontiers in Endocrinology (Lausanne) 11.PubMedCrossRef
33.
Zurück zum Zitat Schwabe, R.F., and D.A. Brenner. 2006. Mechanisms of liver injury. I. TNF-α-induced liver injury: role of IKK, JNK, and ROS pathways. American Journal of Physiology - Gastrointestinal Liver Physiology 290 (4): 583–9.CrossRef Schwabe, R.F., and D.A. Brenner. 2006. Mechanisms of liver injury. I. TNF-α-induced liver injury: role of IKK, JNK, and ROS pathways. American Journal of Physiology - Gastrointestinal Liver Physiology 290 (4): 583–9.CrossRef
35.
Zurück zum Zitat Wieckowska, A., B.G. Papouchado, Z. Li, R. Lopez, N.N. Zein, and A.E. Feldstein. 2008. Increased hepatic and circulating interleukin-6 levels in human nonalcoholic steatohepatitis. American Journal of Gastroenterology 103: 1372–1379.PubMedCrossRef Wieckowska, A., B.G. Papouchado, Z. Li, R. Lopez, N.N. Zein, and A.E. Feldstein. 2008. Increased hepatic and circulating interleukin-6 levels in human nonalcoholic steatohepatitis. American Journal of Gastroenterology 103: 1372–1379.PubMedCrossRef
36.
Zurück zum Zitat Hui, J.M., A. Hodge, G.C. Farrell, J.G. Kench, A. Kriketos, and J. George. 2004. Beyond insulin resistance in NASH: TNF-α or adiponectin? Hepatology 40: 46–54.PubMedCrossRef Hui, J.M., A. Hodge, G.C. Farrell, J.G. Kench, A. Kriketos, and J. George. 2004. Beyond insulin resistance in NASH: TNF-α or adiponectin? Hepatology 40: 46–54.PubMedCrossRef
37.
Zurück zum Zitat Jarrar, M.H., A. Baranova, R. Collantes, et al. 2008. Adipokines and cytokines in non-alcoholic fatty liver disease. Alimentary Pharmacology & Therapeutics 27 (5): 412–421.CrossRef Jarrar, M.H., A. Baranova, R. Collantes, et al. 2008. Adipokines and cytokines in non-alcoholic fatty liver disease. Alimentary Pharmacology & Therapeutics 27 (5): 412–421.CrossRef
38.
Zurück zum Zitat Baranova, A., K. Schlauch, H. Elariny, et al. 2007. Gene expression patterns in hepatic tissue and visceral adipose tissue of patients with non-alcoholic fatty liver disease. Obesity Surgery 17 (8): 1111–1118.PubMedCrossRef Baranova, A., K. Schlauch, H. Elariny, et al. 2007. Gene expression patterns in hepatic tissue and visceral adipose tissue of patients with non-alcoholic fatty liver disease. Obesity Surgery 17 (8): 1111–1118.PubMedCrossRef
39.
Zurück zum Zitat Loman, B.R., D. Hernández-Saavedra, R. An, and R.S. Rector. 2018. Prebiotic and probiotic treatment of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Nutrition Reviews 76 (11): 822–839.PubMedCrossRef Loman, B.R., D. Hernández-Saavedra, R. An, and R.S. Rector. 2018. Prebiotic and probiotic treatment of nonalcoholic fatty liver disease: a systematic review and meta-analysis. Nutrition Reviews 76 (11): 822–839.PubMedCrossRef
40.
Zurück zum Zitat Miura, K., L. Yang, N. van Rooijen, D.A. Brenner, H. Ohnishi, and E. Seki. 2013. Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology 57: 577–589.PubMedCrossRef Miura, K., L. Yang, N. van Rooijen, D.A. Brenner, H. Ohnishi, and E. Seki. 2013. Toll-like receptor 2 and palmitic acid cooperatively contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology 57: 577–589.PubMedCrossRef
41.
Zurück zum Zitat Kumar, R., S. Prakash, S. Chhabra, et al. 2012. Association of pro-inflammatory cytokines, adipokines & oxidative stress with insulin resistance & non-alcoholic fatty liver disease. Indian Journal of Medical Research 136: 229–236.PubMedPubMedCentral Kumar, R., S. Prakash, S. Chhabra, et al. 2012. Association of pro-inflammatory cytokines, adipokines & oxidative stress with insulin resistance & non-alcoholic fatty liver disease. Indian Journal of Medical Research 136: 229–236.PubMedPubMedCentral
42.
Zurück zum Zitat Stienstra, R., F. Saudale, C. Duval, et al. 2010. Kupffer cells promote hepatic steatosis via interleukin-1beta-dependent suppression of peroxisome proliferator-activated receptor alpha activity. Hepatology 51: 511–522.PubMedCrossRef Stienstra, R., F. Saudale, C. Duval, et al. 2010. Kupffer cells promote hepatic steatosis via interleukin-1beta-dependent suppression of peroxisome proliferator-activated receptor alpha activity. Hepatology 51: 511–522.PubMedCrossRef
43.
Zurück zum Zitat Stanton, M.C., S.C. Chen, J.V. Jackson, et al. 2011. Inflammatory Signals shift from adipose to liver during high fat feeding and influence the development of steatohepatitis in mice. Journal of Inflammation (London) 8: 8.CrossRef Stanton, M.C., S.C. Chen, J.V. Jackson, et al. 2011. Inflammatory Signals shift from adipose to liver during high fat feeding and influence the development of steatohepatitis in mice. Journal of Inflammation (London) 8: 8.CrossRef
44.
Zurück zum Zitat Mollica, M.P., L. Lionetti, R. Putti, G. Cavaliere, M. Gaita, and A. Barletta. 2011. From chronic overfeeding to hepatic injury: Role of endoplasmic reticulum stress and inflammation. Nutrition, Metabolism, and Cardiovascular Diseases 21: 222–230.PubMedCrossRef Mollica, M.P., L. Lionetti, R. Putti, G. Cavaliere, M. Gaita, and A. Barletta. 2011. From chronic overfeeding to hepatic injury: Role of endoplasmic reticulum stress and inflammation. Nutrition, Metabolism, and Cardiovascular Diseases 21: 222–230.PubMedCrossRef
45.
Zurück zum Zitat Isoda, K., S. Sawada, M. Ayaori, et al. 2005. Deficiency of interleukin-1 receptor antagonist deteriorates fatty liver and cholesterol metabolism in hypercholesterolemic mice. Journal of Biological Chemistry 280 (8): 7002–7009.PubMedCrossRef Isoda, K., S. Sawada, M. Ayaori, et al. 2005. Deficiency of interleukin-1 receptor antagonist deteriorates fatty liver and cholesterol metabolism in hypercholesterolemic mice. Journal of Biological Chemistry 280 (8): 7002–7009.PubMedCrossRef
46.
Zurück zum Zitat Perito, E.R., V. Ajmera, N.M. Bass, et al. 2017. Association between cytokines and liver histology in children with nonalcoholic fatty liver disease. Hepatology Communications 1 (7): 609–622.PubMedPubMedCentralCrossRef Perito, E.R., V. Ajmera, N.M. Bass, et al. 2017. Association between cytokines and liver histology in children with nonalcoholic fatty liver disease. Hepatology Communications 1 (7): 609–622.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Du Plessis, J., J. van Pelt, H. Korf, et al. 2015. Association of adipose tissue inflammation with histologic severity of nonalcoholic fatty liver disease. Gastroenterology 149: 635-648.e14.PubMedCrossRef Du Plessis, J., J. van Pelt, H. Korf, et al. 2015. Association of adipose tissue inflammation with histologic severity of nonalcoholic fatty liver disease. Gastroenterology 149: 635-648.e14.PubMedCrossRef
48.
Zurück zum Zitat Nam, H.H., D.W. Jun, K. Jang, W.K. Saeed, J.S. Lee, H.T. Kang, and Y.J. Chae. 2017. Granulocyte colony-stimulating factor treatment in non-alcoholic fatty liver disease: Beyond marrow cell mobilization. Oncotarget 8 (58): 97965–97976.PubMedPubMedCentralCrossRef Nam, H.H., D.W. Jun, K. Jang, W.K. Saeed, J.S. Lee, H.T. Kang, and Y.J. Chae. 2017. Granulocyte colony-stimulating factor treatment in non-alcoholic fatty liver disease: Beyond marrow cell mobilization. Oncotarget 8 (58): 97965–97976.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Zhang, Y., X. Zhou, P. Liu, et al. 2021. GCSF deficiency attenuates nonalcoholic fatty liver disease through regulating GCSFR-SOCS3-JAK-STAT3 pathway and immune cells infiltration. American Journal of Physiology. Gastrointestinal and Liver Physiology 320 (4): G531–G542.PubMedCrossRef Zhang, Y., X. Zhou, P. Liu, et al. 2021. GCSF deficiency attenuates nonalcoholic fatty liver disease through regulating GCSFR-SOCS3-JAK-STAT3 pathway and immune cells infiltration. American Journal of Physiology. Gastrointestinal and Liver Physiology 320 (4): G531–G542.PubMedCrossRef
50.
Zurück zum Zitat Harada, M., Y. Qin, H. Takano, et al. 2005. G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nature Medicine 11: 305–311.PubMedCrossRef Harada, M., Y. Qin, H. Takano, et al. 2005. G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nature Medicine 11: 305–311.PubMedCrossRef
51.
Zurück zum Zitat Kocabayoglu, P., A. Lade, Y.A. Lee, et al. 2015. β-PDGF receptor expressed by hepatic stellate cells regulates fibrosis in murine liver injury, but not carcinogenesis. Journal of Hepatology 63: 141–147.PubMedPubMedCentralCrossRef Kocabayoglu, P., A. Lade, Y.A. Lee, et al. 2015. β-PDGF receptor expressed by hepatic stellate cells regulates fibrosis in murine liver injury, but not carcinogenesis. Journal of Hepatology 63: 141–147.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Czochra, P., B. Klopcic, E. Meyer, et al. 2006. Liver fibrosis induced by hepatic overexpression of PDGF-B in transgenic mice. Journal of Hepatology 45: 419–428.PubMedCrossRef Czochra, P., B. Klopcic, E. Meyer, et al. 2006. Liver fibrosis induced by hepatic overexpression of PDGF-B in transgenic mice. Journal of Hepatology 45: 419–428.PubMedCrossRef
53.
Zurück zum Zitat Kurys-Denis, E., A. Prystupa, D. Luchowska-Kocot, W. Krupski, H. Bis-Wencel, and L. Panasiuk. 2020. PDGF-BB homodimer serum level - a good indicator of the severity of alcoholic liver cirrhosis. Annals of Agricultural and Environmental Medicine 27: 80–85.PubMedCrossRef Kurys-Denis, E., A. Prystupa, D. Luchowska-Kocot, W. Krupski, H. Bis-Wencel, and L. Panasiuk. 2020. PDGF-BB homodimer serum level - a good indicator of the severity of alcoholic liver cirrhosis. Annals of Agricultural and Environmental Medicine 27: 80–85.PubMedCrossRef
54.
Zurück zum Zitat Kirchmeyer, M., A. Gaigneaux, F.A. Servais, et al. 2023. Altered profiles of circulating cytokines in chronic liver diseases (NAFLD/HCC): Impact of the PNPLA3I148M risk allele. Hepatol Commun 7 (12): e0306.PubMedPubMedCentralCrossRef Kirchmeyer, M., A. Gaigneaux, F.A. Servais, et al. 2023. Altered profiles of circulating cytokines in chronic liver diseases (NAFLD/HCC): Impact of the PNPLA3I148M risk allele. Hepatol Commun 7 (12): e0306.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Zhou, J., Y. Deng, L. Yan, H. Zhao, and G. Wang. 2016. Serum platelet-derived growth factor-BB levels: A potential biomarker for the assessment of liver fibrosis in patients with chronic hepatitis B. International Journal of Infectious Diseases 49: 94–99.PubMedCrossRef Zhou, J., Y. Deng, L. Yan, H. Zhao, and G. Wang. 2016. Serum platelet-derived growth factor-BB levels: A potential biomarker for the assessment of liver fibrosis in patients with chronic hepatitis B. International Journal of Infectious Diseases 49: 94–99.PubMedCrossRef
56.
Zurück zum Zitat Chakraborty, S., K.F. Kubatzky, and D.K. Mitra. 2019. An update on interleukin-9: From its cellular source and signal transduction to its role in immunopathogenesis. International Journal of Molecular Sciences 20: 2113.PubMedPubMedCentralCrossRef Chakraborty, S., K.F. Kubatzky, and D.K. Mitra. 2019. An update on interleukin-9: From its cellular source and signal transduction to its role in immunopathogenesis. International Journal of Molecular Sciences 20: 2113.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Varshney, P., R. Parveen, M.A. Khan, S. Kohli, and N.B. Agarwal. 2020. Increased serum interleukin-9 and interleukin-1β are associated with depression in type 2 diabetes patients. Arquivos de Neuro-Psiquiatria 78: 255–261.PubMedCrossRef Varshney, P., R. Parveen, M.A. Khan, S. Kohli, and N.B. Agarwal. 2020. Increased serum interleukin-9 and interleukin-1β are associated with depression in type 2 diabetes patients. Arquivos de Neuro-Psiquiatria 78: 255–261.PubMedCrossRef
58.
Zurück zum Zitat Vasanthakumar, R., V. Mohan, G. Anand, M. Deepa, S. Babu, and V. Aravindhan. 2015. Serum IL-9, IL-17, and TGF-β levels in subjects with diabetic kidney disease (CURES-134). Cytokine 72: 109–112.PubMedCrossRef Vasanthakumar, R., V. Mohan, G. Anand, M. Deepa, S. Babu, and V. Aravindhan. 2015. Serum IL-9, IL-17, and TGF-β levels in subjects with diabetic kidney disease (CURES-134). Cytokine 72: 109–112.PubMedCrossRef
59.
Zurück zum Zitat Shimamura, T., T. Fujisawa, S.R. Husain, M. Kioi, A. Nakajima, and R.K. Puri. 2008. Novel role of IL-13 in fibrosis induced by nonalcoholic steatohepatitis and its amelioration by IL-13R-directed cytotoxin in a rat model. The Journal of Immunology 181: 4656–4665.PubMedCrossRef Shimamura, T., T. Fujisawa, S.R. Husain, M. Kioi, A. Nakajima, and R.K. Puri. 2008. Novel role of IL-13 in fibrosis induced by nonalcoholic steatohepatitis and its amelioration by IL-13R-directed cytotoxin in a rat model. The Journal of Immunology 181: 4656–4665.PubMedCrossRef
60.
Zurück zum Zitat Weng, H.L., Y. Liu, J.L. Chen, et al. 2009. The etiology of liver damage imparts cytokines transforming growth factor beta1 or interleukin-13 as driving forces in fibrogenesis. Hepatology 50: 230–243.PubMedCrossRef Weng, H.L., Y. Liu, J.L. Chen, et al. 2009. The etiology of liver damage imparts cytokines transforming growth factor beta1 or interleukin-13 as driving forces in fibrogenesis. Hepatology 50: 230–243.PubMedCrossRef
61.
Zurück zum Zitat Darkhal, P., M. Gao, Y. Ma, and D. Liu. 2015. Blocking high-fat diet-induced obesity, insulin resistance and fatty liver by overexpression of Il-13 gene in mice. International Journal of Obesity 39: 1292–1299.PubMedCrossRef Darkhal, P., M. Gao, Y. Ma, and D. Liu. 2015. Blocking high-fat diet-induced obesity, insulin resistance and fatty liver by overexpression of Il-13 gene in mice. International Journal of Obesity 39: 1292–1299.PubMedCrossRef
62.
Zurück zum Zitat Duan, Y., X. Pan, J. Luo, X. Xiao, J. Li, P.L. Bestman, and M. Luo. 2022. Association of inflammatory cytokines with non-alcoholic fatty liver disease. Frontiers in Immunology 13.PubMedPubMedCentralCrossRef Duan, Y., X. Pan, J. Luo, X. Xiao, J. Li, P.L. Bestman, and M. Luo. 2022. Association of inflammatory cytokines with non-alcoholic fatty liver disease. Frontiers in Immunology 13.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Haukeland, J.W., J.K. Damås, Z. Konopski, et al. 2006. Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. Journal of Hepatology 44: 1167–1174.PubMedCrossRef Haukeland, J.W., J.K. Damås, Z. Konopski, et al. 2006. Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. Journal of Hepatology 44: 1167–1174.PubMedCrossRef
64.
Zurück zum Zitat Weisberg, S.P., D. Hunter, R. Huber, et al. 2006. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. The Journal of Clinical Investigation 116: 115–124.PubMedCrossRef Weisberg, S.P., D. Hunter, R. Huber, et al. 2006. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. The Journal of Clinical Investigation 116: 115–124.PubMedCrossRef
65.
Zurück zum Zitat Kirovski, G., E. Gäbele, C. Dorn, et al. 2010. Hepatic steatosis causes induction of the chemokine RANTES in the absence of significant hepatic inflammation. International Journal of Clinical and Experimental Pathology 3 (7): 675–680.PubMedPubMedCentral Kirovski, G., E. Gäbele, C. Dorn, et al. 2010. Hepatic steatosis causes induction of the chemokine RANTES in the absence of significant hepatic inflammation. International Journal of Clinical and Experimental Pathology 3 (7): 675–680.PubMedPubMedCentral
66.
Zurück zum Zitat Ponziani, F.R., S. Bhoori, C. Castelli, et al. 2019. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology 69: 107–120.PubMedCrossRef Ponziani, F.R., S. Bhoori, C. Castelli, et al. 2019. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in nonalcoholic fatty liver disease. Hepatology 69: 107–120.PubMedCrossRef
67.
Zurück zum Zitat Trifilo, M.J., C.C. Bergmann, W.A. Kuziel, and T.E. Lane. 2003. CC chemokine ligand 3 (CCL3) regulates CD8(+)-T-cell effector function and migration following viral infection. Journal of Virology 77: 4004–4014.PubMedPubMedCentralCrossRef Trifilo, M.J., C.C. Bergmann, W.A. Kuziel, and T.E. Lane. 2003. CC chemokine ligand 3 (CCL3) regulates CD8(+)-T-cell effector function and migration following viral infection. Journal of Virology 77: 4004–4014.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Du Plessis, J., H. Korf, J. Van Pelt, et al. 2016. Pro-Inflammatory cytokines but not endotoxin-related parameters associate with disease severity in patients with NAFLD. PLoS ONE 11.PubMedPubMedCentralCrossRef Du Plessis, J., H. Korf, J. Van Pelt, et al. 2016. Pro-Inflammatory cytokines but not endotoxin-related parameters associate with disease severity in patients with NAFLD. PLoS ONE 11.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Pan, X., A.C. Kaminga, A. Liu, S.W. Wen, J. Chen, and J. Luo. 2020. Chemokines in non-alcoholic fatty liver disease: a systematic review and network meta-analysis. Frontiers in Immunology 11: 1802.PubMedPubMedCentralCrossRef Pan, X., A.C. Kaminga, A. Liu, S.W. Wen, J. Chen, and J. Luo. 2020. Chemokines in non-alcoholic fatty liver disease: a systematic review and network meta-analysis. Frontiers in Immunology 11: 1802.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Xu, L., Y. Chen, M. Nagashimada, et al. 2021. CC chemokine ligand 3 deficiency ameliorates diet-induced steatohepatitis by regulating liver macrophage recruitment and M1/M2 status in mice. Metabolism 125: 154914.PubMedCrossRef Xu, L., Y. Chen, M. Nagashimada, et al. 2021. CC chemokine ligand 3 deficiency ameliorates diet-induced steatohepatitis by regulating liver macrophage recruitment and M1/M2 status in mice. Metabolism 125: 154914.PubMedCrossRef
71.
Zurück zum Zitat Ajmera, V., E.R. Perito, N.M. Bass, et al. 2017. NASH Clinical Research Network. Novel plasma biomarkers associated with liver disease severity in adults with nonalcoholic fatty liver disease. Hepatology 65 (1): 65–77.PubMedCrossRef Ajmera, V., E.R. Perito, N.M. Bass, et al. 2017. NASH Clinical Research Network. Novel plasma biomarkers associated with liver disease severity in adults with nonalcoholic fatty liver disease. Hepatology 65 (1): 65–77.PubMedCrossRef
72.
Zurück zum Zitat Clement, S., S. Pascarella, S. Conzelmann, C. Gonelle-Gispert, K. Guilloux, and F. Negro. 2010. The hepatitis C virus core protein indirectly induces alpha-smooth muscle actin expression in hepatic stellate cells via interleukin-8. Journal of Hepatology 52: 635–643.PubMedCrossRef Clement, S., S. Pascarella, S. Conzelmann, C. Gonelle-Gispert, K. Guilloux, and F. Negro. 2010. The hepatitis C virus core protein indirectly induces alpha-smooth muscle actin expression in hepatic stellate cells via interleukin-8. Journal of Hepatology 52: 635–643.PubMedCrossRef
73.
Zurück zum Zitat Ullah, A., A. Ud Din, W. Ding, et al. 2023. A narrative review: CXC chemokines influence immune surveillance in obesity and obesity-related diseases: Type 2 diabetes and nonalcoholic fatty liver disease. Reviews in Endocrine & Metabolic Disorders 24: 611–631.CrossRef Ullah, A., A. Ud Din, W. Ding, et al. 2023. A narrative review: CXC chemokines influence immune surveillance in obesity and obesity-related diseases: Type 2 diabetes and nonalcoholic fatty liver disease. Reviews in Endocrine & Metabolic Disorders 24: 611–631.CrossRef
74.
Zurück zum Zitat Xu, Z., X. Zhang, J. Lau, and J. Yu. 2016. C-X-C motif chemokine 10 in non-alcoholic steatohepatitis: Role as a pro-inflammatory factor and clinical implication. Expert Reviews in Molecular Medicine 18: e16.PubMedCrossRef Xu, Z., X. Zhang, J. Lau, and J. Yu. 2016. C-X-C motif chemokine 10 in non-alcoholic steatohepatitis: Role as a pro-inflammatory factor and clinical implication. Expert Reviews in Molecular Medicine 18: e16.PubMedCrossRef
Metadaten
Titel
Inflammatory Protein Signatures as Predictive Disease-Specific Markers for Non-Alcoholic Steatohepatitis (NASH)
verfasst von
Nadella Mounika
Suraj Bhausaheb Mungase
Shivangi Verma
Savneet Kaur
Utpal Jyoti Deka
Tarini Shankar Ghosh
Ramu Adela
Publikationsdatum
27.04.2024
Verlag
Springer US
Erschienen in
Inflammation
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-024-02035-0

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei Herzinsuffizienz muss „Eisenmangel“ neu definiert werden!

16.05.2024 Herzinsuffizienz Nachrichten

Bei chronischer Herzinsuffizienz macht es einem internationalen Expertenteam zufolge wenig Sinn, die Diagnose „Eisenmangel“ am Serumferritin festzumachen. Das Team schlägt vor, sich lieber an die Transferrinsättigung zu halten.

Herzinfarkt mit 85 – trotzdem noch intensive Lipidsenkung?

16.05.2024 Hypercholesterinämie Nachrichten

Profitieren nach einem akuten Myokardinfarkt auch Betroffene über 80 Jahre noch von einer intensiven Lipidsenkung zur Sekundärprävention? Um diese Frage zu beantworten, wurden jetzt Registerdaten aus Frankreich ausgewertet.

ADHS-Medikation erhöht das kardiovaskuläre Risiko

16.05.2024 Herzinsuffizienz Nachrichten

Erwachsene, die Medikamente gegen das Aufmerksamkeitsdefizit-Hyperaktivitätssyndrom einnehmen, laufen offenbar erhöhte Gefahr, an Herzschwäche zu erkranken oder einen Schlaganfall zu erleiden. Es scheint eine Dosis-Wirkungs-Beziehung zu bestehen.

Erstmanifestation eines Diabetes-Typ-1 bei Kindern: Ein Notfall!

16.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Manifestiert sich ein Typ-1-Diabetes bei Kindern, ist das ein Notfall – ebenso wie eine diabetische Ketoazidose. Die Grundsäulen der Therapie bestehen aus Rehydratation, Insulin und Kaliumgabe. Insulin ist das Medikament der Wahl zur Behandlung der Ketoazidose.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.