Skip to main content
Erschienen in: World Journal of Pediatrics 1/2024

25.10.2023 | Review Article

Is tuberous sclerosis complex-associated autism a preventable and treatable disorder?

verfasst von: Paolo Curatolo, Mirte Scheper, Leonardo Emberti Gialloreti, Nicola Specchio, Eleonora Aronica

Erschienen in: World Journal of Pediatrics | Ausgabe 1/2024

Einloggen, um Zugang zu erhalten

Abstract

Background

Tuberous sclerosis complex (TSC) is a genetic disorder caused by inactivating mutations in the TSC1 and TSC2 genes, causing overactivation of the mechanistic (previously referred to as mammalian) target of rapamycin (mTOR) signaling pathway in fetal life. The mTOR pathway plays a crucial role in several brain processes leading to TSC-related epilepsy, intellectual disability, and autism spectrum disorder (ASD). Pre-natal or early post-natal diagnosis of TSC is now possible in a growing number of pre-symptomatic infants.

Data sources

We searched PubMed for peer-reviewed publications published between January 2010 and April 2023 with the terms “tuberous sclerosis”, “autism”, or “autism spectrum disorder”,” animal models”, “preclinical studies”, “neurobiology”, and “treatment”.

Results

Prospective studies have highlighted that developmental trajectories in TSC infants who were later diagnosed with ASD already show motor, visual and social communication skills in the first year of life delays. Reliable genetic, cellular, electroencephalography and magnetic resonance imaging biomarkers can identify pre-symptomatic TSC infants at high risk for having autism and epilepsy.

Conclusions

Preventing epilepsy or improving therapy for seizures associated with prompt and tailored treatment strategies for autism in a sensitive developmental time window could have the potential to mitigate autistic symptoms in infants with TSC.
Literatur
1.
Zurück zum Zitat American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington: American Psychiatric Association; 2013.CrossRef American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington: American Psychiatric Association; 2013.CrossRef
2.
Zurück zum Zitat Maenner MJ, Shaw KA, Bakian AV, Bilder DA, Durkin MS, Esler A, et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, United States, 2018. MMWR Surveill Summ. 2021;70:1–16.PubMedPubMedCentralCrossRef Maenner MJ, Shaw KA, Bakian AV, Bilder DA, Durkin MS, Esler A, et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, United States, 2018. MMWR Surveill Summ. 2021;70:1–16.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Tarver J, Palmer M, Webb S, Scott S, Slonims V, Simonoff E, et al. Child and parent outcomes following parent interventions for child emotional and behavioral problems in autism spectrum disorders: a systematic review and meta-analysis. Autism. 2019;23:1630–44.PubMedCrossRef Tarver J, Palmer M, Webb S, Scott S, Slonims V, Simonoff E, et al. Child and parent outcomes following parent interventions for child emotional and behavioral problems in autism spectrum disorders: a systematic review and meta-analysis. Autism. 2019;23:1630–44.PubMedCrossRef
4.
Zurück zum Zitat Wang SH, Zhang HT, Zou YY, Cheng SM, Zou XB, Chen KY. Efficacy and moderating factors of the Early Start Denver Model in Chinese toddlers with autism spectrum disorder: a longitudinal study. World J Pediatr. 2023;19:741–52.PubMedCrossRef Wang SH, Zhang HT, Zou YY, Cheng SM, Zou XB, Chen KY. Efficacy and moderating factors of the Early Start Denver Model in Chinese toddlers with autism spectrum disorder: a longitudinal study. World J Pediatr. 2023;19:741–52.PubMedCrossRef
5.
Zurück zum Zitat Aaronson B, Estes A, Rogers SJ, Dawson G, Bernier R. The early start Denver model intervention and mu rhythm attenuation in autism spectrum disorders. J Autism Dev Disord. 2022;52:3304–13.PubMedCrossRef Aaronson B, Estes A, Rogers SJ, Dawson G, Bernier R. The early start Denver model intervention and mu rhythm attenuation in autism spectrum disorders. J Autism Dev Disord. 2022;52:3304–13.PubMedCrossRef
6.
Zurück zum Zitat Cheroni C, Caporale N, Testa G. Autism spectrum disorder at the crossroad between genes and environment: contributions, convergences, and interactions in ASD developmental pathophysiology. Mol Autism. 2020;11:69.PubMedPubMedCentralCrossRef Cheroni C, Caporale N, Testa G. Autism spectrum disorder at the crossroad between genes and environment: contributions, convergences, and interactions in ASD developmental pathophysiology. Mol Autism. 2020;11:69.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Fernandez BA, Scherer SW. Syndromic autism spectrum disorders: moving from a clinically defined to a molecularly defined approach. Dialogues Clin Neurosci. 2017;19:353–71.PubMedPubMedCentralCrossRef Fernandez BA, Scherer SW. Syndromic autism spectrum disorders: moving from a clinically defined to a molecularly defined approach. Dialogues Clin Neurosci. 2017;19:353–71.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Lim HK, Yoon JH, Song M. Autism Spectrum disorder genes: disease-related networks and compensatory strategies. Front Mol Neurosci. 2022;15:922840.PubMedPubMedCentralCrossRef Lim HK, Yoon JH, Song M. Autism Spectrum disorder genes: disease-related networks and compensatory strategies. Front Mol Neurosci. 2022;15:922840.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Emberti Gialloreti L, Enea R, Di Micco V, Di Giovanni D, Curatolo P. Clustering analysis supports the detection of biological processes related to autism spectrum disorder. Genes (Basel). 2020;11:1476.PubMedCrossRef Emberti Gialloreti L, Enea R, Di Micco V, Di Giovanni D, Curatolo P. Clustering analysis supports the detection of biological processes related to autism spectrum disorder. Genes (Basel). 2020;11:1476.PubMedCrossRef
10.
Zurück zum Zitat Specchio N, Di Micco V, Trivisano M, Ferretti A, Curatolo P. The epilepsy-autism spectrum disorder phenotype in the era of molecular genetics and precision therapy. Epilepsia. 2022;63:6–21.PubMedCrossRef Specchio N, Di Micco V, Trivisano M, Ferretti A, Curatolo P. The epilepsy-autism spectrum disorder phenotype in the era of molecular genetics and precision therapy. Epilepsia. 2022;63:6–21.PubMedCrossRef
11.
Zurück zum Zitat Di Giovanni D, Enea R, Di Micco V, Benvenuto A, Curatolo P, Emberti GL. Using machine learning to explore shared genetic pathways and possible endophenotypes in autism spectrum disorder. Genes (Basel). 2023;14:313.PubMedCrossRef Di Giovanni D, Enea R, Di Micco V, Benvenuto A, Curatolo P, Emberti GL. Using machine learning to explore shared genetic pathways and possible endophenotypes in autism spectrum disorder. Genes (Basel). 2023;14:313.PubMedCrossRef
13.
Zurück zum Zitat Hulbert SW, Jiang YH. Monogenic mouse models of autism spectrum disorders: common mechanisms and missing links. Neuroscience. 2016;321:3–23.PubMedCrossRef Hulbert SW, Jiang YH. Monogenic mouse models of autism spectrum disorders: common mechanisms and missing links. Neuroscience. 2016;321:3–23.PubMedCrossRef
14.
Zurück zum Zitat Benvenuto A, Moavero R, Alessandrelli R, Manzi B, Curatolo P. Syndromic autism: causes and pathogenetic pathways. World J Pediatr. 2009;5:169–76.PubMedCrossRef Benvenuto A, Moavero R, Alessandrelli R, Manzi B, Curatolo P. Syndromic autism: causes and pathogenetic pathways. World J Pediatr. 2009;5:169–76.PubMedCrossRef
15.
16.
Zurück zum Zitat Curatolo P, Specchio N, Aronica E. Advances in the genetics and neuropathology of tuberous sclerosis complex: edging closer to targeted therapy. Lancet Neurol. 2022;21:843–56.PubMedCrossRef Curatolo P, Specchio N, Aronica E. Advances in the genetics and neuropathology of tuberous sclerosis complex: edging closer to targeted therapy. Lancet Neurol. 2022;21:843–56.PubMedCrossRef
17.
Zurück zum Zitat de Vries PJ, Wilde L, de Vries MC, Moavero R, Pearson DA, Curatolo P. A clinical update on tuberous sclerosis complex-associated neuropsychiatric disorders (TAND). Am J Med Genet C Semin Med Genet. 2018;178:309–20.PubMedPubMedCentralCrossRef de Vries PJ, Wilde L, de Vries MC, Moavero R, Pearson DA, Curatolo P. A clinical update on tuberous sclerosis complex-associated neuropsychiatric disorders (TAND). Am J Med Genet C Semin Med Genet. 2018;178:309–20.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Northrup H, Aronow ME, Bebin EM, Bissler J, Darling TN, de Vries PJ, et al. Updated international tuberous sclerosis complex diagnostic criteria and surveillance and management recommendations. Pediatr Neurol. 2021;123:50–66.PubMedCrossRef Northrup H, Aronow ME, Bebin EM, Bissler J, Darling TN, de Vries PJ, et al. Updated international tuberous sclerosis complex diagnostic criteria and surveillance and management recommendations. Pediatr Neurol. 2021;123:50–66.PubMedCrossRef
19.
Zurück zum Zitat Canevini MP, Kotulska-Jozwiak K, Curatolo P, La Briola F, Peron A, Słowińska M, et al. Current concepts on epilepsy management in tuberous sclerosis complex. Am J Med Genet C Semin Med Genet. 2018;178:299–308.PubMedCrossRef Canevini MP, Kotulska-Jozwiak K, Curatolo P, La Briola F, Peron A, Słowińska M, et al. Current concepts on epilepsy management in tuberous sclerosis complex. Am J Med Genet C Semin Med Genet. 2018;178:299–308.PubMedCrossRef
20.
Zurück zum Zitat Dragoumi P, O’Callaghan F, Zafeiriou DI. Diagnosis of tuberous sclerosis complex in the fetus. Eur J Paediatr Neurol. 2018;22:1027–34.PubMedCrossRef Dragoumi P, O’Callaghan F, Zafeiriou DI. Diagnosis of tuberous sclerosis complex in the fetus. Eur J Paediatr Neurol. 2018;22:1027–34.PubMedCrossRef
21.
Zurück zum Zitat Davis PE, Filip-Dhima R, Sideridis G, Peters JM, Au KS, Northrup H, et al. Presentation and diagnosis of tuberous sclerosis complex in infants. Pediatrics. 2017;140:e20164040.PubMedCrossRef Davis PE, Filip-Dhima R, Sideridis G, Peters JM, Au KS, Northrup H, et al. Presentation and diagnosis of tuberous sclerosis complex in infants. Pediatrics. 2017;140:e20164040.PubMedCrossRef
22.
Zurück zum Zitat Numis AL, Major P, Montenegro MA, Muzykewicz DA, Pulsifer MB, Thiele EA. Identification of risk factors for autism spectrum disorders in tuberous sclerosis complex. Neurology. 2011;76:981–7.PubMedPubMedCentralCrossRef Numis AL, Major P, Montenegro MA, Muzykewicz DA, Pulsifer MB, Thiele EA. Identification of risk factors for autism spectrum disorders in tuberous sclerosis complex. Neurology. 2011;76:981–7.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Kingswood JC, D’Augères GB, Belousova E, Ferreira JC, Carter T, Castellana R, et al. TuberOus SClerosis registry to increase disease Awareness (TOSCA)–baseline data on 2093 patients. Orphanet J Rare Dis. 2017;12:2.PubMedPubMedCentralCrossRef Kingswood JC, D’Augères GB, Belousova E, Ferreira JC, Carter T, Castellana R, et al. TuberOus SClerosis registry to increase disease Awareness (TOSCA)–baseline data on 2093 patients. Orphanet J Rare Dis. 2017;12:2.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Curatolo P, Moavero R, de Vries PJ. Neurological and neuropsychiatric aspects of tuberous sclerosis complex. Lancet Neurol. 2015;14:733–45.PubMedCrossRef Curatolo P, Moavero R, de Vries PJ. Neurological and neuropsychiatric aspects of tuberous sclerosis complex. Lancet Neurol. 2015;14:733–45.PubMedCrossRef
25.
Zurück zum Zitat Chu-Shore CJ, Major P, Camposano S, Muzykewicz D, Thiele EA. The natural history of epilepsy in tuberous sclerosis complex. Epilepsia. 2010;51:1236–41.PubMedCrossRef Chu-Shore CJ, Major P, Camposano S, Muzykewicz D, Thiele EA. The natural history of epilepsy in tuberous sclerosis complex. Epilepsia. 2010;51:1236–41.PubMedCrossRef
26.
Zurück zum Zitat Mitchell RA, Mitchell M, Williams K. The autism spectrum disorder phenotype in children with tuberous sclerosis complex: a systematic review and meta-analysis. Dev Med Child Neurol. 2022;64:1214–29.PubMedCrossRef Mitchell RA, Mitchell M, Williams K. The autism spectrum disorder phenotype in children with tuberous sclerosis complex: a systematic review and meta-analysis. Dev Med Child Neurol. 2022;64:1214–29.PubMedCrossRef
28.
Zurück zum Zitat Jiang CC, Lin LS, Long S, Ke XY, Fukunaga K, Lu YM, et al. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduct Target Ther. 2022;7:229.PubMedPubMedCentralCrossRef Jiang CC, Lin LS, Long S, Ke XY, Fukunaga K, Lu YM, et al. Signalling pathways in autism spectrum disorder: mechanisms and therapeutic implications. Signal Transduct Target Ther. 2022;7:229.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Capal JK, Bernardino-Cuesta B, Horn PS, Murray D, Byars AW, Bing NM, et al. Influence of seizures on early development in tuberous sclerosis complex. Epilepsy Behav. 2017;70:245–52.PubMedPubMedCentralCrossRef Capal JK, Bernardino-Cuesta B, Horn PS, Murray D, Byars AW, Bing NM, et al. Influence of seizures on early development in tuberous sclerosis complex. Epilepsy Behav. 2017;70:245–52.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Nabbout R, Belousova E, Benedik MP, Carter T, Cottin V, Curatolo P, et al. Epilepsy in tuberous sclerosis complex: findings from the TOSCA study. Epilepsia Open. 2019;4:73–84.PubMedCrossRef Nabbout R, Belousova E, Benedik MP, Carter T, Cottin V, Curatolo P, et al. Epilepsy in tuberous sclerosis complex: findings from the TOSCA study. Epilepsia Open. 2019;4:73–84.PubMedCrossRef
31.
Zurück zum Zitat Specchio N, Pietrafusa N, Trivisano M, Moavero R, De Palma L, Ferretti A, et al. Autism and epilepsy in patients with tuberous sclerosis complex. Front Neurol. 2020;11:639.PubMedPubMedCentralCrossRef Specchio N, Pietrafusa N, Trivisano M, Moavero R, De Palma L, Ferretti A, et al. Autism and epilepsy in patients with tuberous sclerosis complex. Front Neurol. 2020;11:639.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Critchley M, Earl C. Tuberose sclerosis and allied conditions. Brain. 1932;55:311–46.CrossRef Critchley M, Earl C. Tuberose sclerosis and allied conditions. Brain. 1932;55:311–46.CrossRef
33.
Zurück zum Zitat Kanner L. Autistic disturbances of affective contact. Nerv Child. 1943;2:217–50. Kanner L. Autistic disturbances of affective contact. Nerv Child. 1943;2:217–50.
34.
Zurück zum Zitat Moss J, Howlin P. Autism spectrum disorders in genetic syndromes: implications for diagnosis, intervention and understanding the wider autism spectrum disorder population. J Intellect Disabil Res. 2009;53:852–73.PubMedCrossRef Moss J, Howlin P. Autism spectrum disorders in genetic syndromes: implications for diagnosis, intervention and understanding the wider autism spectrum disorder population. J Intellect Disabil Res. 2009;53:852–73.PubMedCrossRef
35.
Zurück zum Zitat Waltereit R, Japs B, Schneider M, de Vries PJ, Bartsch D. Epilepsy and Tsc2 haploinsufficiency lead to autistic-like social deficit behaviors in rats. Behav Genet. 2011;41:364–72.PubMedCrossRef Waltereit R, Japs B, Schneider M, de Vries PJ, Bartsch D. Epilepsy and Tsc2 haploinsufficiency lead to autistic-like social deficit behaviors in rats. Behav Genet. 2011;41:364–72.PubMedCrossRef
36.
Zurück zum Zitat Nguyen LH, Mahadeo T, Bordey A. mTOR hyperactivity levels influence the severity of epilepsy and associated neuropathology in an experimental model of tuberous sclerosis complex and focal cortical dysplasia. J Neurosci. 2019;39:2762–73.PubMedPubMedCentralCrossRef Nguyen LH, Mahadeo T, Bordey A. mTOR hyperactivity levels influence the severity of epilepsy and associated neuropathology in an experimental model of tuberous sclerosis complex and focal cortical dysplasia. J Neurosci. 2019;39:2762–73.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Aronica E, Specchio N, Luinenburg MJ, Curatolo P. Epileptogenesis in tuberous sclerosis complex-related developmental and epileptic encephalopathy. Brain. 2023;146:2694–710.PubMedPubMedCentralCrossRef Aronica E, Specchio N, Luinenburg MJ, Curatolo P. Epileptogenesis in tuberous sclerosis complex-related developmental and epileptic encephalopathy. Brain. 2023;146:2694–710.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Czapski GA, Babiec L, Jęśko H, Gąssowska-Dobrowolska M, Cieślik M, Matuszewska M, et al. Synaptic alterations in a transgenic model of tuberous sclerosis complex: relevance to autism spectrum disorders. Int J Mol Sci. 2021;22:10058.PubMedPubMedCentralCrossRef Czapski GA, Babiec L, Jęśko H, Gąssowska-Dobrowolska M, Cieślik M, Matuszewska M, et al. Synaptic alterations in a transgenic model of tuberous sclerosis complex: relevance to autism spectrum disorders. Int J Mol Sci. 2021;22:10058.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Pagani M, Barsotti N, Bertero A, Trakoshis S, Ulysse L, Locarno A, et al. mTOR-related synaptic pathology causes autism spectrum disorder-associated functional hyperconnectivity. Nat Commun. 2021;12:6084.PubMedPubMedCentralCrossRef Pagani M, Barsotti N, Bertero A, Trakoshis S, Ulysse L, Locarno A, et al. mTOR-related synaptic pathology causes autism spectrum disorder-associated functional hyperconnectivity. Nat Commun. 2021;12:6084.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Rosina E, Battan B, Siracusano M, Di Criscio L, Hollis F, Pacini L, et al. Disruption of mTOR and MAPK pathways correlates with severity in idiopathic autism. Transl Psychiatry. 2019;9:50.PubMedPubMedCentralCrossRef Rosina E, Battan B, Siracusano M, Di Criscio L, Hollis F, Pacini L, et al. Disruption of mTOR and MAPK pathways correlates with severity in idiopathic autism. Transl Psychiatry. 2019;9:50.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Mühlebner A, Bongaarts A, Sarnat HB, Scholl T, Aronica E. New insights into a spectrum of developmental malformations related to mTOR dysregulations: challenges and perspectives. J Anat. 2019;235:521–42.PubMedPubMedCentralCrossRef Mühlebner A, Bongaarts A, Sarnat HB, Scholl T, Aronica E. New insights into a spectrum of developmental malformations related to mTOR dysregulations: challenges and perspectives. J Anat. 2019;235:521–42.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Curatolo P, Moavero R, van Scheppingen J, Aronica E. mTOR dysregulation and tuberous sclerosis-related epilepsy. Expert Rev Neurother. 2018;18:185–201.PubMedCrossRef Curatolo P, Moavero R, van Scheppingen J, Aronica E. mTOR dysregulation and tuberous sclerosis-related epilepsy. Expert Rev Neurother. 2018;18:185–201.PubMedCrossRef
44.
Zurück zum Zitat Bassetti D, Luhmann HJ, Kirischuk S. Effects of mutations in TSC genes on neurodevelopment and synaptic transmission. Int J Mol Sci. 2021;22:7273.PubMedPubMedCentralCrossRef Bassetti D, Luhmann HJ, Kirischuk S. Effects of mutations in TSC genes on neurodevelopment and synaptic transmission. Int J Mol Sci. 2021;22:7273.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Bozzi Y, Provenzano G, Casarosa S. Neurobiological bases of autism-epilepsy comorbidity: a focus on excitation/inhibition imbalance. Eur J Neurosci. 2018;47:534–48.PubMedCrossRef Bozzi Y, Provenzano G, Casarosa S. Neurobiological bases of autism-epilepsy comorbidity: a focus on excitation/inhibition imbalance. Eur J Neurosci. 2018;47:534–48.PubMedCrossRef
46.
Zurück zum Zitat Gąssowska-Dobrowolska M, Czapski GA, Cieślik M, Zajdel K, Frontczak-Baniewicz M, Babiec L, et al. Microtubule cytoskeletal network alterations in a transgenic model of tuberous sclerosis complex: relevance to autism spectrum disorders. Int J Mol Sci. 2023;24:7303.PubMedPubMedCentralCrossRef Gąssowska-Dobrowolska M, Czapski GA, Cieślik M, Zajdel K, Frontczak-Baniewicz M, Babiec L, et al. Microtubule cytoskeletal network alterations in a transgenic model of tuberous sclerosis complex: relevance to autism spectrum disorders. Int J Mol Sci. 2023;24:7303.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Ebrahimi-Fakhari D, Saffari A, Wahlster L, Di Nardo A, Turner D, Lewis TL, et al. Impaired mitochondrial dynamics and mitophagy in neuronal models of tuberous sclerosis complex. Cell Rep. 2016;17:1053–70.PubMedPubMedCentralCrossRef Ebrahimi-Fakhari D, Saffari A, Wahlster L, Di Nardo A, Turner D, Lewis TL, et al. Impaired mitochondrial dynamics and mitophagy in neuronal models of tuberous sclerosis complex. Cell Rep. 2016;17:1053–70.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Fu C, Cawthon B, Clinkscales W, Bruce A, Winzenburger P, Ess KC. GABAergic interneuron development and function is modulated by the Tsc1 gene. Cereb Cortex. 2012;22:2111–9.PubMedCrossRef Fu C, Cawthon B, Clinkscales W, Bruce A, Winzenburger P, Ess KC. GABAergic interneuron development and function is modulated by the Tsc1 gene. Cereb Cortex. 2012;22:2111–9.PubMedCrossRef
49.
50.
Zurück zum Zitat Amegandjin CA, Choudhury M, Jadhav V, Carriço JN, Quintal A, Berryer M, et al. Sensitive period for rescuing parvalbumin interneurons connectivity and social behavior deficits caused by TSC1 loss. Nat Commun. 2021;12:3653.PubMedPubMedCentralCrossRef Amegandjin CA, Choudhury M, Jadhav V, Carriço JN, Quintal A, Berryer M, et al. Sensitive period for rescuing parvalbumin interneurons connectivity and social behavior deficits caused by TSC1 loss. Nat Commun. 2021;12:3653.PubMedPubMedCentralCrossRef
51.
52.
Zurück zum Zitat Iannone AF, De Marco García NV. The emergence of network activity patterns in the somatosensory cortex-an early window to autism spectrum disorders. Neuroscience. 2021;466:298–309.PubMedCrossRef Iannone AF, De Marco García NV. The emergence of network activity patterns in the somatosensory cortex-an early window to autism spectrum disorders. Neuroscience. 2021;466:298–309.PubMedCrossRef
53.
Zurück zum Zitat Eichmüller OL, Corsini NS, Vértesy Á, Morassut I, Scholl T, Gruber VE, et al. Amplification of human interneuron progenitors promotes brain tumors and neurological defects. Science. 2022;375:eabf5546.PubMedPubMedCentralCrossRef Eichmüller OL, Corsini NS, Vértesy Á, Morassut I, Scholl T, Gruber VE, et al. Amplification of human interneuron progenitors promotes brain tumors and neurological defects. Science. 2022;375:eabf5546.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Katsarou AM, Moshé SL, Galanopoulou AS. Interneuronopathies and their role in early life epilepsies and neurodevelopmental disorders. Epilepsia Open. 2017;2:284–306.PubMedPubMedCentralCrossRef Katsarou AM, Moshé SL, Galanopoulou AS. Interneuronopathies and their role in early life epilepsies and neurodevelopmental disorders. Epilepsia Open. 2017;2:284–306.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Cherubini E, Di Cristo G, Avoli M. Dysregulation of GABAergic signaling in neurodevelomental disorders: targeting cation-chloride co-transporters to re-establish a proper E/I balance. Front Cell Neurosci. 2021;15:813441.PubMedCrossRef Cherubini E, Di Cristo G, Avoli M. Dysregulation of GABAergic signaling in neurodevelomental disorders: targeting cation-chloride co-transporters to re-establish a proper E/I balance. Front Cell Neurosci. 2021;15:813441.PubMedCrossRef
56.
Zurück zum Zitat Powell EM. Interneuron development and epilepsy: early genetic defects cause long-term consequences in seizures and susceptibility. Epilepsy Curr. 2013;13:172–6.PubMedPubMedCentralCrossRef Powell EM. Interneuron development and epilepsy: early genetic defects cause long-term consequences in seizures and susceptibility. Epilepsy Curr. 2013;13:172–6.PubMedPubMedCentralCrossRef
57.
58.
Zurück zum Zitat Powell EM, Campbell DB, Stanwood GD, Davis C, Noebels JL, Levitt P. Genetic disruption of cortical interneuron development causes region- and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction. J Neurosci. 2003;23:622–31.PubMedPubMedCentralCrossRef Powell EM, Campbell DB, Stanwood GD, Davis C, Noebels JL, Levitt P. Genetic disruption of cortical interneuron development causes region- and GABA cell type-specific deficits, epilepsy, and behavioral dysfunction. J Neurosci. 2003;23:622–31.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Dufour BD, McBride E, Bartley T, Juarez P, Martínez-Cerdeño V. Distinct patterns of GABAergic interneuron pathology in autism are associated with intellectual impairment and stereotypic behaviors. Autism. 2023;27:1730–45.PubMedCrossRef Dufour BD, McBride E, Bartley T, Juarez P, Martínez-Cerdeño V. Distinct patterns of GABAergic interneuron pathology in autism are associated with intellectual impairment and stereotypic behaviors. Autism. 2023;27:1730–45.PubMedCrossRef
60.
Zurück zum Zitat Righes Marafiga J, Vendramin Pasquetti M, Calcagnotto ME. GABAergic interneurons in epilepsy: more than a simple change in inhibition. Epilepsy Behav. 2021;121:106935.PubMedCrossRef Righes Marafiga J, Vendramin Pasquetti M, Calcagnotto ME. GABAergic interneurons in epilepsy: more than a simple change in inhibition. Epilepsy Behav. 2021;121:106935.PubMedCrossRef
61.
Zurück zum Zitat Ruffolo G, Iyer A, Cifelli P, Roseti C, Mühlebner A, van Scheppingen J, et al. Functional aspects of early brain development are preserved in tuberous sclerosis complex (TSC) epileptogenic lesions. Neurobiol Dis. 2016;95:93–101.PubMedCrossRef Ruffolo G, Iyer A, Cifelli P, Roseti C, Mühlebner A, van Scheppingen J, et al. Functional aspects of early brain development are preserved in tuberous sclerosis complex (TSC) epileptogenic lesions. Neurobiol Dis. 2016;95:93–101.PubMedCrossRef
62.
Zurück zum Zitat Vezzani A, Aronica E, Mazarati A, Pittman QJ. Epilepsy and brain inflammation. Exp Neurol. 2013;244:11–21.PubMedCrossRef Vezzani A, Aronica E, Mazarati A, Pittman QJ. Epilepsy and brain inflammation. Exp Neurol. 2013;244:11–21.PubMedCrossRef
63.
Zurück zum Zitat Vezzani A, Ravizza T, Bedner P, Aronica E, Steinhäuser C, Boison D. Astrocytes in the initiation and progression of epilepsy. Nat Rev Neurol. 2022;18:707–22.PubMedPubMedCentralCrossRef Vezzani A, Ravizza T, Bedner P, Aronica E, Steinhäuser C, Boison D. Astrocytes in the initiation and progression of epilepsy. Nat Rev Neurol. 2022;18:707–22.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Matta SM, Hill-Yardin EL, Crack PJ. The influence of neuroinflammation in autism spectrum disorder. Brain Behav Immun. 2019;79:75–90.PubMedCrossRef Matta SM, Hill-Yardin EL, Crack PJ. The influence of neuroinflammation in autism spectrum disorder. Brain Behav Immun. 2019;79:75–90.PubMedCrossRef
65.
Zurück zum Zitat Robinson-Agramonte MLA, Noris García E, Fraga Guerra J, Vega Hurtado Y, Antonucci N, Semprún-Hernández N, et al. Immune dysregulation in autism spectrum disorder: what do we know about It? Int J Mol Sci. 2022;23:3033.PubMedPubMedCentralCrossRef Robinson-Agramonte MLA, Noris García E, Fraga Guerra J, Vega Hurtado Y, Antonucci N, Semprún-Hernández N, et al. Immune dysregulation in autism spectrum disorder: what do we know about It? Int J Mol Sci. 2022;23:3033.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Zahra A, Wang Y, Wang Q, Wu J. Shared etiology in autism spectrum disorder and epilepsy with functional disability. Behav Neurol. 2022;2022:5893519.PubMedPubMedCentralCrossRef Zahra A, Wang Y, Wang Q, Wu J. Shared etiology in autism spectrum disorder and epilepsy with functional disability. Behav Neurol. 2022;2022:5893519.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Jones RG, Pearce EJ. MenTORing immunity: mTOR signaling in the development and function of tissue-resident immune cells. Immunity. 2017;46:730–42.PubMedPubMedCentralCrossRef Jones RG, Pearce EJ. MenTORing immunity: mTOR signaling in the development and function of tissue-resident immune cells. Immunity. 2017;46:730–42.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Boer K, Crino PB, Gorter JA, Nellist M, Jansen FE, Spliet WGM, et al. Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors. Brain Pathol. 2010;20:704–19.PubMedCrossRef Boer K, Crino PB, Gorter JA, Nellist M, Jansen FE, Spliet WGM, et al. Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors. Brain Pathol. 2010;20:704–19.PubMedCrossRef
70.
Zurück zum Zitat Mills JD, Iyer AM, van Scheppingen J, Bongaarts A, Anink JJ, Janssen B, et al. Coding and small non-coding transcriptional landscape of tuberous sclerosis complex cortical tubers: implications for pathophysiology and treatment. Sci Rep. 2017;7:8089.PubMedPubMedCentralCrossRef Mills JD, Iyer AM, van Scheppingen J, Bongaarts A, Anink JJ, Janssen B, et al. Coding and small non-coding transcriptional landscape of tuberous sclerosis complex cortical tubers: implications for pathophysiology and treatment. Sci Rep. 2017;7:8089.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Gruber VE, Luinenburg MJ, Colleselli K, Endmayr V, Anink JJ, Zimmer TS, et al. Increased expression of complement components in tuberous sclerosis complex and focal cortical dysplasia type 2B brain lesions. Epilepsia. 2022;63:364–74.PubMedCrossRef Gruber VE, Luinenburg MJ, Colleselli K, Endmayr V, Anink JJ, Zimmer TS, et al. Increased expression of complement components in tuberous sclerosis complex and focal cortical dysplasia type 2B brain lesions. Epilepsia. 2022;63:364–74.PubMedCrossRef
72.
Zurück zum Zitat Zimmer TS, Korotkov A, Zwakenberg S, Jansen FE, Zwartkruis FJT, Rensing NR, et al. Upregulation of the pathogenic transcription factor SPI1/PU.1 in tuberous sclerosis complex and focal cortical dysplasia by oxidative stress. Brain Pathol. 2021;31:e12949.PubMedPubMedCentralCrossRef Zimmer TS, Korotkov A, Zwakenberg S, Jansen FE, Zwartkruis FJT, Rensing NR, et al. Upregulation of the pathogenic transcription factor SPI1/PU.1 in tuberous sclerosis complex and focal cortical dysplasia by oxidative stress. Brain Pathol. 2021;31:e12949.PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Arena A, Zimmer TS, van Scheppingen J, Korotkov A, Anink JJ, Mühlebner A, et al. Oxidative stress and inflammation in a spectrum of epileptogenic cortical malformations: molecular insights into their interdependence. Brain Pathol. 2019;29:351–65.PubMedCrossRef Arena A, Zimmer TS, van Scheppingen J, Korotkov A, Anink JJ, Mühlebner A, et al. Oxidative stress and inflammation in a spectrum of epileptogenic cortical malformations: molecular insights into their interdependence. Brain Pathol. 2019;29:351–65.PubMedCrossRef
74.
Zurück zum Zitat Fuso A, Iyer AM, van Scheppingen J, Maccarrone M, Scholl T, Hainfellner JA, et al. Promoter-specific hypomethylation correlates with IL-1β overexpression in tuberous sclerosis complex (TSC). J Mol Neurosci. 2016;59:464–70.PubMedPubMedCentralCrossRef Fuso A, Iyer AM, van Scheppingen J, Maccarrone M, Scholl T, Hainfellner JA, et al. Promoter-specific hypomethylation correlates with IL-1β overexpression in tuberous sclerosis complex (TSC). J Mol Neurosci. 2016;59:464–70.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Prabowo AS, Anink JJ, Lammens M, Nellist M, van den Ouweland AMW, Adle-Biassette H, et al. Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and inflammation. Brain Pathol. 2013;23:45–59.PubMedCrossRef Prabowo AS, Anink JJ, Lammens M, Nellist M, van den Ouweland AMW, Adle-Biassette H, et al. Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and inflammation. Brain Pathol. 2013;23:45–59.PubMedCrossRef
76.
Zurück zum Zitat Alfano V, Romagnolo A, Mills JD, Cifelli P, Gaeta A, Morano A, et al. Unexpected effect of IL-1β on the function of GABAA receptors in pediatric focal cortical dysplasia. Brain Sci Brain Sci. 2022;12:807.PubMedCrossRef Alfano V, Romagnolo A, Mills JD, Cifelli P, Gaeta A, Morano A, et al. Unexpected effect of IL-1β on the function of GABAA receptors in pediatric focal cortical dysplasia. Brain Sci Brain Sci. 2022;12:807.PubMedCrossRef
77.
Zurück zum Zitat Ruffolo G, Alfano V, Romagnolo A, Zimmer T, Mills JD, Cifelli P, et al. GABAA receptor function is enhanced by Interleukin-10 in human epileptogenic gangliogliomas and its effect is counteracted by Interleukin-1β. Sci Rep. 2022;12:17956.PubMedPubMedCentralCrossRef Ruffolo G, Alfano V, Romagnolo A, Zimmer T, Mills JD, Cifelli P, et al. GABAA receptor function is enhanced by Interleukin-10 in human epileptogenic gangliogliomas and its effect is counteracted by Interleukin-1β. Sci Rep. 2022;12:17956.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Palma E, Ruffolo G, Cifelli P, Roseti C, van Vliet EA, Aronica E. Modulation of GABAA receptors in the treatment of epilepsy. Curr Pharm Des. 2017;23:5563–8.PubMedCrossRef Palma E, Ruffolo G, Cifelli P, Roseti C, van Vliet EA, Aronica E. Modulation of GABAA receptors in the treatment of epilepsy. Curr Pharm Des. 2017;23:5563–8.PubMedCrossRef
79.
Zurück zum Zitat Usui N, Kobayashi H, Shimada S. Neuroinflammation and oxidative stress in the pathogenesis of autism spectrum disorder. Int J Mol Sci. 2023;24:5487.PubMedPubMedCentralCrossRef Usui N, Kobayashi H, Shimada S. Neuroinflammation and oxidative stress in the pathogenesis of autism spectrum disorder. Int J Mol Sci. 2023;24:5487.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Terrone G, Balosso S, Pauletti A, Ravizza T, Vezzani A. Inflammation and reactive oxygen species as disease modifiers in epilepsy. Neuropharmacology. 2020;167:107742.PubMedCrossRef Terrone G, Balosso S, Pauletti A, Ravizza T, Vezzani A. Inflammation and reactive oxygen species as disease modifiers in epilepsy. Neuropharmacology. 2020;167:107742.PubMedCrossRef
81.
Zurück zum Zitat Zimmer TS, Ciriminna G, Arena A, Anink JJ, Korotkov A, Jansen FE, et al. Chronic activation of anti-oxidant pathways and iron accumulation in epileptogenic malformations. Neuropathol Appl Neurobiol. 2020;46:546–63.PubMedPubMedCentralCrossRef Zimmer TS, Ciriminna G, Arena A, Anink JJ, Korotkov A, Jansen FE, et al. Chronic activation of anti-oxidant pathways and iron accumulation in epileptogenic malformations. Neuropathol Appl Neurobiol. 2020;46:546–63.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 2011;3:a005058.PubMedPubMedCentralCrossRef Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 2011;3:a005058.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Dityatev A, Fellin T. Extracellular matrix in plasticity and epileptogenesis. Neuron Glia Biol. 2008;4:235–47.PubMedCrossRef Dityatev A, Fellin T. Extracellular matrix in plasticity and epileptogenesis. Neuron Glia Biol. 2008;4:235–47.PubMedCrossRef
85.
Zurück zum Zitat Leifeld J, Förster E, Reiss G, Hamad MIK. Considering the role of extracellular matrix molecules, in particular reelin, in granule cell dispersion related to temporal lobe epilepsy. Front Cell Dev Biol. 2022;10:917575.PubMedPubMedCentralCrossRef Leifeld J, Förster E, Reiss G, Hamad MIK. Considering the role of extracellular matrix molecules, in particular reelin, in granule cell dispersion related to temporal lobe epilepsy. Front Cell Dev Biol. 2022;10:917575.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Korotkov A, Luinenburg MJ, Romagnolo A, Zimmer TS, van Scheppingen J, Bongaarts A, et al. Down-regulation of the brain-specific cell-adhesion molecule contactin-3 in tuberous sclerosis complex during the early postnatal period. J Neurodev Disord. 2022;14:8.PubMedPubMedCentralCrossRef Korotkov A, Luinenburg MJ, Romagnolo A, Zimmer TS, van Scheppingen J, Bongaarts A, et al. Down-regulation of the brain-specific cell-adhesion molecule contactin-3 in tuberous sclerosis complex during the early postnatal period. J Neurodev Disord. 2022;14:8.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Broekaart DWM, Scheppingen J, Anink JJ, Wierts L, Hof B, Jansen FE, et al. Increased matrix metalloproteinases expression in tuberous sclerosis complex: modulation by microRNA 146a and 147b in vitro. Neuropathol Appl Neurobiol. 2020;46:142–59.PubMedCrossRef Broekaart DWM, Scheppingen J, Anink JJ, Wierts L, Hof B, Jansen FE, et al. Increased matrix metalloproteinases expression in tuberous sclerosis complex: modulation by microRNA 146a and 147b in vitro. Neuropathol Appl Neurobiol. 2020;46:142–59.PubMedCrossRef
88.
Zurück zum Zitat Broekaart DW, Bertran A, Jia S, Korotkov A, Senkov O, Bongaarts A, et al. The matrix metalloproteinase inhibitor IPR-179 has antiseizure and antiepileptogenic effects. J Clin Invest. 2021;131:e138332.PubMedPubMedCentralCrossRef Broekaart DW, Bertran A, Jia S, Korotkov A, Senkov O, Bongaarts A, et al. The matrix metalloproteinase inhibitor IPR-179 has antiseizure and antiepileptogenic effects. J Clin Invest. 2021;131:e138332.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Rogers SL, Rankin-Gee E, Risbud RM, Porter BE, Marsh ED. Normal development of the perineuronal net in humans; in patients with and without epilepsy. Neuroscience. 2018;384:350–60.PubMedCrossRef Rogers SL, Rankin-Gee E, Risbud RM, Porter BE, Marsh ED. Normal development of the perineuronal net in humans; in patients with and without epilepsy. Neuroscience. 2018;384:350–60.PubMedCrossRef
91.
Zurück zum Zitat Prohl AK, Scherrer B, Tomas-Fernandez X, Davis PE, Filip-Dhima R, Prabhu SP, et al. Early white matter development is abnormal in tuberous sclerosis complex patients who develop autism spectrum disorder. J Neurodev Disord. 2019;11:36.PubMedPubMedCentralCrossRef Prohl AK, Scherrer B, Tomas-Fernandez X, Davis PE, Filip-Dhima R, Prabhu SP, et al. Early white matter development is abnormal in tuberous sclerosis complex patients who develop autism spectrum disorder. J Neurodev Disord. 2019;11:36.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Gruber VE, Lang J, Endmayr V, Diehm R, Pimpel B, Glatter S, et al. Impaired myelin production due to an intrinsic failure of oligodendrocytes in mTORpathies. Neuropathol Appl Neurobiol. 2021;47:812–25.PubMedPubMedCentralCrossRef Gruber VE, Lang J, Endmayr V, Diehm R, Pimpel B, Glatter S, et al. Impaired myelin production due to an intrinsic failure of oligodendrocytes in mTORpathies. Neuropathol Appl Neurobiol. 2021;47:812–25.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Mühlebner A, van Scheppingen J, de Neef A, Bongaarts A, Zimmer TS, Mills JD, et al. Myelin pathology beyond white matter in tuberous sclerosis complex (TSC) cortical tubers. J Neuropathol Exp Neurol. 2020;79:1054–64.PubMedPubMedCentralCrossRef Mühlebner A, van Scheppingen J, de Neef A, Bongaarts A, Zimmer TS, Mills JD, et al. Myelin pathology beyond white matter in tuberous sclerosis complex (TSC) cortical tubers. J Neuropathol Exp Neurol. 2020;79:1054–64.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Zonouzi M, Berger D, Jokhi V, Kedaigle A, Lichtman J, Arlotta P. Individual oligodendrocytes show bias for inhibitory axons in the neocortex. Cell Rep. 2019;27:2799–808.e3.PubMedPubMedCentralCrossRef Zonouzi M, Berger D, Jokhi V, Kedaigle A, Lichtman J, Arlotta P. Individual oligodendrocytes show bias for inhibitory axons in the neocortex. Cell Rep. 2019;27:2799–808.e3.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Fang LP, Zhao N, Caudal LC, Chang HF, Zhao R, Lin CH, et al. Impaired bidirectional communication between interneurons and oligodendrocyte precursor cells affects social cognitive behavior. Nat Commun. 2022;13:1394.PubMedPubMedCentralCrossRef Fang LP, Zhao N, Caudal LC, Chang HF, Zhao R, Lin CH, et al. Impaired bidirectional communication between interneurons and oligodendrocyte precursor cells affects social cognitive behavior. Nat Commun. 2022;13:1394.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Galvez-Contreras AY, Zarate-Lopez D, Torres-Chavez AL, Gonzalez-Perez O. Role of oligodendrocytes and myelin in the pathophysiology of autism spectrum disorder. Brain Sci. 2020;10:951.PubMedPubMedCentralCrossRef Galvez-Contreras AY, Zarate-Lopez D, Torres-Chavez AL, Gonzalez-Perez O. Role of oligodendrocytes and myelin in the pathophysiology of autism spectrum disorder. Brain Sci. 2020;10:951.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Bromfield EB, Cavazos JE, Sirven JI. An introduction to epilepsy. London: Routledge; 2006. Bromfield EB, Cavazos JE, Sirven JI. An introduction to epilepsy. London: Routledge; 2006.
98.
Zurück zum Zitat Specchio N, Curatolo P. Developmental and epileptic encephalopathies: what we do and do not know. Brain. 2021;144:32–43.PubMedCrossRef Specchio N, Curatolo P. Developmental and epileptic encephalopathies: what we do and do not know. Brain. 2021;144:32–43.PubMedCrossRef
99.
Zurück zum Zitat Scheffer IE, Liao J. Deciphering the concepts behind “Epileptic encephalopathy” and “Developmental and epileptic encephalopathy”. Eur J Paediatr Neurol. 2020;24:11–4.PubMedCrossRef Scheffer IE, Liao J. Deciphering the concepts behind “Epileptic encephalopathy” and “Developmental and epileptic encephalopathy”. Eur J Paediatr Neurol. 2020;24:11–4.PubMedCrossRef
100.
Zurück zum Zitat Specchio N, Wirrell EC, Scheffer IE, Nabbout R, Riney K, Samia P, et al. International league against epilepsy classification and definition of epilepsy syndromes with onset in childhood: position paper by the ILAE task force on nosology and definitions. Epilepsia. 2022;63:1398–442.PubMedCrossRef Specchio N, Wirrell EC, Scheffer IE, Nabbout R, Riney K, Samia P, et al. International league against epilepsy classification and definition of epilepsy syndromes with onset in childhood: position paper by the ILAE task force on nosology and definitions. Epilepsia. 2022;63:1398–442.PubMedCrossRef
101.
Zurück zum Zitat Moavero R, Mühlebner A, Luinenburg MJ, Craiu D, Aronica E, Curatolo P. Genetic pathogenesis of the epileptogenic lesions in tuberous sclerosis complex: therapeutic targeting of the mTOR pathway. Epilepsy Behav. 2022;131:107713.PubMedCrossRef Moavero R, Mühlebner A, Luinenburg MJ, Craiu D, Aronica E, Curatolo P. Genetic pathogenesis of the epileptogenic lesions in tuberous sclerosis complex: therapeutic targeting of the mTOR pathway. Epilepsy Behav. 2022;131:107713.PubMedCrossRef
102.
Zurück zum Zitat Ehninger D, Han S, Shilyansky C, Zhou Y, Li W, Kwiatkowski DJ, et al. Reversal of learning deficits in a Tsc2+/- mouse model of tuberous sclerosis. Nat Med. 2008;14:843–8.PubMedPubMedCentralCrossRef Ehninger D, Han S, Shilyansky C, Zhou Y, Li W, Kwiatkowski DJ, et al. Reversal of learning deficits in a Tsc2+/- mouse model of tuberous sclerosis. Nat Med. 2008;14:843–8.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Talos DM, Sun H, Kosaras B, Joseph A, Folkerth RD, Poduri A, et al. Altered inhibition in tuberous sclerosis and type IIb cortical dysplasia. Ann Neurol. 2012;71:539–51.PubMedPubMedCentralCrossRef Talos DM, Sun H, Kosaras B, Joseph A, Folkerth RD, Poduri A, et al. Altered inhibition in tuberous sclerosis and type IIb cortical dysplasia. Ann Neurol. 2012;71:539–51.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Sato A, Kasai S, Kobayashi T, Takamatsu Y, Hino O, Ikeda K, et al. Rapamycin reverses impaired social interaction in mouse models of tuberous sclerosis complex. Nat Commun. 2012;3:1292.PubMedCrossRef Sato A, Kasai S, Kobayashi T, Takamatsu Y, Hino O, Ikeda K, et al. Rapamycin reverses impaired social interaction in mouse models of tuberous sclerosis complex. Nat Commun. 2012;3:1292.PubMedCrossRef
105.
Zurück zum Zitat Way SW, Rozas NS, Wu HC, McKenna J, Reith RM, Hashmi SS, et al. The differential effects of prenatal and/or postnatal rapamycin on neurodevelopmental defects and cognition in a neuroglial mouse model of tuberous sclerosis complex. Hum Mol Genet. 2012;21:3226–36.PubMedPubMedCentralCrossRef Way SW, Rozas NS, Wu HC, McKenna J, Reith RM, Hashmi SS, et al. The differential effects of prenatal and/or postnatal rapamycin on neurodevelopmental defects and cognition in a neuroglial mouse model of tuberous sclerosis complex. Hum Mol Genet. 2012;21:3226–36.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR, Leech JM, et al. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature. 2012;488:647–51.PubMedPubMedCentralCrossRef Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR, Leech JM, et al. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature. 2012;488:647–51.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Schneider M, de Vries PJ, Schönig K, Rößner V, Waltereit R. mTOR inhibitor reverses autistic-like social deficit behaviours in adult rats with both Tsc2 haploinsufficiency and developmental status epilepticus. Eur Arch Psychiatry Clin Neurosci. 2017;267:455–63.PubMedCrossRef Schneider M, de Vries PJ, Schönig K, Rößner V, Waltereit R. mTOR inhibitor reverses autistic-like social deficit behaviours in adult rats with both Tsc2 haploinsufficiency and developmental status epilepticus. Eur Arch Psychiatry Clin Neurosci. 2017;267:455–63.PubMedCrossRef
108.
Zurück zum Zitat Petrasek T, Vojtechova I, Klovrza O, Tuckova K, Vejmola C, Rak J, et al. mTOR inhibitor improves autistic-like behaviors related to Tsc2 haploinsufficiency but not following developmental status epilepticus. J Neurodev Disord. 2021;13:14.PubMedPubMedCentralCrossRef Petrasek T, Vojtechova I, Klovrza O, Tuckova K, Vejmola C, Rak J, et al. mTOR inhibitor improves autistic-like behaviors related to Tsc2 haploinsufficiency but not following developmental status epilepticus. J Neurodev Disord. 2021;13:14.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Koike-Kumagai M, Fujimoto M, Wataya-Kaneda M. Sirolimus relieves seizures and neuropsychiatric symptoms via changes of microglial polarity in tuberous sclerosis complex model mice. Neuropharmacology. 2022;218:109203.PubMedCrossRef Koike-Kumagai M, Fujimoto M, Wataya-Kaneda M. Sirolimus relieves seizures and neuropsychiatric symptoms via changes of microglial polarity in tuberous sclerosis complex model mice. Neuropharmacology. 2022;218:109203.PubMedCrossRef
110.
Zurück zum Zitat Kashii H, Kasai S, Sato A, Hagino Y, Nishito Y, Kobayashi T, et al. Tsc2 mutation rather than Tsc1 mutation dominantly causes a social deficit in a mouse model of tuberous sclerosis complex. Hum Genomics. 2023;17:4.PubMedPubMedCentralCrossRef Kashii H, Kasai S, Sato A, Hagino Y, Nishito Y, Kobayashi T, et al. Tsc2 mutation rather than Tsc1 mutation dominantly causes a social deficit in a mouse model of tuberous sclerosis complex. Hum Genomics. 2023;17:4.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat McMahon JJ, Yu W, Yang J, Feng H, Helm M, McMahon E, et al. Seizure-dependent mTOR activation in 5-HT neurons promotes autism-like behaviors in mice. Neurobiol Dis. 2015;73:296–306.PubMedCrossRef McMahon JJ, Yu W, Yang J, Feng H, Helm M, McMahon E, et al. Seizure-dependent mTOR activation in 5-HT neurons promotes autism-like behaviors in mice. Neurobiol Dis. 2015;73:296–306.PubMedCrossRef
112.
Zurück zum Zitat Ruffolo G, Gaeta A, Cannata B, Pinzaglia C, Aronica E, Morano A, et al. GABAergic neurotransmission in human tissues is modulated by cannabidiol. Life (Basel). 2022;12:2042.PubMed Ruffolo G, Gaeta A, Cannata B, Pinzaglia C, Aronica E, Morano A, et al. GABAergic neurotransmission in human tissues is modulated by cannabidiol. Life (Basel). 2022;12:2042.PubMed
113.
Zurück zum Zitat Farach LS, Richard MA, Lupo PJ, Sahin M, Krueger DA, Wu JY, et al. Epilepsy risk prediction model for patients with tuberous sclerosis complex. Pediatr Neurol. 2020;113:46–50.PubMedPubMedCentralCrossRef Farach LS, Richard MA, Lupo PJ, Sahin M, Krueger DA, Wu JY, et al. Epilepsy risk prediction model for patients with tuberous sclerosis complex. Pediatr Neurol. 2020;113:46–50.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Ogórek B, Hamieh L, Hulshof HM, Lasseter K, Klonowska K, Kuijf H, et al. TSC2 pathogenic variants are predictive of severe clinical manifestations in TSC infants: results of the EPISTOP study. Genet Med. 2020;22:1489–97.PubMedCrossRef Ogórek B, Hamieh L, Hulshof HM, Lasseter K, Klonowska K, Kuijf H, et al. TSC2 pathogenic variants are predictive of severe clinical manifestations in TSC infants: results of the EPISTOP study. Genet Med. 2020;22:1489–97.PubMedCrossRef
115.
Zurück zum Zitat Hulshof HM, Kuijf HJ, Kotulska K, Curatolo P, Weschke B, Riney K, et al. Association of early MRI characteristics with subsequent epilepsy and neurodevelopmental outcomes in children with tuberous sclerosis complex. Neurology. 2022;98:e1216–25.PubMedCrossRef Hulshof HM, Kuijf HJ, Kotulska K, Curatolo P, Weschke B, Riney K, et al. Association of early MRI characteristics with subsequent epilepsy and neurodevelopmental outcomes in children with tuberous sclerosis complex. Neurology. 2022;98:e1216–25.PubMedCrossRef
116.
Zurück zum Zitat Ruppe V, Dilsiz P, Reiss CS, Carlson C, Devinsky O, Zagzag D, et al. Developmental brain abnormalities in tuberous sclerosis complex: a comparative tissue analysis of cortical tubers and perituberal cortex. Epilepsia. 2014;55:539–50.PubMedCrossRef Ruppe V, Dilsiz P, Reiss CS, Carlson C, Devinsky O, Zagzag D, et al. Developmental brain abnormalities in tuberous sclerosis complex: a comparative tissue analysis of cortical tubers and perituberal cortex. Epilepsia. 2014;55:539–50.PubMedCrossRef
117.
Zurück zum Zitat Scherrer B, Prohl AK, Taquet M, Kapur K, Peters JM, Tomas-Fernandez X, et al. The connectivity fingerprint of the fusiform gyrus captures the risk of developing autism in infants with tuberous sclerosis complex. Cereb Cortex. 2020;30:2199–214.PubMedCrossRef Scherrer B, Prohl AK, Taquet M, Kapur K, Peters JM, Tomas-Fernandez X, et al. The connectivity fingerprint of the fusiform gyrus captures the risk of developing autism in infants with tuberous sclerosis complex. Cereb Cortex. 2020;30:2199–214.PubMedCrossRef
118.
Zurück zum Zitat Cohen AL, Kroeck MR, Wall J, McManus P, Ovchinnikova A, Sahin M, et al. Tubers affecting the fusiform face area are associated with autism diagnosis. Ann Neurol. 2023;93:577–90.PubMedCrossRef Cohen AL, Kroeck MR, Wall J, McManus P, Ovchinnikova A, Sahin M, et al. Tubers affecting the fusiform face area are associated with autism diagnosis. Ann Neurol. 2023;93:577–90.PubMedCrossRef
119.
Zurück zum Zitat Sato A, Tominaga K, Iwatani Y, Kato Y, Wataya-Kaneda M, Makita K, et al. Abnormal white matter microstructure in the limbic system is associated with tuberous sclerosis complex-associated neuropsychiatric disorders. Front Neurol. 2022;13:782479.PubMedPubMedCentralCrossRef Sato A, Tominaga K, Iwatani Y, Kato Y, Wataya-Kaneda M, Makita K, et al. Abnormal white matter microstructure in the limbic system is associated with tuberous sclerosis complex-associated neuropsychiatric disorders. Front Neurol. 2022;13:782479.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Vanes LD, Tye C, Tournier JD, Combes AJE, Shephard E, Liang H, et al. White matter disruptions related to inattention and autism spectrum symptoms in tuberous sclerosis complex. NeuroImage Clin. 2022;36:103163.PubMedPubMedCentralCrossRef Vanes LD, Tye C, Tournier JD, Combes AJE, Shephard E, Liang H, et al. White matter disruptions related to inattention and autism spectrum symptoms in tuberous sclerosis complex. NeuroImage Clin. 2022;36:103163.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Peters JM, Prohl A, Kapur K, Nath A, Scherrer B, Clancy S, et al. Longitudinal effects of everolimus on white matter diffusion in tuberous sclerosis complex. Pediatr Neurol. 2019;90:24–30.PubMedCrossRef Peters JM, Prohl A, Kapur K, Nath A, Scherrer B, Clancy S, et al. Longitudinal effects of everolimus on white matter diffusion in tuberous sclerosis complex. Pediatr Neurol. 2019;90:24–30.PubMedCrossRef
122.
Zurück zum Zitat Srivastava S, Prohl AK, Scherrer B, Kapur K, Krueger DA, Warfield SK, et al. Cerebellar volume as an imaging marker of development in infants with tuberous sclerosis complex. Neurology. 2018;90:e1493–500.PubMedPubMedCentralCrossRef Srivastava S, Prohl AK, Scherrer B, Kapur K, Krueger DA, Warfield SK, et al. Cerebellar volume as an imaging marker of development in infants with tuberous sclerosis complex. Neurology. 2018;90:e1493–500.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Moavero R, Napolitano A, Cusmai R, Vigevano F, Figà-Talamanca L, Calbi G, et al. White matter disruption is associated with persistent seizures in tuberous sclerosis complex. Epilepsy Behav. 2016;60:63–7.PubMedCrossRef Moavero R, Napolitano A, Cusmai R, Vigevano F, Figà-Talamanca L, Calbi G, et al. White matter disruption is associated with persistent seizures in tuberous sclerosis complex. Epilepsy Behav. 2016;60:63–7.PubMedCrossRef
124.
Zurück zum Zitat Cook IA, Wilson AC, Peters JM, Goyal MN, Bebin EM, Northrup H, et al. EEG spectral features in sleep of autism spectrum disorders in children with tuberous sclerosis complex. J Autism Dev Disord. 2020;50:916–23.PubMedCrossRef Cook IA, Wilson AC, Peters JM, Goyal MN, Bebin EM, Northrup H, et al. EEG spectral features in sleep of autism spectrum disorders in children with tuberous sclerosis complex. J Autism Dev Disord. 2020;50:916–23.PubMedCrossRef
125.
Zurück zum Zitat Zhang B, Guo D, Han L, Rensing N, Satoh A, Wong M. Hypothalamic orexin and mechanistic target of rapamycin activation mediate sleep dysfunction in a mouse model of tuberous sclerosis complex. Neurobiol Dis. 2020;134:104615.PubMedCrossRef Zhang B, Guo D, Han L, Rensing N, Satoh A, Wong M. Hypothalamic orexin and mechanistic target of rapamycin activation mediate sleep dysfunction in a mouse model of tuberous sclerosis complex. Neurobiol Dis. 2020;134:104615.PubMedCrossRef
126.
Zurück zum Zitat Elkhatib Smidt SD, Ghorai A, Taylor SC, Gehringer BN, Dow HC, Langer A, et al. The relationship between autism spectrum and sleep-wake traits. Autism Res. 2022;15:641–52.PubMedCrossRef Elkhatib Smidt SD, Ghorai A, Taylor SC, Gehringer BN, Dow HC, Langer A, et al. The relationship between autism spectrum and sleep-wake traits. Autism Res. 2022;15:641–52.PubMedCrossRef
127.
Zurück zum Zitat Schoenberger A, Capal JK, Ondracek A, Horn PS, Murray D, Byars AW, et al. Language predictors of autism spectrum disorder in young children with tuberous sclerosis complex. Epilepsy Behav. 2020;103:106844.PubMedCrossRef Schoenberger A, Capal JK, Ondracek A, Horn PS, Murray D, Byars AW, et al. Language predictors of autism spectrum disorder in young children with tuberous sclerosis complex. Epilepsy Behav. 2020;103:106844.PubMedCrossRef
128.
Zurück zum Zitat Scheper M, Romagnolo A, Besharat ZM, Iyer AM, Moavero R, Hertzberg C, et al. MiRNAs and isomiRs: serum-based biomarkers for the development of intellectual disability and autism spectrum disorder in tuberous sclerosis complex. Biomedicines. 2022;10:1838.PubMedPubMedCentralCrossRef Scheper M, Romagnolo A, Besharat ZM, Iyer AM, Moavero R, Hertzberg C, et al. MiRNAs and isomiRs: serum-based biomarkers for the development of intellectual disability and autism spectrum disorder in tuberous sclerosis complex. Biomedicines. 2022;10:1838.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Moavero R, Kotulska K, Lagae L, Benvenuto A, Emberti Gialloreti L, Weschke B, et al. Is autism driven by epilepsy in infants with tuberous sclerosis complex? Ann Clin Transl Neurol. 2020;7:1371–81.PubMedPubMedCentralCrossRef Moavero R, Kotulska K, Lagae L, Benvenuto A, Emberti Gialloreti L, Weschke B, et al. Is autism driven by epilepsy in infants with tuberous sclerosis complex? Ann Clin Transl Neurol. 2020;7:1371–81.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Talbott MR, Miller MR. Future directions for infant identification and intervention for autism spectrum disorder from a transdiagnostic perspective. J Clin Child Adolesc Psychol. 2020;49:688–700.PubMedPubMedCentralCrossRef Talbott MR, Miller MR. Future directions for infant identification and intervention for autism spectrum disorder from a transdiagnostic perspective. J Clin Child Adolesc Psychol. 2020;49:688–700.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Randall M, Egberts KJ, Samtani A, Scholten RJ, Hooft L, Livingstone N, et al. Diagnostic tests for autism spectrum disorder (ASD) in preschool children. Cochrane Database Syst Rev. 2018;2018:CD009044.PubMedCentral Randall M, Egberts KJ, Samtani A, Scholten RJ, Hooft L, Livingstone N, et al. Diagnostic tests for autism spectrum disorder (ASD) in preschool children. Cochrane Database Syst Rev. 2018;2018:CD009044.PubMedCentral
132.
Zurück zum Zitat Capal JK, Horn PS, Murray DS, Byars AW, Bing NM, Kent B, et al. Utility of the autism observation scale for infants in early identification of autism in tuberous sclerosis complex. Pediatr Neurol. 2017;75:80–6.PubMedPubMedCentralCrossRef Capal JK, Horn PS, Murray DS, Byars AW, Bing NM, Kent B, et al. Utility of the autism observation scale for infants in early identification of autism in tuberous sclerosis complex. Pediatr Neurol. 2017;75:80–6.PubMedPubMedCentralCrossRef
133.
Zurück zum Zitat Moavero R, Benvenuto A, Emberti Gialloreti L, Siracusano M, Kotulska K, Weschke B, et al. Early clinical predictors of autism spectrum disorder in infants with tuberous sclerosis complex: results from the EPISTOP Study. J Clin Med. 2019;8:788.PubMedPubMedCentralCrossRef Moavero R, Benvenuto A, Emberti Gialloreti L, Siracusano M, Kotulska K, Weschke B, et al. Early clinical predictors of autism spectrum disorder in infants with tuberous sclerosis complex: results from the EPISTOP Study. J Clin Med. 2019;8:788.PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Jeste SS, Sahin M, Bolton P, Ploubidis GB, Humphrey A. Characterization of autism in young children with tuberous sclerosis complex. J Child Neurol. 2008;23:520–5.PubMedCrossRef Jeste SS, Sahin M, Bolton P, Ploubidis GB, Humphrey A. Characterization of autism in young children with tuberous sclerosis complex. J Child Neurol. 2008;23:520–5.PubMedCrossRef
135.
Zurück zum Zitat Zachor DA, Curatolo P. Recommendations for early diagnosis and intervention in autism spectrum disorders: an Italian-Israeli consensus conference. Eur J Paediatr Neurol. 2014;18:107–18.PubMedCrossRef Zachor DA, Curatolo P. Recommendations for early diagnosis and intervention in autism spectrum disorders: an Italian-Israeli consensus conference. Eur J Paediatr Neurol. 2014;18:107–18.PubMedCrossRef
136.
Zurück zum Zitat Wu JY, Goyal M, Peters JM, Krueger D, Sahin M, Northrup H, et al. Scalp EEG spikes predict impending epilepsy in TSC infants: a longitudinal observational study. Epilepsia. 2019;60:2428–36.PubMedPubMedCentralCrossRef Wu JY, Goyal M, Peters JM, Krueger D, Sahin M, Northrup H, et al. Scalp EEG spikes predict impending epilepsy in TSC infants: a longitudinal observational study. Epilepsia. 2019;60:2428–36.PubMedPubMedCentralCrossRef
137.
Zurück zum Zitat Nabbout R, Kuchenbuch M, Chiron C, Curatolo P. Pharmacotherapy for seizures in tuberous sclerosis complex. CNS Drugs. 2021;35:965–83.PubMedCrossRef Nabbout R, Kuchenbuch M, Chiron C, Curatolo P. Pharmacotherapy for seizures in tuberous sclerosis complex. CNS Drugs. 2021;35:965–83.PubMedCrossRef
138.
Zurück zum Zitat Curatolo P, Verdecchia M, Bombardieri R. Vigabatrin for tuberous sclerosis complex. Brain Dev. 2001;23:649–53.PubMedCrossRef Curatolo P, Verdecchia M, Bombardieri R. Vigabatrin for tuberous sclerosis complex. Brain Dev. 2001;23:649–53.PubMedCrossRef
139.
Zurück zum Zitat van der Poest CE, Jansen FE, Braun KPJ, Peters JM. Update on drug management of refractory epilepsy in tuberous sclerosis complex. Pediatr Drugs. 2020;22:73–84.CrossRef van der Poest CE, Jansen FE, Braun KPJ, Peters JM. Update on drug management of refractory epilepsy in tuberous sclerosis complex. Pediatr Drugs. 2020;22:73–84.CrossRef
140.
Zurück zum Zitat Bombardieri R, Pinci M, Moavero R, Cerminara C, Curatolo P. Early control of seizures improves long-term outcome in children with tuberous sclerosis complex. Eur J Paediatr Neurol. 2010;14:146–9.PubMedCrossRef Bombardieri R, Pinci M, Moavero R, Cerminara C, Curatolo P. Early control of seizures improves long-term outcome in children with tuberous sclerosis complex. Eur J Paediatr Neurol. 2010;14:146–9.PubMedCrossRef
141.
Zurück zum Zitat Kotulska K, Kwiatkowski DJ, Curatolo P, Weschke B, Riney K, Jansen F, et al. Prevention of epilepsy in infants with tuberous sclerosis complex in the EPISTOP trial. Ann Neurol. 2021;89:304–14.PubMedCrossRef Kotulska K, Kwiatkowski DJ, Curatolo P, Weschke B, Riney K, Jansen F, et al. Prevention of epilepsy in infants with tuberous sclerosis complex in the EPISTOP trial. Ann Neurol. 2021;89:304–14.PubMedCrossRef
142.
Zurück zum Zitat Zhang L, Huang CC, Dai Y, Luo Q, Ji Y, Wang K, et al. Correction: Symptom improvement in children with autism spectrum disorder following bumetanide administration is associated with decreased GABA/glutamate ratios. Transl Psychiatry. 2020;10:63.PubMedPubMedCentralCrossRef Zhang L, Huang CC, Dai Y, Luo Q, Ji Y, Wang K, et al. Correction: Symptom improvement in children with autism spectrum disorder following bumetanide administration is associated with decreased GABA/glutamate ratios. Transl Psychiatry. 2020;10:63.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat van Andel DM, Sprengers JJ, Oranje B, Scheepers FE, Jansen FE, Bruining H. Effects of bumetanide on neurodevelopmental impairments in patients with tuberous sclerosis complex: an open-label pilot study. Mol Autism. 2020;11:30.PubMedPubMedCentralCrossRef van Andel DM, Sprengers JJ, Oranje B, Scheepers FE, Jansen FE, Bruining H. Effects of bumetanide on neurodevelopmental impairments in patients with tuberous sclerosis complex: an open-label pilot study. Mol Autism. 2020;11:30.PubMedPubMedCentralCrossRef
144.
Zurück zum Zitat Juarez-Martinez EL, Sprengers JJ, Cristian G, Oranje B, van Andel DM, Avramiea AE, et al. Prediction of behavioral improvement through resting-state electroencephalography and clinical severity in a randomized controlled trial testing bumetanide in autism spectrum disorder. Biol Psychiatry Cogn Neurosci Neuroimaging. 2023;8:251–61.PubMed Juarez-Martinez EL, Sprengers JJ, Cristian G, Oranje B, van Andel DM, Avramiea AE, et al. Prediction of behavioral improvement through resting-state electroencephalography and clinical severity in a randomized controlled trial testing bumetanide in autism spectrum disorder. Biol Psychiatry Cogn Neurosci Neuroimaging. 2023;8:251–61.PubMed
145.
Zurück zum Zitat Overwater IE, Rietman AB, Mous SE, Bindels-de Heus K, Rizopoulos D, ten Hoopen LW, et al. A randomized controlled trial with everolimus for IQ and autism in tuberous sclerosis complex. Neurology. 2019;93:e200–9.PubMedCrossRef Overwater IE, Rietman AB, Mous SE, Bindels-de Heus K, Rizopoulos D, ten Hoopen LW, et al. A randomized controlled trial with everolimus for IQ and autism in tuberous sclerosis complex. Neurology. 2019;93:e200–9.PubMedCrossRef
146.
Zurück zum Zitat Krueger DA, Sadhwani A, Byars AW, de Vries PJ, Franz DN, Whittemore VH, et al. Everolimus for treatment of tuberous sclerosis complex-associated neuropsychiatric disorders. Ann Clin Transl Neurol. 2017;4:877–87.PubMedPubMedCentralCrossRef Krueger DA, Sadhwani A, Byars AW, de Vries PJ, Franz DN, Whittemore VH, et al. Everolimus for treatment of tuberous sclerosis complex-associated neuropsychiatric disorders. Ann Clin Transl Neurol. 2017;4:877–87.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Krueger DA, Capal JK, Curatolo P, Devinsky O, Ess K, Tzadok M, et al. Short-term safety of mTOR inhibitors in infants and very young children with tuberous sclerosis complex (TSC): multicentre clinical experience. Eur J Paediatr Neurol. 2018;22:1066–73.PubMedCrossRef Krueger DA, Capal JK, Curatolo P, Devinsky O, Ess K, Tzadok M, et al. Short-term safety of mTOR inhibitors in infants and very young children with tuberous sclerosis complex (TSC): multicentre clinical experience. Eur J Paediatr Neurol. 2018;22:1066–73.PubMedCrossRef
149.
Zurück zum Zitat Cavalheiro S, da Costa MDS, Richtmann R. Everolimus as a possible prenatal treatment of in utero diagnosed subependymal lesions in tuberous sclerosis complex: a case report. Childs Nerv Syst. 2021;37:3897–9.PubMedCrossRef Cavalheiro S, da Costa MDS, Richtmann R. Everolimus as a possible prenatal treatment of in utero diagnosed subependymal lesions in tuberous sclerosis complex: a case report. Childs Nerv Syst. 2021;37:3897–9.PubMedCrossRef
150.
Zurück zum Zitat Nithianantharajah J, Hannan AJ. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci. 2006;7:697–709.PubMedCrossRef Nithianantharajah J, Hannan AJ. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci. 2006;7:697–709.PubMedCrossRef
151.
Zurück zum Zitat McDonald NM, Hyde C, Choi AB, Gulsrud AC, Kasari C, Nelson CA, et al. Improving developmental abilities in infants with tuberous sclerosis complex: a pilot behavioral intervention study. Infants Young Child. 2020;33:108–18.PubMedPubMedCentralCrossRef McDonald NM, Hyde C, Choi AB, Gulsrud AC, Kasari C, Nelson CA, et al. Improving developmental abilities in infants with tuberous sclerosis complex: a pilot behavioral intervention study. Infants Young Child. 2020;33:108–18.PubMedPubMedCentralCrossRef
152.
Zurück zum Zitat Kasari C. Update on behavioral interventions for autism and developmental disabilities. Curr Opin Neurol. 2015;28:124–9.PubMedCrossRef Kasari C. Update on behavioral interventions for autism and developmental disabilities. Curr Opin Neurol. 2015;28:124–9.PubMedCrossRef
153.
Zurück zum Zitat Bruni O, Cortesi F, Giannotti F, Curatolo P. Sleep disorders in tuberous sclerosis: a polysomnographic study. Brain Dev. 1995;17:52–6.PubMedCrossRef Bruni O, Cortesi F, Giannotti F, Curatolo P. Sleep disorders in tuberous sclerosis: a polysomnographic study. Brain Dev. 1995;17:52–6.PubMedCrossRef
154.
Zurück zum Zitat Bruni O, Alonso-Alconada D, Besag F, Biran V, Braam W, Cortese S, et al. Current role of melatonin in pediatric neurology: clinical recommendations. Eur J Paediatr Neurol. 2015;19:122–33.PubMedCrossRef Bruni O, Alonso-Alconada D, Besag F, Biran V, Braam W, Cortese S, et al. Current role of melatonin in pediatric neurology: clinical recommendations. Eur J Paediatr Neurol. 2015;19:122–33.PubMedCrossRef
155.
Zurück zum Zitat Jansen FE, Van Huffelen AC, Algra A, Van Nieuwenhuizen O. Epilepsy surgery in tuberous sclerosis: a systematic review. Epilepsia. 2007;48:1477–84.PubMedCrossRef Jansen FE, Van Huffelen AC, Algra A, Van Nieuwenhuizen O. Epilepsy surgery in tuberous sclerosis: a systematic review. Epilepsia. 2007;48:1477–84.PubMedCrossRef
156.
Zurück zum Zitat Specchio N, Pepi C, de Palma L, Moavero R, De Benedictis A, Marras CE, et al. Surgery for drug-resistant tuberous sclerosis complex-associated epilepsy: who, when, and what. Epileptic Disord. 2021;23:53–73.PubMedCrossRef Specchio N, Pepi C, de Palma L, Moavero R, De Benedictis A, Marras CE, et al. Surgery for drug-resistant tuberous sclerosis complex-associated epilepsy: who, when, and what. Epileptic Disord. 2021;23:53–73.PubMedCrossRef
Metadaten
Titel
Is tuberous sclerosis complex-associated autism a preventable and treatable disorder?
verfasst von
Paolo Curatolo
Mirte Scheper
Leonardo Emberti Gialloreti
Nicola Specchio
Eleonora Aronica
Publikationsdatum
25.10.2023
Verlag
Springer Nature Singapore
Erschienen in
World Journal of Pediatrics / Ausgabe 1/2024
Print ISSN: 1708-8569
Elektronische ISSN: 1867-0687
DOI
https://doi.org/10.1007/s12519-023-00762-2

Weitere Artikel der Ausgabe 1/2024

World Journal of Pediatrics 1/2024 Zur Ausgabe

Frühe Hypertonie erhöht späteres kardiovaskuläres Risiko

Wie wichtig es ist, pädiatrische Patienten auf Bluthochdruck zu screenen, zeigt eine kanadische Studie: Hypertone Druckwerte in Kindheit und Jugend steigern das Risiko für spätere kardiovaskuläre Komplikationen.

Betalaktam-Allergie: praxisnahes Vorgehen beim Delabeling

16.05.2024 Pädiatrische Allergologie Nachrichten

Die große Mehrheit der vermeintlichen Penicillinallergien sind keine. Da das „Etikett“ Betalaktam-Allergie oft schon in der Kindheit erworben wird, kann ein frühzeitiges Delabeling lebenslange Vorteile bringen. Ein Team von Pädiaterinnen und Pädiatern aus Kanada stellt vor, wie sie dabei vorgehen.

Klimaschutz beginnt bei der Wahl des Inhalators

14.05.2024 Klimawandel Podcast

Auch kleine Entscheidungen im Alltag einer Praxis können einen großen Beitrag zum Klimaschutz leisten. Die neue Leitlinie zur "klimabewussten Verordnung von Inhalativa" geht mit gutem Beispiel voran, denn der Wechsel vom klimaschädlichen Dosieraerosol zum Pulverinhalator spart viele Tonnen CO2. Leitlinienautor PD Dr. Guido Schmiemann erklärt, warum nicht nur die Umwelt, sondern auch Patientinnen und Patienten davon profitieren.

Zeitschrift für Allgemeinmedizin, DEGAM

Embryotransfer erhöht womöglich Leukämierisiko der Kinder

13.05.2024 Assistierte Reproduktion Nachrichten

Reproduktionsmedizinische Techniken haben theoretisch das Potenzial, den epigenetischen Code zu verändern und somit das Krebsrisiko der Kinder zu erhöhen. Zwischen Embryotransfer und Leukämie scheint sich ein solcher Zusammenhang bestätigt zu haben.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.