Skip to main content
Erschienen in: Current Diabetes Reports 9/2016

01.09.2016 | Microvascular Complications—Neuropathy (R Pop-Busui, Section Editor)

Is Stem Cell Transplantation Ready for Prime Time in Diabetic Polyneuropathy?

verfasst von: Hiroki Mizukami, Soroku Yagihashi

Erschienen in: Current Diabetes Reports | Ausgabe 9/2016

Einloggen, um Zugang zu erhalten

Abstract

Diabetic polyneuropathy (DPN) is the most common complication that emerges early in patients who have diabetes. Curative treatment for overt or symptomatic DPN has not been established, requiring much effort to explore new modalities. Thus, the use of various kinds of stem cells as a potential therapeutic option for DPN is of particular interest. The beneficial effects were proposed to be attributed to either cytokine released from transplanted stem cells or the differentiation of stem cells to substitute the damaged peripheral nerve. Furthermore, based on the concept that humoral factors secreted from stem cells play a pivotal role in tissue regeneration, the utilization of conditioned medium derived from the stem cell culture serves as a novel tool for regenerative therapy. However, many questions have not been yet answered to determine whether stem cell therapy is essential in clinical application of DPN. In this report, we review the current status of preclinical studies on stem cell therapy for DPN and discuss future prospects.
Literatur
1.
Zurück zum Zitat Global status report on noncommunicable diseases 2014. Geneva, World Health Organization, 2012. Global status report on noncommunicable diseases 2014. Geneva, World Health Organization, 2012.
2.
Zurück zum Zitat Wakai K, Nakai S, Kikuchi K, et al. Trends in incidence of end-stage renal disease in Japan, 1983–2000: age-adjusted and age-specific rates by gender and cause. Nephrol Dial Transplant. 2004;19:2044–52.CrossRefPubMed Wakai K, Nakai S, Kikuchi K, et al. Trends in incidence of end-stage renal disease in Japan, 1983–2000: age-adjusted and age-specific rates by gender and cause. Nephrol Dial Transplant. 2004;19:2044–52.CrossRefPubMed
3.
Zurück zum Zitat Boulton AJ. Management of diabetic peripheral neuropathy. Clin Diabetes. 2005;23:9–15.CrossRef Boulton AJ. Management of diabetic peripheral neuropathy. Clin Diabetes. 2005;23:9–15.CrossRef
5.
Zurück zum Zitat Umapathi T, Tan WL, Loke SC, et al. Intraepidermal nerve fiber density as a marker of early diabetic neuropathy. Muscle Nerve. 2007;35:591–8.CrossRefPubMed Umapathi T, Tan WL, Loke SC, et al. Intraepidermal nerve fiber density as a marker of early diabetic neuropathy. Muscle Nerve. 2007;35:591–8.CrossRefPubMed
6.
Zurück zum Zitat Greenbaum D, Richardson PC, Salmon MV, et al. Pathologic observation on six cases of diabetic neuropathy. Brain. 1964;87:201–13.CrossRefPubMed Greenbaum D, Richardson PC, Salmon MV, et al. Pathologic observation on six cases of diabetic neuropathy. Brain. 1964;87:201–13.CrossRefPubMed
7.
Zurück zum Zitat Yagihashi S, Matsunaga M. Ultrastructural pathology of peripheral nerves in patients with diabetic neuropathy. Tohoku J Exp Med. 1979;129:357–66.CrossRefPubMed Yagihashi S, Matsunaga M. Ultrastructural pathology of peripheral nerves in patients with diabetic neuropathy. Tohoku J Exp Med. 1979;129:357–66.CrossRefPubMed
8.
Zurück zum Zitat Yagihashi S. Pathology and pathogenetic mechanisms of diabetic neuropathy. Diabetes Metab Rev. 1995;11:193–225.CrossRefPubMed Yagihashi S. Pathology and pathogenetic mechanisms of diabetic neuropathy. Diabetes Metab Rev. 1995;11:193–225.CrossRefPubMed
9.
Zurück zum Zitat Uccioli L, Mancini L, Giordano A, et al. Lower limb arterio-venous shunts, autonomic neuropathy and diabetic foot. Diabetes Res Clin Pract. 1992;16:123–30.CrossRefPubMed Uccioli L, Mancini L, Giordano A, et al. Lower limb arterio-venous shunts, autonomic neuropathy and diabetic foot. Diabetes Res Clin Pract. 1992;16:123–30.CrossRefPubMed
10.
Zurück zum Zitat Quattrini C, Jeziorska M, Boulton AJ, et al. Reduced vascular endothelial growth factor expression and intra-epidermal nerve fiber loss in human diabetic neuropathy. Diabetes Care. 2008;31:140–5.CrossRefPubMed Quattrini C, Jeziorska M, Boulton AJ, et al. Reduced vascular endothelial growth factor expression and intra-epidermal nerve fiber loss in human diabetic neuropathy. Diabetes Care. 2008;31:140–5.CrossRefPubMed
11.
Zurück zum Zitat The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.CrossRef The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.CrossRef
12.
Zurück zum Zitat UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.CrossRef UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.CrossRef
13.
Zurück zum Zitat Martin CL, Albers J, Herman WH, et al. Neuropathy among the diabetes control and complications trial cohort 8 years after trial completion. Diabetes Care. 2006;29:340–4.CrossRefPubMedPubMedCentral Martin CL, Albers J, Herman WH, et al. Neuropathy among the diabetes control and complications trial cohort 8 years after trial completion. Diabetes Care. 2006;29:340–4.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Kato N, Nemoto K, Nakanishi K, et al. Nonviral gene transfer of human hepatocyte growth factor improves streptozotocin-induced diabetic neuropathy in rats. Diabetes. 2005;54:846–54.CrossRefPubMed Kato N, Nemoto K, Nakanishi K, et al. Nonviral gene transfer of human hepatocyte growth factor improves streptozotocin-induced diabetic neuropathy in rats. Diabetes. 2005;54:846–54.CrossRefPubMed
15.
Zurück zum Zitat Mizukami H, Yagihashi S. Exploring a new therapy for diabetic polyneuropathy -the application of stem cell transplantation. Front Endocrinol (Lausanne). 2014;5:45. Mizukami H, Yagihashi S. Exploring a new therapy for diabetic polyneuropathy -the application of stem cell transplantation. Front Endocrinol (Lausanne). 2014;5:45.
16.
Zurück zum Zitat Naruse K, Hamada Y, Nakashima E, et al. Therapeutic neovascularization using cord blood-derived endothelial progenitor cells for diabetic neuropathy. Diabetes. 2005;54:1823–8.CrossRefPubMed Naruse K, Hamada Y, Nakashima E, et al. Therapeutic neovascularization using cord blood-derived endothelial progenitor cells for diabetic neuropathy. Diabetes. 2005;54:1823–8.CrossRefPubMed
17.
Zurück zum Zitat Jeong JO, Kim MO, Kim H, et al. Dual angiogenic and neurotrophic effects of bone marrow-derived endothelial progenitor cells on diabetic neuropathy. Circulation. 2009;119:699–708.CrossRefPubMedPubMedCentral Jeong JO, Kim MO, Kim H, et al. Dual angiogenic and neurotrophic effects of bone marrow-derived endothelial progenitor cells on diabetic neuropathy. Circulation. 2009;119:699–708.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Kamihata H, Matsubara H, Nishiue T, et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation. 2001;104:1046–52.CrossRefPubMed Kamihata H, Matsubara H, Nishiue T, et al. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation. 2001;104:1046–52.CrossRefPubMed
19.
Zurück zum Zitat Hasegawa T, Kosaki A, Shimizu K, et al. Amelioration of diabetic peripheral neuropathy by implantation of hematopoietic mononuclear cells in streptozotocin-induced diabetic rats. Exp Neurol. 2006;199:274–80.CrossRefPubMed Hasegawa T, Kosaki A, Shimizu K, et al. Amelioration of diabetic peripheral neuropathy by implantation of hematopoietic mononuclear cells in streptozotocin-induced diabetic rats. Exp Neurol. 2006;199:274–80.CrossRefPubMed
20.
Zurück zum Zitat Kim H, Park JS, Choi YJ, et al. Bone marrow mononuclear cells have neurovascular tropism and improve diabetic neuropathy. Stem Cells. 2009;27:1686–96.CrossRefPubMedPubMedCentral Kim H, Park JS, Choi YJ, et al. Bone marrow mononuclear cells have neurovascular tropism and improve diabetic neuropathy. Stem Cells. 2009;27:1686–96.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Naruse K, Sato J, Funakubo M, et al. Transplantation of bone marrow-derived mononuclear cells improves mechanical hyperalgesia, coldallodynia and nerve function in diabetic neuropathy. PLoS One. 2011;6, e27458.CrossRefPubMedPubMedCentral Naruse K, Sato J, Funakubo M, et al. Transplantation of bone marrow-derived mononuclear cells improves mechanical hyperalgesia, coldallodynia and nerve function in diabetic neuropathy. PLoS One. 2011;6, e27458.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.CrossRefPubMed Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.CrossRefPubMed
23.
Zurück zum Zitat Nakagawa M, Takizawa N, Narita M, et al. Promotion of direct reprogramming by transformation-deficient Myc. Proc Natl Acad Sci U S A. 2010;107:14152–7.CrossRefPubMedPubMedCentral Nakagawa M, Takizawa N, Narita M, et al. Promotion of direct reprogramming by transformation-deficient Myc. Proc Natl Acad Sci U S A. 2010;107:14152–7.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Maekawa M, Yamaguchi K, Nakamura T, et al. Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature. 2011;474:225–9.CrossRefPubMed Maekawa M, Yamaguchi K, Nakamura T, et al. Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1. Nature. 2011;474:225–9.CrossRefPubMed
25.
Zurück zum Zitat Koyanagi-Aoi M, Ohnuki M, Takahashi K, et al. Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells. Proc Natl Acad Sci U S A. 2013;110:20569–74.CrossRefPubMedPubMedCentral Koyanagi-Aoi M, Ohnuki M, Takahashi K, et al. Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells. Proc Natl Acad Sci U S A. 2013;110:20569–74.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Okawa T, Kamiya H, Himeno T, et al. Transplantation of neural crest-like cells derived from induced pluripotent stem cells improves diabetic polyneuropathy in mice. Cell Transplant. 2013;22:1767–83.CrossRefPubMed Okawa T, Kamiya H, Himeno T, et al. Transplantation of neural crest-like cells derived from induced pluripotent stem cells improves diabetic polyneuropathy in mice. Cell Transplant. 2013;22:1767–83.CrossRefPubMed
27.
Zurück zum Zitat Blum B, Benvenisty N. The tumorigenicity of human embryonic stem cells. Adv Cancer Res. 2008;100:133–58.CrossRefPubMed Blum B, Benvenisty N. The tumorigenicity of human embryonic stem cells. Adv Cancer Res. 2008;100:133–58.CrossRefPubMed
28.•
Zurück zum Zitat Himeno T, Kamiya H, Naruse K, et al. Angioblast Derived from ES Cells Construct Blood Vessels and Ameliorate Diabetic Polyneuropathy in Mice. J Diabetes Res. 2015;2015:257230. This study provides a thorough description of the application of pre-differentiated ES cells into angioblast-like cells to DPN.CrossRefPubMedPubMedCentral Himeno T, Kamiya H, Naruse K, et al. Angioblast Derived from ES Cells Construct Blood Vessels and Ameliorate Diabetic Polyneuropathy in Mice. J Diabetes Res. 2015;2015:257230. This study provides a thorough description of the application of pre-differentiated ES cells into angioblast-like cells to DPN.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966;16:381–90.PubMed Friedenstein AJ, Piatetzky-Shapiro II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol. 1966;16:381–90.PubMed
30.
Zurück zum Zitat Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28.CrossRefPubMed Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28.CrossRefPubMed
31.
Zurück zum Zitat Asari T, Furukawa K, Tanaka S, et al. Mesenchymal stem cell isolation and characterization from human spinal ligaments. Biochem Biophys Res Commun. 2012;417:1193–9.CrossRefPubMed Asari T, Furukawa K, Tanaka S, et al. Mesenchymal stem cell isolation and characterization from human spinal ligaments. Biochem Biophys Res Commun. 2012;417:1193–9.CrossRefPubMed
32.
Zurück zum Zitat Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97:13625–30.CrossRefPubMedPubMedCentral Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97:13625–30.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Zannettino AC, Paton S, Arthur A, et al. Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol. 2008;214:413–21.CrossRefPubMed Zannettino AC, Paton S, Arthur A, et al. Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J Cell Physiol. 2008;214:413–21.CrossRefPubMed
35.
Zurück zum Zitat Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–301.CrossRefPubMed Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24:1294–301.CrossRefPubMed
36.
Zurück zum Zitat Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.CrossRefPubMed Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.CrossRefPubMed
37.
Zurück zum Zitat Zhu Y, Liu T, Song K, et al. Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct. 2008;26:664–75.CrossRefPubMed Zhu Y, Liu T, Song K, et al. Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct. 2008;26:664–75.CrossRefPubMed
38.
Zurück zum Zitat Sioud M. New insights into mesenchymal stromal cell-mediated T-cell suppression throughgalectins. Scand J Immunol. 2011;73:79–84.CrossRefPubMed Sioud M. New insights into mesenchymal stromal cell-mediated T-cell suppression throughgalectins. Scand J Immunol. 2011;73:79–84.CrossRefPubMed
39.
Zurück zum Zitat Shibata T, Naruse K, Kamiya H, et al. Transplantation of bone marrow-derived mesenchymal stem cells improves diabeticpolyneuropathy in rats. Diabetes. 2008;57:3099–107.CrossRefPubMedPubMedCentral Shibata T, Naruse K, Kamiya H, et al. Transplantation of bone marrow-derived mesenchymal stem cells improves diabeticpolyneuropathy in rats. Diabetes. 2008;57:3099–107.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Kim BJ, Jin HK, Bae JS. Bone marrow-derived mesenchymal stem cells improve the functioning of neurotrophic factors in a mouse model of diabetic neuropathy. Lab Anim Res. 2011;27:171–6.CrossRefPubMedPubMedCentral Kim BJ, Jin HK, Bae JS. Bone marrow-derived mesenchymal stem cells improve the functioning of neurotrophic factors in a mouse model of diabetic neuropathy. Lab Anim Res. 2011;27:171–6.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Hata M, Omi M, Kobayashi Y, et al. Transplantation of cultured dental pulp stem cells into the skeletal muscles ameliorated diabetic polyneuropathy: therapeutic plausibility of freshly isolated and cryopreserved dental pulp stem cells. Stem Cell Res Ther. 2015;6:162.CrossRefPubMedPubMedCentral Hata M, Omi M, Kobayashi Y, et al. Transplantation of cultured dental pulp stem cells into the skeletal muscles ameliorated diabetic polyneuropathy: therapeutic plausibility of freshly isolated and cryopreserved dental pulp stem cells. Stem Cell Res Ther. 2015;6:162.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Yang M, Sheng L, Zhang TR, et al. Stem cell therapy for lower extremity diabetic ulcers: where do we stand? Biomed Res Int. 2013;2013:462179.PubMedPubMedCentral Yang M, Sheng L, Zhang TR, et al. Stem cell therapy for lower extremity diabetic ulcers: where do we stand? Biomed Res Int. 2013;2013:462179.PubMedPubMedCentral
43.
Zurück zum Zitat Kato J, Kamiya H, Himeno T, et al. Mesenchymal stem cells ameliorate impaired wound healing through enhancing keratinocyte functions in diabetic foot ulcerations on the plantar skin of rats. J Diabetes Complicat. 2014;28:588–95.CrossRefPubMed Kato J, Kamiya H, Himeno T, et al. Mesenchymal stem cells ameliorate impaired wound healing through enhancing keratinocyte functions in diabetic foot ulcerations on the plantar skin of rats. J Diabetes Complicat. 2014;28:588–95.CrossRefPubMed
44.••
Zurück zum Zitat Kato Y, Iwata T, Morikawa S, et al. Allogeneic transplantation of an adipose-derived stem cell sheet combined with artificial skin accelerates wound healing in a rat wound model of type 2 diabetes and obesity. Diabetes. 2015;64:2723–34. This study provides a thorough description of the therapeutic application of processed ASCs as a sheet with artificial material to diabetic ulcer.CrossRefPubMed Kato Y, Iwata T, Morikawa S, et al. Allogeneic transplantation of an adipose-derived stem cell sheet combined with artificial skin accelerates wound healing in a rat wound model of type 2 diabetes and obesity. Diabetes. 2015;64:2723–34. This study provides a thorough description of the therapeutic application of processed ASCs as a sheet with artificial material to diabetic ulcer.CrossRefPubMed
45.
Zurück zum Zitat Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res. 2004;95:9–20.CrossRefPubMed Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res. 2004;95:9–20.CrossRefPubMed
46.
Zurück zum Zitat Berner A, Reichert JC, Woodruff MA, et al. Autologous vs. allogenic mesenchymal progenitor cells for the reconstruction of critical sized segmental tibial bone defects in aged sheep. Acta Biomater. 2013;9:7874–84.CrossRefPubMed Berner A, Reichert JC, Woodruff MA, et al. Autologous vs. allogenic mesenchymal progenitor cells for the reconstruction of critical sized segmental tibial bone defects in aged sheep. Acta Biomater. 2013;9:7874–84.CrossRefPubMed
47.
Zurück zum Zitat Tamama K, Kerpedjieva SS. Acceleration of wound healing by multiple growth factors and cytokines secreted from multipotential stromal cells/mesenchymal stem cells. Adv Wound Care (New Rochelle). 2012;1:177–82.CrossRef Tamama K, Kerpedjieva SS. Acceleration of wound healing by multiple growth factors and cytokines secreted from multipotential stromal cells/mesenchymal stem cells. Adv Wound Care (New Rochelle). 2012;1:177–82.CrossRef
Metadaten
Titel
Is Stem Cell Transplantation Ready for Prime Time in Diabetic Polyneuropathy?
verfasst von
Hiroki Mizukami
Soroku Yagihashi
Publikationsdatum
01.09.2016
Verlag
Springer US
Erschienen in
Current Diabetes Reports / Ausgabe 9/2016
Print ISSN: 1534-4827
Elektronische ISSN: 1539-0829
DOI
https://doi.org/10.1007/s11892-016-0776-9

Weitere Artikel der Ausgabe 9/2016

Current Diabetes Reports 9/2016 Zur Ausgabe

Health Care Delivery Systems and Implementation in Diabetes (EB Morton-Eggleston and ME McDonnell, Section Editors)

Effectiveness of Non-Primary Care-Based Smoking Cessation Interventions for Adults with Diabetes: A Systematic Literature Review

Treatment of Type 1 Diabetes (M Pietropaolo, Section Editor)

Management of Hypoglycemia in Children and Adolescents with Type 1 Diabetes Mellitus

Obesity (J McCaffery, Section Editor)

Food Insecurity and Diabetes in Developed Societies

Obesity (J McCaffery, Section Editor)

Food Decision-Making: Effects of Weight Status and Age

Microvascular Complications—Neuropathy (R Pop-Busui, Section Editor)

Diabetes and Cognitive Impairment

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.