Skip to main content
Erschienen in: Lasers in Medical Science 9/2022

28.07.2022 | Original Article

Iron oxide nanoparticles coated with polydopamine as a potential nano-photothermal agent for treatment of melanoma cancer: an in vivo study

verfasst von: Fahimeh Hossein Beigi, Soheila Sharifian Jazi, Daryoush Shahbazi-Gahrouei, Pegah Moradi Khaniabadi, Hossein Hafezi, Ramesh Monajemi, Gholam Reza Amiri

Erschienen in: Lasers in Medical Science | Ausgabe 9/2022

Einloggen, um Zugang zu erhalten

Abstract

Melanoma is a metastatic cancer resistant to a wide range of therapies, including standard chemotherapy and radiation therapy, and cannot be treated with existing treatments owing to its intrinsic drug resistance. In terms of convenience and cheap cost of fabrication, one of the novel treatments is using polydopamine-coated iron oxide nanoparticles (IONs@PDA). Iron oxide nanoparticles (IONs) were synthesized (7.36 nm) and coated with polydopamine (15–20 nm). To examine the effect of photothermal ablation in melanoma cells (B16-F10), a Q-switched ruby laser (λ = 694 nm, spot size = 4 mm, output power = 5 J/s) was used. The prepared nanoprobe was applied to mice, and their survival after treatment was evaluated. Then histopathological studies were done on the livers and skins of the treated mice. The nanoparticles absorb the laser, raising the temperature and initiating photothermal treatment, with significant apoptosis (74%) after the 4th time of treatment. Photothermal therapy (PTT) by using IONs@PDA proved to be effective in the treatment of melanoma cells (tumor size of < 2 mm) without side effects. The lifespan of mice was significantly increased in a group of mice post-administered IONs@PDA and laser ablation. The fabricated nanoprobe (IONs@PDA) enhanced the melanoma cell apoptosis in the mice model, and it has promise for the treatment of melanoma (B16-F10) cells using photothermal therapy.
Literatur
1.
Zurück zum Zitat Lin L-S et al (2014) Multifunctional Fe3O4@ polydopamine core–shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano 8(4):3876–3883CrossRefPubMedPubMedCentral Lin L-S et al (2014) Multifunctional Fe3O4@ polydopamine core–shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano 8(4):3876–3883CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Naidoo C, Kruger CA, Abrahamse H (2018) Photodynamic therapy for metastatic melanoma treatment: a review. Technol Cancer Res Treat 17:1–15CrossRef Naidoo C, Kruger CA, Abrahamse H (2018) Photodynamic therapy for metastatic melanoma treatment: a review. Technol Cancer Res Treat 17:1–15CrossRef
3.
Zurück zum Zitat Nkune NW, Abrahamse H (2021) Nanoparticle-based drug delivery systems for photodynamic therapy of metastatic melanoma: a review. Int J Mol Sci 22(22):12549CrossRefPubMedPubMedCentral Nkune NW, Abrahamse H (2021) Nanoparticle-based drug delivery systems for photodynamic therapy of metastatic melanoma: a review. Int J Mol Sci 22(22):12549CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Dheyab MA et al (2021) Distinct advantages of using sonochemical over laser ablation methods for a rapid-high quality gold nanoparticles production. Mater Res Express 8(1):015009CrossRef Dheyab MA et al (2021) Distinct advantages of using sonochemical over laser ablation methods for a rapid-high quality gold nanoparticles production. Mater Res Express 8(1):015009CrossRef
5.
Zurück zum Zitat Khaniabadi PM et al (2021) Structure, morphology and absorption characteristics of gold nanoparticles produced via PLAL method: role of low energy X-ray dosage. Surf Interfaces 24:101139CrossRef Khaniabadi PM et al (2021) Structure, morphology and absorption characteristics of gold nanoparticles produced via PLAL method: role of low energy X-ray dosage. Surf Interfaces 24:101139CrossRef
6.
Zurück zum Zitat Khaniabadi PM et al (2020) Trastuzumab conjugated porphyrin-superparamagnetic iron oxide nanoparticle: a potential PTT-MRI bimodal agent for herceptin positive breast cancer. Photodiagn Photodyn Ther 31:101896CrossRef Khaniabadi PM et al (2020) Trastuzumab conjugated porphyrin-superparamagnetic iron oxide nanoparticle: a potential PTT-MRI bimodal agent for herceptin positive breast cancer. Photodiagn Photodyn Ther 31:101896CrossRef
7.
Zurück zum Zitat Mehrdel B et al (2020) Identifying metal nanoparticle size effect on sensing common human plasma protein by counting the sensitivity of optical absorption spectra damping. Plasmonics 15(1):123–133CrossRef Mehrdel B et al (2020) Identifying metal nanoparticle size effect on sensing common human plasma protein by counting the sensitivity of optical absorption spectra damping. Plasmonics 15(1):123–133CrossRef
8.
Zurück zum Zitat Ali Dheyab M et al (2021) Recent advances in synthesis, medical applications and challenges for gold-coated iron oxide: comprehensive study. Nanomaterials 11(8):2147CrossRefPubMedPubMedCentral Ali Dheyab M et al (2021) Recent advances in synthesis, medical applications and challenges for gold-coated iron oxide: comprehensive study. Nanomaterials 11(8):2147CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Dheyab MA et al (2021) Potential of a sonochemical approach to generate MRI-PPT theranostic agents for breast cancer. Photodiagn Photodyn Ther 33:102177CrossRef Dheyab MA et al (2021) Potential of a sonochemical approach to generate MRI-PPT theranostic agents for breast cancer. Photodiagn Photodyn Ther 33:102177CrossRef
10.
Zurück zum Zitat Gu X et al (2015) Mussel-inspired polydopamine coated iron oxide nanoparticles for biomedical application. J Nanomater 2015:3CrossRef Gu X et al (2015) Mussel-inspired polydopamine coated iron oxide nanoparticles for biomedical application. J Nanomater 2015:3CrossRef
11.
Zurück zum Zitat Piñeiro Y et al (2015) Iron oxide based nanoparticles for magnetic hyperthermia strategies in biological applications. Eur J Inorg Chem 2015(27):4495–4509CrossRef Piñeiro Y et al (2015) Iron oxide based nanoparticles for magnetic hyperthermia strategies in biological applications. Eur J Inorg Chem 2015(27):4495–4509CrossRef
12.
Zurück zum Zitat Khaniabadi PM et al (2017) Breast cancer cell targeted MR molecular imaging probe: anti-MUC1 antibody-based magnetic nanoparticles. IOP Conf Series: J Phys Conf Ser 851:012014 Khaniabadi PM et al (2017) Breast cancer cell targeted MR molecular imaging probe: anti-MUC1 antibody-based magnetic nanoparticles. IOP Conf Series: J Phys Conf Ser 851:012014
13.
Zurück zum Zitat Suardi N et al (2021) Fractionated low-level laser irradiation on breast cancer (MCF 7 cells) treatment. Lasers Med Sci 37:1265–1271 Suardi N et al (2021) Fractionated low-level laser irradiation on breast cancer (MCF 7 cells) treatment. Lasers Med Sci 37:1265–1271
14.
Zurück zum Zitat Hoang Thi TT et al (2019) Functional magnetic core-shell system-based iron oxide nanoparticle coated with biocompatible copolymer for anticancer drug delivery. Pharmaceutics 11(3):120CrossRefPubMedPubMedCentral Hoang Thi TT et al (2019) Functional magnetic core-shell system-based iron oxide nanoparticle coated with biocompatible copolymer for anticancer drug delivery. Pharmaceutics 11(3):120CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Shahbazi-Gahrouei D et al (2019) A literature review on multimodality molecular imaging nanoprobes for cancer detection. Polish J Medical Phys Eng 25(2):57–68CrossRef Shahbazi-Gahrouei D et al (2019) A literature review on multimodality molecular imaging nanoprobes for cancer detection. Polish J Medical Phys Eng 25(2):57–68CrossRef
16.
Zurück zum Zitat Khaniabadi PM et al (2017) Magnetic iron oxide nanoparticles as T2 MR imaging contrast agent for detection of breast cancer (MCF-7) cell. Avicenna J Med Biotechnol 9(4):181 Khaniabadi PM et al (2017) Magnetic iron oxide nanoparticles as T2 MR imaging contrast agent for detection of breast cancer (MCF-7) cell. Avicenna J Med Biotechnol 9(4):181
17.
Zurück zum Zitat Beigi FH et al (2020) Assessment of ploy dopamine coated Fe3O4 nanoparticles for melanoma (B16–F10 and A-375) cells detection. Anticancer Agents Med Chem 20(16):1918–1926CrossRefPubMed Beigi FH et al (2020) Assessment of ploy dopamine coated Fe3O4 nanoparticles for melanoma (B16–F10 and A-375) cells detection. Anticancer Agents Med Chem 20(16):1918–1926CrossRefPubMed
18.
Zurück zum Zitat Xie J et al (2007) Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv Mater 19(20):3163–3166CrossRef Xie J et al (2007) Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv Mater 19(20):3163–3166CrossRef
19.
Zurück zum Zitat Singh N et al (2019) Polydopamine modified superparamagnetic iron oxide nanoparticles as multifunctional nanocarrier for targeted prostate cancer treatment. Nanomaterials 9(2):138CrossRefPubMedPubMedCentral Singh N et al (2019) Polydopamine modified superparamagnetic iron oxide nanoparticles as multifunctional nanocarrier for targeted prostate cancer treatment. Nanomaterials 9(2):138CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Mrówczyński R et al (2016) Assessment of polydopamine coated magnetic nanoparticles in doxorubicin delivery. RSC Adv 6(7):5936–5943CrossRef Mrówczyński R et al (2016) Assessment of polydopamine coated magnetic nanoparticles in doxorubicin delivery. RSC Adv 6(7):5936–5943CrossRef
21.
Zurück zum Zitat Fatahian S et al (2011) Preparation and magnetic properties investigation of Fe3O4 nanoparticles 99mTc labeled and Fe3O4 nanoparticles DMSA coated. Dig J Nanomater Bios 6(3):1161–1165 Fatahian S et al (2011) Preparation and magnetic properties investigation of Fe3O4 nanoparticles 99mTc labeled and Fe3O4 nanoparticles DMSA coated. Dig J Nanomater Bios 6(3):1161–1165
22.
Zurück zum Zitat Zhang Y et al (2018) Temperature-dependent cell death patterns induced by functionalized gold nanoparticle photothermal therapy in melanoma cells. Sci Rep 8(1):1–9 Zhang Y et al (2018) Temperature-dependent cell death patterns induced by functionalized gold nanoparticle photothermal therapy in melanoma cells. Sci Rep 8(1):1–9
23.
Zurück zum Zitat Jiang Z et al (2020) Near-infrared heptamethine cyanine dye-based nanoscale coordination polymers with intrinsic nucleus-targeting for low temperature photothermal therapy. Nano Today 34:100910CrossRef Jiang Z et al (2020) Near-infrared heptamethine cyanine dye-based nanoscale coordination polymers with intrinsic nucleus-targeting for low temperature photothermal therapy. Nano Today 34:100910CrossRef
24.
Zurück zum Zitat Balivada S et al (2010) A/C magnetic hyperthermia of melanoma mediated by iron (0)/iron oxide core/shell magnetic nanoparticles: a mouse study. BMC Cancer 10(1):119CrossRefPubMedPubMedCentral Balivada S et al (2010) A/C magnetic hyperthermia of melanoma mediated by iron (0)/iron oxide core/shell magnetic nanoparticles: a mouse study. BMC Cancer 10(1):119CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Salmon R et al (1998) Treatment of liver metastases from uveal melanoma by combined surgery—chemotherapy. Eur J Surg Oncol (EJSO) 24(2):127–130CrossRefPubMed Salmon R et al (1998) Treatment of liver metastases from uveal melanoma by combined surgery—chemotherapy. Eur J Surg Oncol (EJSO) 24(2):127–130CrossRefPubMed
26.
Zurück zum Zitat Minton JP, Ketcham AS (1964) The effect of ruby laser radiation on the cloudman S-91 melanoma in the CDBA/2F1 hybrid mouse. Cancer 17(10):1305–1309CrossRefPubMed Minton JP, Ketcham AS (1964) The effect of ruby laser radiation on the cloudman S-91 melanoma in the CDBA/2F1 hybrid mouse. Cancer 17(10):1305–1309CrossRefPubMed
Metadaten
Titel
Iron oxide nanoparticles coated with polydopamine as a potential nano-photothermal agent for treatment of melanoma cancer: an in vivo study
verfasst von
Fahimeh Hossein Beigi
Soheila Sharifian Jazi
Daryoush Shahbazi-Gahrouei
Pegah Moradi Khaniabadi
Hossein Hafezi
Ramesh Monajemi
Gholam Reza Amiri
Publikationsdatum
28.07.2022
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 9/2022
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-022-03599-9

Weitere Artikel der Ausgabe 9/2022

Lasers in Medical Science 9/2022 Zur Ausgabe