Skip to main content
Erschienen in: BMC Gastroenterology 1/2024

Open Access 01.12.2024 | Research

Investigating the shared genetic architecture between primary sclerosing cholangitis and inflammatory bowel diseases: a Mendelian randomization study

verfasst von: Xuan Dong, Li-Li Gong, Mei-Zhu Hong, Jin-Shui Pan

Erschienen in: BMC Gastroenterology | Ausgabe 1/2024

Abstract

Background

Several studies have found that primary sclerosing cholangitis (PSC) and inflammatory bowel disease (IBD) are closely associated. However, the direction and causality of their interactions remain unclear. Thus, this study employs Mendelian Randomization to explore whether there are causal associations of genetically predicted PSC with IBD.

Methods

Genetic variants associated with the genome-wide association study (GWAS) of PSC were used as instrumental variables. The statistics for IBD, including ulcerative colitis (UC), and Crohn’s disease (CD) were derived from GWAS. Then, five methods were used to estimate the effects of genetically predicted PSC on IBD, including MR Egger, Weighted median (WM), Inverse variance weighted (IVW), Simple mode, and Weighted mode. Last, we also evaluated the pleiotropic effects, heterogeneity, and a leave-one-out sensitivity analysis that drives causal associations to confirm the validity of the analysis.

Results

Genetically predicted PSC was significantly associated with an increased risk of UC, according to the study (odds ratio [OR] IVW= 1.0014, P<0.05). However, none of the MR methods found significant causal evidence of genetically predicted PSC in CD (All P>0.05). The sensitivity analysis results showed that the causal effect estimations of genetically predicted PSC on IBD were robust, and there was no horizontal pleiotropy or statistical heterogeneity.

Conclusions

Our study corroborated a causal association between genetically predicted PSC and UC but did not between genetically predicted PSC and CD. Then, we identification of shared SNPs for PSC and UC, including rs3184504, rs9858213, rs725613, rs10909839, and rs4147359. More animal experiments and clinical observational studies are required to further clarify the underlying mechanisms of PSC and IBD.
Begleitmaterial
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12876-024-03162-6.
Xuan Dong and Li-Li Gong contributed equally to this paper.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Inflammatory bowel disease (IBD) is a chronic intestinal disorder with unknown etiology. Many studies point to the presence of genetic predisposition, intestinal mucosal immune system dysfunction, and microbiota imbalance [1] in the occurrence and progression of IBD. Ulcerative colitis (UC) and Crohn’s disease (CD) are two main typical subtypes of IBD. The incidence of IBD has risen over the past decade in Asia. Predictably, the prevalence of IBD will significantly in the future, following an aging population [2].
Patients with IBD not only suffer a significant reduction in their quality of life but also causes substantial costs in health care due to its high prevalence [3]. Chronic IBD is restricted to the gut, but also in the extraintestinal organs in many patients [4, 5]. This phenomenon is called extraintestinal manifestations (EIM) of IBD. EIM frequently affects joints [6], skin [7], eyes [8], lungs [9], pancreas [10], and liver [11]. Primary sclerosing cholangitis (PSC) is important EIM in IBD patients [4]. In clinical, about 70% of PSC patients are found to have underlying IBD [1214]. Genetic risk factors, environmental factors, activation of the immune system, and microbiota have been assumed that the factors relevant to the pathogenesis of EIMs [15, 16]. For PSC, the association with the activity of the underlying IBD is unclear [17].
PSC is a type of autoimmune liver disease characterized by multi-focal bile duct strictures and progressive liver disease [18]. The prognosis of PSC was not satisfactory. Most patients ultimately require liver transplantation, after which disease recurrence may occur. However, without liver transplantation, the median survival time for PSC patients is 10 to 12 years [19].
Similar to IBD, the pathogenesis of PSC is also not well clear. However, the characteristic that PSC is often accompanied by IBD suggests that there may be a shared pathogenic gene or pathway between the PSC and IBD. Mendelian randomization (MR) renders us a novel way to study the connection between these two diseases. MR is a genetic epidemiological method, this method follows the Mendelian genetic law of "parental alleles are randomly assigned to offspring" [20]. This method uses single-nucleotide polymorphisms (SNPs) as instrumental variables (IVs) to infer the potential causality of exposure and outcome. It’s beneficial to minimize bias caused by confounding factors and reverse causality [21]. Based on this, the MR method has been widely used to assess the causal relationship between traits and diseases or between diseases [2224]. To the best of our knowledge, there are no MR studies inferring the potential causal relationship of PSC with IBD to date. Therefore, we applied the MR method to examine whether the genetically predicted PSC is associated with IBD.

Methods

Study design

The overall design of Mendelian randomization analyses in this study is shown in Fig. 1. Briefly, (1) The selected instrumental variables were linked to exposure; (2) there were no inherent interactions between instrumental variables and confounder factors; (3) exposure was the only way by which instrumental variables can affect outcomes. The PSC served as the exposure, and UC served as the outcome. Since all datasets used in this study were based on public databases, no additional ethical approval was required.

GWAS data for PSC, UC, and CD

We gathered the summary statistics of PSC, UC, and CD, from the IEU Open GWAS project (https://​gwas.​mrcieu.​ac.​uk/​), all the cases there were defined on the basis of the International Classification of Diseases (ICD), and fulfilled the clinical diagnosis criteria for IBD and PSC. To be more specific, the sample sizes of datasets for PSC, UC, and CD, are 14,890 cases, 463,010 cases, and 212,356 cases, respectively. PSC has 7, 891, 603 SNPs, UC has 9, 851, 867 SNPs, and CD has 16, 380, 455 SNPs. The detailed information on GWAS data is shown in Table 1.
Table 1
Detailed information on association studies in our analysis
 
Year
ID
Population
Sample size
Cases
SNPs
UC
2018
ukb-b-7421
European
463,010
9,851,867
CD
2021
finn-b-K11_CROHN
European
212,356
16,380,455
PSC
2017
ieu-a-1112
Mixed
14,890
7,891,603
UC Ulcerative colitis, CD Crohn’s disease, PSC Primary sclerosing cholangitis, SNPs Single nucleotide polymorphisms

Instrumental variable selection

All statistical analyses were performed by the R packages: TwoSampleMR. First, we selected SNPs related to PSC at the genome-wide significance threshold with p< 5 × 10-8. Because strong linkage disequilibrium could lead to biased results. Second, the independence among the selected SNPs was evaluated according to the pairwise-linkage disequilibrium (r2 < 0.001, clumping window of 10,000 kb). When F-statistics were greater than 10, SNPs were considered powerful enough to mitigate the influence of potential bias. Third, we selected SNPs with F statistic >10 as IVs.

Statistical analysis

Based on the IVs, we performed an MR analysis to investigate the relationship between PSC and IBD. Five popular MR methods were used to analyze our data: MR Egger, Weighted median (WM), Inverse variance weighted (IVW), Simple mode, and Weighted mode. The IVW method is reported to be slightly more powerful than the others under certain conditions.
Cochran's Q statistics were used to perform heterogeneity, and p > 0.05 indicated no heterogeneity. Moreover, the MR-Egger method was used to determine the horizontal pleiotropy, MR-Egger at a p-value < 0.05 can imply the presence of horizontal pleiotropy.

Results

Selection of instrumental variables

After a series of quality control steps as mentioned above, 18 SNPs were selected as IVs (Table 2).
Table 2
Detailed information for the SNPs in MR analysis
SNPs
CHR
Position
Nearest gene
EA
P value
rs10909839
1
2708430
TTC34
A
3.16E-08
rs72837826
2
111933001
-
T
1.26E-09
rs231389
2
204634730
-
T
4.42E-09
rs80060485
3
71153890
FOXP1
C
8.54E-09
rs9858213
3
49731861
RNF123
T
2.43E-20
rs13119723
4
123218313
KIAA1109
G
2.22E-10
rs139010734
6
31974014
CYP21A1P
T
1.98E-154
rs34645399
6
32589169
-
G
1.63E-59
rs3131781
6
30937732
-
G
1E-200
rs114581973
6
33064950
-
T
3.4E-08
rs41316239
6
32779280
-
A
4.97E-11
rs4147359
10
6108439
-
A
4.06E-13
rs79940565
11
63560994
-
C
2E-08
rs3184504
12
111884608
SH2B3
C
5.05E-10
rs725613
16
11169683
CLEC16A
G
5.5E-10
rs313839
19
47221557
PRKD2
G
2.12E-08
rs4817988
21
40468838
-
A
4.2E-15
rs145832854
22
25310129
SGSM1
A
2.58E-08
SNPs Single nucleotide polymorphisms, CHR Chromosome, EA EFFECT allele

Causality relationship between PSC and IBD

Among the five MR methods, the causal effects of genetically predicted PSC on UC and CD were inconsistent. The results of the MR analyses were shown in Table 3, genetically predicted PSC was positively associated with a risk of UC in our study, with a p-value of IVW method less than 0.05. However, we found no evidence supporting a causal association between PSC and CD. Previous research indicated that the genome-wide genetic correlation between PSC and UC was significantly greater than that between PSC and CD [25], similar to our results.
Table 3
Association of genetically predicted PSC with risk of UC and CD
Exposure
Outcome
Method
SNPs
b
se
P value
OR (95% CI)
Primary sclerosing cholangitis
Ulcerative colitis
MR Egger
5
0.002156613
0.001954797
0.350475456
1.0022 (0.9983–1.0060)
Weighted median
5
0.00157667
0.00033714
2.91671E-06
1.0016 (1.0009–1.0022)
Inverse variance weighted
5
0.001395479
0.000285331
1.00457E-06
1.0014 (1.0008–1.0020)
Simple mode
5
0.001674616
0.000507346
0.029912705
1.0017 (1.0007–1.0027)
Weighted mode
5
0.001723726
0.000477383
0.022540952
1.0017 (1.0008–1.0027)
Primary sclerosing cholangitis
Crohn’s disease
MR Egger
17
-0.097709
0.06603742
0.15967422
0.9069 (0.7968–1.0322)
Weighted median
17
-0.0306259
0.04773732
0.52116485
0.9698 (0.8832–1.0650)
Inverse variance weighted
17
0.08913064
0.04867668
0.0670894
1.0932 (0.9937–1.2027)
Simple mode
17
-0.002681
0.12079877
0.98256754
0.9973 (0.7871–1.2638)
Weighted mode
17
-0.0388213
0.04548044
0.40593454
0.9619 (0.8799–1.0516)
SNPs Single nucleotide polymorphisms, OR Odds ratio, CI Confidence interval
The scatter plots were used to show the single SNP effect and the combined effects of each MR method (Fig. 2). Forest plots and funnel plots of the causal effect are shown in Supplementary Figure 1.
According to this study, rs3184504, rs9858213, rs725613, rs10909839, and rs4147359 are shared SNPs for PSC and UC (Table 4).
Table 4
The shared SNPs for PSC and UC
Nearest genes
SNPs
CHR
BP
EA
OA
SH2B3
rs3184504
12
111884608
C
T
RNF123
rs9858213
3
49731861
T
G
CLEC16A
rs725613
16
11169683
G
T
TTC34
rs10909839
1
2708430
A
G
-
rs4147359
10
6108439
A
G
SNPs Single nucleotide polymorphisms, CHR Chromosome, BP Base pair position, EA Effect allele, OA Other alleles

Sensitivity analysis

We performed a leave-one-out sensitivity analysis, heterogeneity, and horizontal pleiotropy to further verify the reliability of our results. The results of sensitivity analysis showed that the causal effect estimation of this study was robust. The MR-Egger (Q p-value 0.137) and IVW methods (Q p-value 0.214) showed no statistical heterogeneity. Furthermore, no statistical horizontal pleiotropy was found in the horizontal pleiotropy of MR-Egger methods (P=0.719). The results of the sensitivity analysis are shown in Supplementary Figure 2.

Discussion

The etiology of PSC and IBD remains unclear, and there is a lack of effective treatment methods. Now, the main treatment methods for PSC include bile composition modulators, immune modulators, anti-fibrotic, and regulation of the microbiome. However, further research is needed to determine whether these methods can delay its progression or improve transplant-free survival [26]. The same applies to the treatment of IBD. Although some new methods such as fecal transplantation, and small molecule drugs, applied to the treatment of IBD, satisfactory results have not been achieved in clinical yet [2729]. Therefore, it is crucial to investigate the relationship between PSC and the subtype of IBD.
Previous studies have suggested an association between IBD and PSC or PBC [30, 31]. PSC is a prototypic gut-liver axis disease. In the patients of PSC, gut microbiota could disrupt the intestinal barrier, leading to bacterial translocation and Th17 cell-driven liver damage [32]. In contrast, the bile acid metabolizing enzyme CYP8B1 inhibits self-renewal of crypt based intestinal stem cells through the accumulation of its product bile acid, hinders intestinal epithelial barrier repair, and exacerbates inflammatory response [33]. These studies indicated a close correlation between intestinal diseases and liver diseases. As mentioned earlier, genetic predisposition plays a role in the occurrence and progression of IBD and PSC. The formation of serum antibodies is a way in which genetic factors affect the immune system. Multiple antibodies such as anti-Saccharomyces cerevisiae antibodies (ASCA), anti-neutrophil cytoplasm antibodies (ANCA) were upregulated in both autoimmune live diseases and IBD [3436], and those antibodies may predict development of disease. The expression of common antibodies can also indicate a close relationship between the two diseases [37].
In this study, we used GWAS data to investigate the possible causal relationship and specific SNPs between PSC and IBD susceptibility, offering novel insights into the prevention and treatment of PSC and IBD. Multiple MR methods were employed to investigate the relationship between PSC and UC or CD, respectively. Four MR methods (Weighted median, Inverse variance weighted, Simple mode, and Weighted mode) indicated a significant relationship between PSC and UC. However, as for CD, there was no significant relationship between PSC and CD. Thus, we conclude that PSC has a significant relationship with UC but not CD. According this analysis, we also found the specific SNPs that are shared for PSC and UC (rs3184504, rs9858213, rs725613, rs10909839, and rs4147359). Except for chromosome 10 SNP (rs4147359), other SNPs have corresponding genes.
According to a previous study, the chromosome 12 SNP (rs3184504) was in the SH2B3 (SH2B adaptor protein 3) gene and is associated with autoimmune disease [38]. Multiple studies indicated that SH2B3 was related to the occurrence of autoimmune Hepatitis [3942]. In addition, recent studies have shown that SH2B3 expressed in lymphocytes might with the risk of mid/long-term clinical relapse after being treated with infliximab in those patients with CD [43]. Although how SH2B3 mediates autoimmune disease remains unclear, a study provides us with new insights. Microbiome could exert physiological functions via the SH2B3 gene [44], and gut microbiota also exerts a significant influence on both PSC and UC [45, 46].
And rs9858213 is in the ring finger protein 123 (RNF123) gene, located in chromosome 3. The protein encoded by this gene displays E3 ubiquitin ligase activity toward the cyclin-dependent kinase inhibitor 1B which is also known as p27 or KIP1, so the research on this gene is mainly focused on tumors now [47, 48]. A report indicated that p21 expression was higher in IBD cases [49]. Unfortunately, no studies have been reported that the relationship between rs9858213 and PSC.
T cells play an important role in both PSC and UC. Many studies focus on T-cell immunotherapy [5053]. C-type lectin domain containing 16A (CLEC16A) gene which, has been proven associate with multiple immune-mediated diseases, which may through T cells to induce pathogenicity [54]. This connection validates our results from an immunological perspective.
For rs10909839, this SNP is located in the tetratricopeptide repeat domain 34 (TTC34) gene. TTC34 gene a link with systemic lupus erythematosus was reported by some studies [55, 56]. Unfortunately, there is limited research on this gene. Therefore, how TTC34 the immune system remains unknown.
We also acknowledge some of the limitations of this study. First, due to data availability, the GWAS data of UC and CD we used were from a European population, while the data of PSC was from a mixed population. In the future, more populations should be included. Second, only 18 SNPs meet the conditions to become IVs. Even if removing linkage disequilibrium, detecting pleiotropy, leave-one-out sensitivity analysis, heterogeneity analysis, and horizontal pleiotropy analysis have been conducted, we cannot guarantee that each SNP site meets the condition that instrumental variables can affect outcomes only through exposure. Some influence of unknown possible confounders inevitably affects our results. We obtained those results by analyzing data from public databases, but the databases didn’t provide clinical data. Therefore, experimental or other studies should be conducted to our results. Despite these limitations, our results may inspire possible mechanism analyses and the relationship between PSC and IBD, in the future.

Conclusions

Our study corroborated a causal association between genetically predicted PSC and UC but not for PSC and CD. Then, we identification of shared SNPs for PSC and UC, including rs3184504, rs9858213, rs725613, rs10909839, and rs4147359.

Acknowledgements

Not applicable.

Declarations

Not applicable.
Not applicable.

Competing interests

The authors declare no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge

Supplementary Information

Literatur
1.
Zurück zum Zitat Pittayanon R, Lau JT, Leontiadis GI, Tse F, Yuan Y, Surette M, Moayyedi P. Differences in gut microbiota in patients with vs without inflammatory bowel diseases: a systematic review. Gastroenterology. 2020;158(4):930-946.e931.CrossRefPubMed Pittayanon R, Lau JT, Leontiadis GI, Tse F, Yuan Y, Surette M, Moayyedi P. Differences in gut microbiota in patients with vs without inflammatory bowel diseases: a systematic review. Gastroenterology. 2020;158(4):930-946.e931.CrossRefPubMed
2.
Zurück zum Zitat Mak WY, Zhao M, Ng SC, Burisch J. The epidemiology of inflammatory bowel disease: East meets west. J Gastroenterol Hepatol. 2020;35(3):380–9.CrossRefPubMed Mak WY, Zhao M, Ng SC, Burisch J. The epidemiology of inflammatory bowel disease: East meets west. J Gastroenterol Hepatol. 2020;35(3):380–9.CrossRefPubMed
3.
Zurück zum Zitat Kaplan GG. The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol Hepatol. 2015;12(12):720–7.CrossRefPubMed Kaplan GG. The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol Hepatol. 2015;12(12):720–7.CrossRefPubMed
4.
Zurück zum Zitat Rogler G, Singh A, Kavanaugh A, Rubin DT. Extraintestinal manifestations of inflammatory bowel disease: current concepts, treatment, and implications for disease management. Gastroenterology. 2021;161(4):1118–32.CrossRefPubMed Rogler G, Singh A, Kavanaugh A, Rubin DT. Extraintestinal manifestations of inflammatory bowel disease: current concepts, treatment, and implications for disease management. Gastroenterology. 2021;161(4):1118–32.CrossRefPubMed
5.
Zurück zum Zitat Greuter T, Vavricka SR. Extraintestinal manifestations in inflammatory bowel disease - epidemiology, genetics, and pathogenesis. Expert Rev Gastroenterol Hepatol. 2019;13(4):307–17.CrossRefPubMed Greuter T, Vavricka SR. Extraintestinal manifestations in inflammatory bowel disease - epidemiology, genetics, and pathogenesis. Expert Rev Gastroenterol Hepatol. 2019;13(4):307–17.CrossRefPubMed
6.
Zurück zum Zitat Karreman MC, Luime JJ, Hazes JMW, Weel A. The prevalence and incidence of axial and peripheral spondyloarthritis in inflammatory bowel disease: a systematic review and meta-analysis. J Crohns Colitis. 2017;11(5):631–42.PubMed Karreman MC, Luime JJ, Hazes JMW, Weel A. The prevalence and incidence of axial and peripheral spondyloarthritis in inflammatory bowel disease: a systematic review and meta-analysis. J Crohns Colitis. 2017;11(5):631–42.PubMed
7.
Zurück zum Zitat Marzano AV, Borghi A, Stadnicki A, Crosti C, Cugno M. Cutaneous manifestations in patients with inflammatory bowel diseases: pathophysiology, clinical features, and therapy. Inflamm Bowel Dis. 2014;20(1):213–27.CrossRefPubMed Marzano AV, Borghi A, Stadnicki A, Crosti C, Cugno M. Cutaneous manifestations in patients with inflammatory bowel diseases: pathophysiology, clinical features, and therapy. Inflamm Bowel Dis. 2014;20(1):213–27.CrossRefPubMed
8.
Zurück zum Zitat Taleban S, Li D, Targan SR, Ippoliti A, Brant SR, Cho JH, Duerr RH, Rioux JD, Silverberg MS, Vasiliauskas EA, et al. Ocular manifestations in inflammatory bowel disease are associated with other extra-intestinal manifestations, gender, and genes implicated in other immune-related traits. J Crohns Colitis. 2016;10(1):43–9.CrossRefPubMed Taleban S, Li D, Targan SR, Ippoliti A, Brant SR, Cho JH, Duerr RH, Rioux JD, Silverberg MS, Vasiliauskas EA, et al. Ocular manifestations in inflammatory bowel disease are associated with other extra-intestinal manifestations, gender, and genes implicated in other immune-related traits. J Crohns Colitis. 2016;10(1):43–9.CrossRefPubMed
9.
Zurück zum Zitat Eliadou E, Moleiro J, Ribaldone DG, Astegiano M, Rothfuss K, Taxonera C, Ghalim F, Carbonnel F, Verstockt B, Festa S, et al. Interstitial and Granulomatous Lung Disease in Inflammatory Bowel Disease Patients. J Crohns Colitis. 2020;14(4):480–9.CrossRefPubMed Eliadou E, Moleiro J, Ribaldone DG, Astegiano M, Rothfuss K, Taxonera C, Ghalim F, Carbonnel F, Verstockt B, Festa S, et al. Interstitial and Granulomatous Lung Disease in Inflammatory Bowel Disease Patients. J Crohns Colitis. 2020;14(4):480–9.CrossRefPubMed
10.
Zurück zum Zitat Jasdanwala S, Babyatsky M. Crohn’s disease and acute pancreatitis. A review of literature. Jop. 2015;16(2):136–42.PubMed Jasdanwala S, Babyatsky M. Crohn’s disease and acute pancreatitis. A review of literature. Jop. 2015;16(2):136–42.PubMed
11.
Zurück zum Zitat Yarur AJ, Czul F, Levy C. Hepatobiliary manifestations of inflammatory bowel disease. Inflamm Bowel Dis. 2014;20(9):1655–67.CrossRefPubMed Yarur AJ, Czul F, Levy C. Hepatobiliary manifestations of inflammatory bowel disease. Inflamm Bowel Dis. 2014;20(9):1655–67.CrossRefPubMed
12.
Zurück zum Zitat Bambha K, Kim WR, Talwalkar J, Torgerson H, Benson JT, Therneau TM, Loftus EV Jr, Yawn BP, Dickson ER, Melton LJ 3rd. Incidence, clinical spectrum, and outcomes of primary sclerosing cholangitis in a United States community. Gastroenterology. 2003;125(5):1364–9.CrossRefPubMed Bambha K, Kim WR, Talwalkar J, Torgerson H, Benson JT, Therneau TM, Loftus EV Jr, Yawn BP, Dickson ER, Melton LJ 3rd. Incidence, clinical spectrum, and outcomes of primary sclerosing cholangitis in a United States community. Gastroenterology. 2003;125(5):1364–9.CrossRefPubMed
13.
Zurück zum Zitat Weismüller TJ, Trivedi PJ, Bergquist A, Imam M, Lenzen H, Ponsioen CY, Holm K, Gotthardt D, Färkkilä MA, Marschall HU, et al. Patient age, sex, and inflammatory bowel disease phenotype associate with course of primary sclerosing cholangitis. Gastroenterology. 2017;152(8):1975-1984.e1978.CrossRefPubMed Weismüller TJ, Trivedi PJ, Bergquist A, Imam M, Lenzen H, Ponsioen CY, Holm K, Gotthardt D, Färkkilä MA, Marschall HU, et al. Patient age, sex, and inflammatory bowel disease phenotype associate with course of primary sclerosing cholangitis. Gastroenterology. 2017;152(8):1975-1984.e1978.CrossRefPubMed
14.
Zurück zum Zitat Da Cunha T, Vaziri H, Wu GY. Primary sclerosing cholangitis and inflammatory bowel disease: a review. J Clin Transl Hepatol. 2022;10(3):531–42.CrossRefPubMedPubMedCentral Da Cunha T, Vaziri H, Wu GY. Primary sclerosing cholangitis and inflammatory bowel disease: a review. J Clin Transl Hepatol. 2022;10(3):531–42.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Weizman A, Huang B, Berel D, Targan SR, Dubinsky M, Fleshner P, Ippoliti A, Kaur M, Panikkath D, Brant S, et al. Clinical, serologic, and genetic factors associated with pyoderma gangrenosum and erythema nodosum in inflammatory bowel disease patients. Inflamm Bowel Dis. 2014;20(3):525–33.CrossRefPubMed Weizman A, Huang B, Berel D, Targan SR, Dubinsky M, Fleshner P, Ippoliti A, Kaur M, Panikkath D, Brant S, et al. Clinical, serologic, and genetic factors associated with pyoderma gangrenosum and erythema nodosum in inflammatory bowel disease patients. Inflamm Bowel Dis. 2014;20(3):525–33.CrossRefPubMed
16.
Zurück zum Zitat Severs M, van Erp SJ, van der Valk ME, Mangen MJ, Fidder HH, van der Have M, van Bodegraven AA, de Jong DJ, van der Woude CJ, Romberg-Camps MJ, et al. Smoking is associated with extra-intestinal manifestations in inflammatory bowel disease. J Crohns Colitis. 2016;10(4):455–61.CrossRefPubMed Severs M, van Erp SJ, van der Valk ME, Mangen MJ, Fidder HH, van der Have M, van Bodegraven AA, de Jong DJ, van der Woude CJ, Romberg-Camps MJ, et al. Smoking is associated with extra-intestinal manifestations in inflammatory bowel disease. J Crohns Colitis. 2016;10(4):455–61.CrossRefPubMed
17.
Zurück zum Zitat Vavricka SR, Schoepfer A, Scharl M, Lakatos PL, Navarini A, Rogler G. Extraintestinal manifestations of inflammatory bowel disease. Inflamm Bowel Dis. 2015;21(8):1982–92.CrossRefPubMed Vavricka SR, Schoepfer A, Scharl M, Lakatos PL, Navarini A, Rogler G. Extraintestinal manifestations of inflammatory bowel disease. Inflamm Bowel Dis. 2015;21(8):1982–92.CrossRefPubMed
18.
Zurück zum Zitat Karlsen TH, Folseraas T, Thorburn D, Vesterhus M. Primary sclerosing cholangitis - a comprehensive review. J Hepatol. 2017;67(6):1298–323.CrossRefPubMed Karlsen TH, Folseraas T, Thorburn D, Vesterhus M. Primary sclerosing cholangitis - a comprehensive review. J Hepatol. 2017;67(6):1298–323.CrossRefPubMed
19.
Zurück zum Zitat Tischendorf JJ, Hecker H, Krüger M, Manns MP, Meier PN. Characterization, outcome, and prognosis in 273 patients with primary sclerosing cholangitis: a single center study. Am J Gastroenterol. 2007;102(1):107–14.CrossRefPubMed Tischendorf JJ, Hecker H, Krüger M, Manns MP, Meier PN. Characterization, outcome, and prognosis in 273 patients with primary sclerosing cholangitis: a single center study. Am J Gastroenterol. 2007;102(1):107–14.CrossRefPubMed
20.
21.
Zurück zum Zitat Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133–63.MathSciNetCrossRefPubMed Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133–63.MathSciNetCrossRefPubMed
22.
Zurück zum Zitat Endocrinology EoTLD: Expression of Concern-Estimating dose-response relationships for vitamin D with coronary heart disease, stroke, and all-cause mortality: observational and Mendelian randomisation analyses. Lancet Diabetes Endocrinol. 2024;12(1):e2–e11. Endocrinology EoTLD: Expression of Concern-Estimating dose-response relationships for vitamin D with coronary heart disease, stroke, and all-cause mortality: observational and Mendelian randomisation analyses. Lancet Diabetes Endocrinol. 2024;12(1):e2–e11.
23.
Zurück zum Zitat Björnson E, Adiels M, Taskinen MR, Burgess S, Rawshani A, Borén J, Packard CJ. Triglyceride-rich lipoprotein remnants, low-density lipoproteins, and risk of coronary heart disease: a UK Biobank study. Eur Heart J. 2023;44(39):4186–95. Björnson E, Adiels M, Taskinen MR, Burgess S, Rawshani A, Borén J, Packard CJ. Triglyceride-rich lipoprotein remnants, low-density lipoproteins, and risk of coronary heart disease: a UK Biobank study. Eur Heart J. 2023;44(39):4186–95.
24.
Zurück zum Zitat Zeng R, Wang J, Zheng C, Jiang R, Tong S, Wu H, Zhuo Z, Yang Q, Leung FW, Sha W, et al. Lack of causal associations of inflammatory bowel disease with parkinson’s disease and other neurodegenerative disorders. Mov Disord. 2023;38(6):1082–8.CrossRefPubMed Zeng R, Wang J, Zheng C, Jiang R, Tong S, Wu H, Zhuo Z, Yang Q, Leung FW, Sha W, et al. Lack of causal associations of inflammatory bowel disease with parkinson’s disease and other neurodegenerative disorders. Mov Disord. 2023;38(6):1082–8.CrossRefPubMed
25.
Zurück zum Zitat Ji SG, Juran BD, Mucha S, Folseraas T, Jostins L, Melum E, Kumasaka N, Atkinson EJ, Schlicht EM, Liu JZ, et al. Genome-wide association study of primary sclerosing cholangitis identifies new risk loci and quantifies the genetic relationship with inflammatory bowel disease. Nat Genet. 2017;49(2):269–73.CrossRefPubMed Ji SG, Juran BD, Mucha S, Folseraas T, Jostins L, Melum E, Kumasaka N, Atkinson EJ, Schlicht EM, Liu JZ, et al. Genome-wide association study of primary sclerosing cholangitis identifies new risk loci and quantifies the genetic relationship with inflammatory bowel disease. Nat Genet. 2017;49(2):269–73.CrossRefPubMed
26.
Zurück zum Zitat Floreani A, De Martin S. Treatment of primary sclerosing cholangitis. Dig Liver Dis. 2021;53(12):1531–8.CrossRefPubMed Floreani A, De Martin S. Treatment of primary sclerosing cholangitis. Dig Liver Dis. 2021;53(12):1531–8.CrossRefPubMed
27.
Zurück zum Zitat Paramsothy S, Kamm MA, Kaakoush NO, Walsh AJ, van den Bogaerde J, Samuel D, Leong RWL, Connor S, Ng W, Paramsothy R, et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet. 2017;389(10075):1218–28.CrossRefPubMed Paramsothy S, Kamm MA, Kaakoush NO, Walsh AJ, van den Bogaerde J, Samuel D, Leong RWL, Connor S, Ng W, Paramsothy R, et al. Multidonor intensive faecal microbiota transplantation for active ulcerative colitis: a randomised placebo-controlled trial. Lancet. 2017;389(10075):1218–28.CrossRefPubMed
28.
Zurück zum Zitat Nielsen OH, Li Y, Johansson-Lindbom B, Coskun M. Sphingosine-1-phosphate signaling in inflammatory bowel disease. Trends Mol Med. 2017;23(4):362–74.CrossRefPubMed Nielsen OH, Li Y, Johansson-Lindbom B, Coskun M. Sphingosine-1-phosphate signaling in inflammatory bowel disease. Trends Mol Med. 2017;23(4):362–74.CrossRefPubMed
29.
Zurück zum Zitat Olivera PA, Lasa JS, Bonovas S, Danese S, Peyrin-Biroulet L. Safety of Janus kinase inhibitors in patients with inflammatory bowel diseases or other immune-mediated diseases: a systematic review and meta-analysis. Gastroenterology. 2020;158(6):1554-1573.e1512.CrossRefPubMed Olivera PA, Lasa JS, Bonovas S, Danese S, Peyrin-Biroulet L. Safety of Janus kinase inhibitors in patients with inflammatory bowel diseases or other immune-mediated diseases: a systematic review and meta-analysis. Gastroenterology. 2020;158(6):1554-1573.e1512.CrossRefPubMed
30.
Zurück zum Zitat Xie Y, Chen X, Deng M, Sun Y, Wang X, Chen J, Yuan C, Hesketh T. Causal Linkage Between Inflammatory Bowel Disease and Primary Sclerosing Cholangitis: A Two-Sample Mendelian Randomization Analysis. Front Genet. 2021;12:649376.CrossRefPubMedPubMedCentral Xie Y, Chen X, Deng M, Sun Y, Wang X, Chen J, Yuan C, Hesketh T. Causal Linkage Between Inflammatory Bowel Disease and Primary Sclerosing Cholangitis: A Two-Sample Mendelian Randomization Analysis. Front Genet. 2021;12:649376.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Zhao J, Li K, Liao X, Zhao Q. Causal associations between inflammatory bowel disease and primary biliary cholangitis: a two-sample bidirectional Mendelian randomization study. Sci Rep. 2023;13(1):10950.ADSCrossRefPubMedPubMedCentral Zhao J, Li K, Liao X, Zhao Q. Causal associations between inflammatory bowel disease and primary biliary cholangitis: a two-sample bidirectional Mendelian randomization study. Sci Rep. 2023;13(1):10950.ADSCrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Tilg H, Adolph TE, Trauner M. Gut-liver axis: Pathophysiological concepts and clinical implications. Cell Metab. 2022;34(11):1700–18.CrossRefPubMed Tilg H, Adolph TE, Trauner M. Gut-liver axis: Pathophysiological concepts and clinical implications. Cell Metab. 2022;34(11):1700–18.CrossRefPubMed
33.
Zurück zum Zitat Chen L, Jiao T, Liu W, Luo Y, Wang J, Guo X, Tong X, Lin Z, Sun C, Wang K, et al. Hepatic cytochrome P450 8B1 and cholic acid potentiate intestinal epithelial injury in colitis by suppressing intestinal stem cell renewal. Cell Stem Cell. 2022;29(9):1366-1381.e1369.CrossRefPubMedPubMedCentral Chen L, Jiao T, Liu W, Luo Y, Wang J, Guo X, Tong X, Lin Z, Sun C, Wang K, et al. Hepatic cytochrome P450 8B1 and cholic acid potentiate intestinal epithelial injury in colitis by suppressing intestinal stem cell renewal. Cell Stem Cell. 2022;29(9):1366-1381.e1369.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Muratori P, Muratori L, Guidi M, Maccariello S, Pappas G, Ferrari R, Gionchetti P, Campieri M, Bianchi FB. Anti-Saccharomyces cerevisiae antibodies (ASCA) and autoimmune liver diseases. Clin Exp Immunol. 2003;132(3):473–6.CrossRefPubMedPubMedCentral Muratori P, Muratori L, Guidi M, Maccariello S, Pappas G, Ferrari R, Gionchetti P, Campieri M, Bianchi FB. Anti-Saccharomyces cerevisiae antibodies (ASCA) and autoimmune liver diseases. Clin Exp Immunol. 2003;132(3):473–6.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Granito A, Zauli D, Muratori P, Muratori L, Grassi A, Bortolotti R, Petrolini N, Veronesi L, Gionchetti P, Bianchi FB, et al. Anti-Saccharomyces cerevisiae and perinuclear anti-neutrophil cytoplasmic antibodies in coeliac disease before and after gluten-free diet. Aliment Pharmacol Ther. 2005;21(7):881–7.CrossRefPubMed Granito A, Zauli D, Muratori P, Muratori L, Grassi A, Bortolotti R, Petrolini N, Veronesi L, Gionchetti P, Bianchi FB, et al. Anti-Saccharomyces cerevisiae and perinuclear anti-neutrophil cytoplasmic antibodies in coeliac disease before and after gluten-free diet. Aliment Pharmacol Ther. 2005;21(7):881–7.CrossRefPubMed
36.
Zurück zum Zitat Granito A, Muratori P, Tovoli F, Muratori L. Anti-neutrophil cytoplasm antibodies (ANCA) in autoimmune diseases: a matter of laboratory technique and clinical setting. Autoimmun Rev. 2021;20(4):102787.CrossRefPubMed Granito A, Muratori P, Tovoli F, Muratori L. Anti-neutrophil cytoplasm antibodies (ANCA) in autoimmune diseases: a matter of laboratory technique and clinical setting. Autoimmun Rev. 2021;20(4):102787.CrossRefPubMed
37.
Zurück zum Zitat Israeli E, Grotto I, Gilburd B, Balicer RD, Goldin E, Wiik A, Shoenfeld Y. Anti-Saccharomyces cerevisiae and antineutrophil cytoplasmic antibodies as predictors of inflammatory bowel disease. Gut. 2005;54(9):1232–6.CrossRefPubMedPubMedCentral Israeli E, Grotto I, Gilburd B, Balicer RD, Goldin E, Wiik A, Shoenfeld Y. Anti-Saccharomyces cerevisiae and antineutrophil cytoplasmic antibodies as predictors of inflammatory bowel disease. Gut. 2005;54(9):1232–6.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Mo X, Guo Y, Qian Q, Fu M, Zhang H. Phosphorylation-related SNPs influence lipid levels and rheumatoid arthritis risk by altering gene expression and plasma protein levels. Rheumatology (Oxford). 2020;59(4):889–98.CrossRefPubMed Mo X, Guo Y, Qian Q, Fu M, Zhang H. Phosphorylation-related SNPs influence lipid levels and rheumatoid arthritis risk by altering gene expression and plasma protein levels. Rheumatology (Oxford). 2020;59(4):889–98.CrossRefPubMed
39.
Zurück zum Zitat de Boer YS, van Gerven NM, Zwiers A, Verwer BJ, van Hoek B, van Erpecum KJ, Beuers U, van Buuren HR, Drenth JP, den Ouden JW, et al. Genome-wide association study identifies variants associated with autoimmune hepatitis type 1. Gastroenterology. 2014;147(2):443-452.e445.CrossRefPubMed de Boer YS, van Gerven NM, Zwiers A, Verwer BJ, van Hoek B, van Erpecum KJ, Beuers U, van Buuren HR, Drenth JP, den Ouden JW, et al. Genome-wide association study identifies variants associated with autoimmune hepatitis type 1. Gastroenterology. 2014;147(2):443-452.e445.CrossRefPubMed
40.
Zurück zum Zitat Umemura T, Joshita S, Hamano H, Yoshizawa K, Kawa S, Tanaka E, Ota M. Association of autoimmune hepatitis with Src homology 2 adaptor protein 3 gene polymorphisms in Japanese patients. J Hum Genet. 2017;62(11):963–7.CrossRefPubMed Umemura T, Joshita S, Hamano H, Yoshizawa K, Kawa S, Tanaka E, Ota M. Association of autoimmune hepatitis with Src homology 2 adaptor protein 3 gene polymorphisms in Japanese patients. J Hum Genet. 2017;62(11):963–7.CrossRefPubMed
41.
Zurück zum Zitat Chaouali M, Fernandes V, Ghazouani E, Pereira L, Kochkar R. Association of STAT4, TGFβ1, SH2B3 and PTPN22 polymorphisms with autoimmune hepatitis. Exp Mol Pathol. 2018;105(3):279–84.CrossRefPubMed Chaouali M, Fernandes V, Ghazouani E, Pereira L, Kochkar R. Association of STAT4, TGFβ1, SH2B3 and PTPN22 polymorphisms with autoimmune hepatitis. Exp Mol Pathol. 2018;105(3):279–84.CrossRefPubMed
42.
Zurück zum Zitat Blombery P, Pazhakh V, Albuquerque AS, Maimaris J, Tu L, Briones Miranda B, Evans F, Thompson ER, Carpenter B, Proctor I, et al. Biallelic deleterious germline SH2B3 variants cause a novel syndrome of myeloproliferation and multi-organ autoimmunity. EJHaem. 2023;4(2):463–9.CrossRefPubMedPubMedCentral Blombery P, Pazhakh V, Albuquerque AS, Maimaris J, Tu L, Briones Miranda B, Evans F, Thompson ER, Carpenter B, Proctor I, et al. Biallelic deleterious germline SH2B3 variants cause a novel syndrome of myeloproliferation and multi-organ autoimmunity. EJHaem. 2023;4(2):463–9.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Pierre N, Huynh-Thu VA, Marichal T, Allez M, Bouhnik Y, Laharie D, Bourreille A, Colombel JF, Meuwis MA, Louis E. Distinct blood protein profiles associated with the risk of short-term and mid/long-term clinical relapse in patients with Crohn’s disease stopping infliximab: when the remission state hides different types of residual disease activity. Gut. 2023;72(3):443–50.CrossRefPubMed Pierre N, Huynh-Thu VA, Marichal T, Allez M, Bouhnik Y, Laharie D, Bourreille A, Colombel JF, Meuwis MA, Louis E. Distinct blood protein profiles associated with the risk of short-term and mid/long-term clinical relapse in patients with Crohn’s disease stopping infliximab: when the remission state hides different types of residual disease activity. Gut. 2023;72(3):443–50.CrossRefPubMed
44.
Zurück zum Zitat Brown JA, Sanidad KZ, Lucotti S, Lieber CM, Cox RM, Ananthanarayanan A, Basu S, Chen J, Shan M, Amir M, et al. Gut microbiota-derived metabolites confer protection against SARS-CoV-2 infection. Gut Microbes. 2022;14(1):2105609.CrossRefPubMedPubMedCentral Brown JA, Sanidad KZ, Lucotti S, Lieber CM, Cox RM, Ananthanarayanan A, Basu S, Chen J, Shan M, Amir M, et al. Gut microbiota-derived metabolites confer protection against SARS-CoV-2 infection. Gut Microbes. 2022;14(1):2105609.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Tabibian JH, Talwalkar JA, Lindor KD. Role of the microbiota and antibiotics in primary sclerosing cholangitis. Biomed Res Int. 2013;2013:389537.CrossRefPubMedPubMedCentral Tabibian JH, Talwalkar JA, Lindor KD. Role of the microbiota and antibiotics in primary sclerosing cholangitis. Biomed Res Int. 2013;2013:389537.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Larabi A, Barnich N, Nguyen HTT. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy. 2020;16(1):38–51.CrossRefPubMed Larabi A, Barnich N, Nguyen HTT. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy. 2020;16(1):38–51.CrossRefPubMed
47.
Zurück zum Zitat Kravtsova-Ivantsiv Y, Shomer I, Cohen-Kaplan V, Snijder B, Superti-Furga G, Gonen H, Sommer T, Ziv T, Admon A, Naroditsky I, et al. KPC1-mediated ubiquitination and proteasomal processing of NF-κB1 p105 to p50 restricts tumor growth. Cell. 2015;161(2):333–47.CrossRefPubMed Kravtsova-Ivantsiv Y, Shomer I, Cohen-Kaplan V, Snijder B, Superti-Furga G, Gonen H, Sommer T, Ziv T, Admon A, Naroditsky I, et al. KPC1-mediated ubiquitination and proteasomal processing of NF-κB1 p105 to p50 restricts tumor growth. Cell. 2015;161(2):333–47.CrossRefPubMed
48.
Zurück zum Zitat Gulei D, Drula R, Ghiaur G, Buzoianu AD, Kravtsova-Ivantsiv Y, Tomuleasa C, Ciechanover A. The tumor suppressor functions of ubiquitin ligase KPC1: from cell-cycle control to NF-κB regulator. Cancer Res. 2023;83(11):1762–7.CrossRefPubMed Gulei D, Drula R, Ghiaur G, Buzoianu AD, Kravtsova-Ivantsiv Y, Tomuleasa C, Ciechanover A. The tumor suppressor functions of ubiquitin ligase KPC1: from cell-cycle control to NF-κB regulator. Cancer Res. 2023;83(11):1762–7.CrossRefPubMed
49.
Zurück zum Zitat Ioachim EE, Katsanos KH, Michael MC, Tsianos EV, Agnantis NJ. Immunohistochemical expression of cyclin D1, cyclin E, p21/waf1 and p27/kip1 in inflammatory bowel disease: correlation with other cell-cycle-related proteins (Rb, p53, ki-67 and PCNA) and clinicopathological features. Int J Colorectal Dis. 2004;19(4):325–33.CrossRefPubMed Ioachim EE, Katsanos KH, Michael MC, Tsianos EV, Agnantis NJ. Immunohistochemical expression of cyclin D1, cyclin E, p21/waf1 and p27/kip1 in inflammatory bowel disease: correlation with other cell-cycle-related proteins (Rb, p53, ki-67 and PCNA) and clinicopathological features. Int J Colorectal Dis. 2004;19(4):325–33.CrossRefPubMed
50.
Zurück zum Zitat Giuffrida P, Di Sabatino A. Targeting T cells in inflammatory bowel disease. Pharmacol Res. 2020;159:105040.CrossRefPubMed Giuffrida P, Di Sabatino A. Targeting T cells in inflammatory bowel disease. Pharmacol Res. 2020;159:105040.CrossRefPubMed
51.
Zurück zum Zitat Poch T, Krause J, Casar C, Liwinski T, Glau L, Kaufmann M, Ahrenstorf AE, Hess LU, Ziegler AE, Martrus G, et al. Single-cell atlas of hepatic T cells reveals expansion of liver-resident naive-like CD4(+) T cells in primary sclerosing cholangitis. J Hepatol. 2021;75(2):414–23.CrossRefPubMedPubMedCentral Poch T, Krause J, Casar C, Liwinski T, Glau L, Kaufmann M, Ahrenstorf AE, Hess LU, Ziegler AE, Martrus G, et al. Single-cell atlas of hepatic T cells reveals expansion of liver-resident naive-like CD4(+) T cells in primary sclerosing cholangitis. J Hepatol. 2021;75(2):414–23.CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Richardson N, Wootton GE, Bozward AG, Oo YH. Challenges and opportunities in achieving effective regulatory T cell therapy in autoimmune liver disease. Semin Immunopathol. 2022;44(4):461–74.CrossRefPubMedPubMedCentral Richardson N, Wootton GE, Bozward AG, Oo YH. Challenges and opportunities in achieving effective regulatory T cell therapy in autoimmune liver disease. Semin Immunopathol. 2022;44(4):461–74.CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Schuster C, Gerold KD, Schober K, Probst L, Boerner K, Kim MJ, Ruckdeschel A, Serwold T, Kissler S. The autoimmunity-associated gene CLEC16A modulates thymic epithelial cell autophagy and alters T cell selection. Immunity. 2015;42(5):942–52.CrossRefPubMedPubMedCentral Schuster C, Gerold KD, Schober K, Probst L, Boerner K, Kim MJ, Ruckdeschel A, Serwold T, Kissler S. The autoimmunity-associated gene CLEC16A modulates thymic epithelial cell autophagy and alters T cell selection. Immunity. 2015;42(5):942–52.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Lanata CM, Nititham J, Taylor KE, Chung SA, Torgerson DG, Seldin MF, Pons-Estel BA, Tusié-Luna T, Tsao BP, Morand EF, et al. Genetic contributions to lupus nephritis in a multi-ethnic cohort of systemic lupus erythematous patients. PLoS One. 2018;13(6):e0199003.CrossRefPubMedPubMedCentral Lanata CM, Nititham J, Taylor KE, Chung SA, Torgerson DG, Seldin MF, Pons-Estel BA, Tusié-Luna T, Tsao BP, Morand EF, et al. Genetic contributions to lupus nephritis in a multi-ethnic cohort of systemic lupus erythematous patients. PLoS One. 2018;13(6):e0199003.CrossRefPubMedPubMedCentral
Metadaten
Titel
Investigating the shared genetic architecture between primary sclerosing cholangitis and inflammatory bowel diseases: a Mendelian randomization study
verfasst von
Xuan Dong
Li-Li Gong
Mei-Zhu Hong
Jin-Shui Pan
Publikationsdatum
01.12.2024
Verlag
BioMed Central
Erschienen in
BMC Gastroenterology / Ausgabe 1/2024
Elektronische ISSN: 1471-230X
DOI
https://doi.org/10.1186/s12876-024-03162-6

Weitere Artikel der Ausgabe 1/2024

BMC Gastroenterology 1/2024 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hodgkin Lymphom: BrECADD-Regime übertrifft die Erwartungen

05.06.2024 ASCO 2024 Kongressbericht

Das Kombinationsregime BrECADD mit Brentuximab vedotin ermöglichte in der Studie HD21 beim fortgeschrittenen klassischen Hodgkin-Lymphom eine unerwartet hohe progressionsfreie Überlebensrate von 94,3% nach vier Jahren. Gleichzeitig war das Regime besser tolerabel als der bisherige Standard eBEACOPP.

Antikörper-Drug-Konjugat verdoppelt PFS bei Multiplem Myelom

05.06.2024 ASCO 2024 Nachrichten

Zwei Phase-3-Studien deuten auf erhebliche Vorteile des Antikörper-Wirkstoff-Konjugats Belantamab-Mafodotin bei vorbehandelten Personen mit Multiplem Myelom: Im Vergleich mit einer Standard-Tripeltherapie wurde das progressionsfreie Überleben teilweise mehr als verdoppelt.

Neuer TKI gegen CML: Höhere Wirksamkeit, seltener Nebenwirkungen

05.06.2024 Chronische myeloische Leukämie Nachrichten

Der Tyrosinkinasehemmer (TKI) Asciminib ist älteren Vertretern dieser Gruppe bei CML offenbar überlegen: Personen mit frisch diagnostizierter CML entwickelten damit in einer Phase-3-Studie häufiger eine gut molekulare Response, aber seltener ernste Nebenwirkungen.

Hereditäres Angioödem: Tablette könnte Akuttherapie erleichtern

05.06.2024 Hereditäres Angioödem Nachrichten

Medikamente zur Bedarfstherapie bei hereditärem Angioödem sind bisher nur als Injektionen und Infusionen verfügbar. Der Arzneistoff Sebetralstat kann oral verabreicht werden und liefert vielversprechende Daten.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.