Skip to main content
Erschienen in: Lasers in Medical Science 2/2022

21.04.2021 | Original Article

LLLI promotes BMSC proliferation through circRNA_0001052/miR-124-3p

Erschienen in: Lasers in Medical Science | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten

Abstract

Osteoporosis (OP) is a multifactorial bone disease that occurs worldwide. The treatment of OP is still unsatisfactory. Bone mesenchymal stem cell (BMSC) differentiation is a key process in OP pathogenesis. Low-level laser irradiation (LLLI) has been reported to regulate BMSC proliferation, but the role of circRNAs in the LLLI-based promotion of BMSC proliferation remains unclear. CircRNAs are essential molecular regulators that participate in numerous biological processes and have therapeutic potential. miR-124-3p is an essential microRNA (miRNA), and its expression changes are related to BMSC proliferation ability. In the present study, gain-loss function of experiments demonstrated that circRNA_0001052 could regulate the proliferation of BMSCs by acting as a miR-124-3p sponge through the Wnt4/β-catenin pathway. The results of this study strongly suggest that circRNA_0001052 plays an essential role in BMSC proliferation in response to LLLI treatment, which is a potential therapeutic manipulation with clinical applications.
Literatur
1.
Zurück zum Zitat Wang F et al (2019) Up-regulated CST5 inhibits bone resorption and activation of osteoclasts in rat models of osteoporosis via suppression of the NF-κB pathway. J Cell Mol Med 23(10):6744–6754PubMedPubMedCentralCrossRef Wang F et al (2019) Up-regulated CST5 inhibits bone resorption and activation of osteoclasts in rat models of osteoporosis via suppression of the NF-κB pathway. J Cell Mol Med 23(10):6744–6754PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Paschou SA et al (2017) Type 2 diabetes and osteoporosis: a guide to optimal management. J Clin Endocrinol Metab 102(10):3621–3634PubMedCrossRef Paschou SA et al (2017) Type 2 diabetes and osteoporosis: a guide to optimal management. J Clin Endocrinol Metab 102(10):3621–3634PubMedCrossRef
3.
Zurück zum Zitat Zhu D et al (2018) Extragonadal effects of follicle-stimulating hormone on osteoporosis and cardiovascular disease in women during menopausal transition. Trends Endocrinol Metab 29(8):571–580PubMedCrossRef Zhu D et al (2018) Extragonadal effects of follicle-stimulating hormone on osteoporosis and cardiovascular disease in women during menopausal transition. Trends Endocrinol Metab 29(8):571–580PubMedCrossRef
4.
Zurück zum Zitat Metta V, Sanchez TC, Padmakumar C (2017) Osteoporosis: a hidden nonmotor face of Parkinson’s disease. Int Rev Neurobiol 134:877–890PubMedCrossRef Metta V, Sanchez TC, Padmakumar C (2017) Osteoporosis: a hidden nonmotor face of Parkinson’s disease. Int Rev Neurobiol 134:877–890PubMedCrossRef
5.
Zurück zum Zitat Chen YH, Lo RY (2017) Alzheimer’s disease and osteoporosis. Ci Ji Yi Xue Za Zhi 29(3):138–142PubMed Chen YH, Lo RY (2017) Alzheimer’s disease and osteoporosis. Ci Ji Yi Xue Za Zhi 29(3):138–142PubMed
6.
Zurück zum Zitat Augat P et al (2010) Osteoporosis prevalence and fracture characteristics in elderly female patients with fractures. Arch Orthop Trauma Surg 130(11):1405–1410PubMedCrossRef Augat P et al (2010) Osteoporosis prevalence and fracture characteristics in elderly female patients with fractures. Arch Orthop Trauma Surg 130(11):1405–1410PubMedCrossRef
7.
Zurück zum Zitat Collins MT, Stratakis CA (2016) Bone formation, growth, and repair. Horm Metab Res 48(11):687–688PubMedCrossRef Collins MT, Stratakis CA (2016) Bone formation, growth, and repair. Horm Metab Res 48(11):687–688PubMedCrossRef
8.
Zurück zum Zitat Katsimbri P (2017) The biology of normal bone remodelling. Eur J Cancer Care (Engl). 26(6) Katsimbri P (2017) The biology of normal bone remodelling. Eur J Cancer Care (Engl). 26(6)
9.
Zurück zum Zitat Wei F et al (2019) Immunoregulatory role of exosomes derived from differentiating mesenchymal stromal cells on inflammation and osteogenesis. J Tissue Eng Regen Med 13(11):1978–1991PubMedCrossRef Wei F et al (2019) Immunoregulatory role of exosomes derived from differentiating mesenchymal stromal cells on inflammation and osteogenesis. J Tissue Eng Regen Med 13(11):1978–1991PubMedCrossRef
10.
Zurück zum Zitat Luo Y et al (2019) Runx1 regulates osteogenic differentiation of BMSCs by inhibiting adipogenesis through Wnt/β-catenin pathway. Arch Oral Biol 97:176–184PubMedCrossRef Luo Y et al (2019) Runx1 regulates osteogenic differentiation of BMSCs by inhibiting adipogenesis through Wnt/β-catenin pathway. Arch Oral Biol 97:176–184PubMedCrossRef
11.
Zurück zum Zitat An Q et al (2015) Suppression of Evi1 promotes the osteogenic differentiation and inhibits the adipogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro. Int J Mol Med 36(6):1615–1622PubMedCrossRef An Q et al (2015) Suppression of Evi1 promotes the osteogenic differentiation and inhibits the adipogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro. Int J Mol Med 36(6):1615–1622PubMedCrossRef
12.
Zurück zum Zitat Ferreira JH et al (2018) Low-level laser irradiation induces a transcriptional myotube-like profile in C2C12 myoblasts. Lasers Med Sci 33(8):1673–1683PubMedCrossRef Ferreira JH et al (2018) Low-level laser irradiation induces a transcriptional myotube-like profile in C2C12 myoblasts. Lasers Med Sci 33(8):1673–1683PubMedCrossRef
13.
Zurück zum Zitat Plass CA et al (2012) Low-level-laser irradiation induces photorelaxation in coronary arteries and overcomes vasospasm of internal thoracic arteries. Lasers Surg Med 44(9):705–711PubMedCrossRef Plass CA et al (2012) Low-level-laser irradiation induces photorelaxation in coronary arteries and overcomes vasospasm of internal thoracic arteries. Lasers Surg Med 44(9):705–711PubMedCrossRef
14.
Zurück zum Zitat Mikami R et al (2018) Low-level ultrahigh-frequency and ultrashort-pulse blue laser irradiation enhances osteoblast extracellular calcification by upregulating proliferation and differentiation via transient receptor potential vanilloid 1. Lasers Surg Med 50(4):340–352PubMedCrossRef Mikami R et al (2018) Low-level ultrahigh-frequency and ultrashort-pulse blue laser irradiation enhances osteoblast extracellular calcification by upregulating proliferation and differentiation via transient receptor potential vanilloid 1. Lasers Surg Med 50(4):340–352PubMedCrossRef
15.
Zurück zum Zitat Rosa AP et al (2012) Effects of the combination of low-level laser irradiation and recombinant human bone morphogenetic protein-2 in bone repair. Lasers Med Sci 27(5):971–977PubMedCrossRef Rosa AP et al (2012) Effects of the combination of low-level laser irradiation and recombinant human bone morphogenetic protein-2 in bone repair. Lasers Med Sci 27(5):971–977PubMedCrossRef
16.
Zurück zum Zitat Hou JF et al (2008) In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med 40(10):726–733PubMedCrossRef Hou JF et al (2008) In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med 40(10):726–733PubMedCrossRef
17.
Zurück zum Zitat Abramovitch-Gottlib L et al (2005) Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med Sci 20(3–4):138–146PubMedCrossRef Abramovitch-Gottlib L et al (2005) Low level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med Sci 20(3–4):138–146PubMedCrossRef
18.
Zurück zum Zitat Kipshidze N et al (2001) Low-power helium: neon laser irradiation enhances production of vascular endothelial growth factor and promotes growth of endothelial cells in vitro. Lasers Surg Med 28(4):355–364PubMedCrossRef Kipshidze N et al (2001) Low-power helium: neon laser irradiation enhances production of vascular endothelial growth factor and promotes growth of endothelial cells in vitro. Lasers Surg Med 28(4):355–364PubMedCrossRef
19.
Zurück zum Zitat Zaccara IM et al (2015) Effect of low-level laser irradiation on proliferation and viability of human dental pulp stem cells. Lasers Med Sci 30(9):2259–2264PubMedCrossRef Zaccara IM et al (2015) Effect of low-level laser irradiation on proliferation and viability of human dental pulp stem cells. Lasers Med Sci 30(9):2259–2264PubMedCrossRef
20.
Zurück zum Zitat Stancker TG et al (2018) Can photobiomodulation associated with implantation of mesenchymal adipose-derived stem cells attenuate the expression of MMPs and decrease degradation of type II collagen in an experimental model of osteoarthritis? Lasers Med Sci 33(5):1073–1084PubMedCrossRef Stancker TG et al (2018) Can photobiomodulation associated with implantation of mesenchymal adipose-derived stem cells attenuate the expression of MMPs and decrease degradation of type II collagen in an experimental model of osteoarthritis? Lasers Med Sci 33(5):1073–1084PubMedCrossRef
21.
Zurück zum Zitat Mansano BSDM et al (2021) Enhancing the therapeutic potential of mesenchymal stem cells with light-emitting diode: implications and molecular mechanisms. Oxidative Med Cell Longev 2021:6663539CrossRef Mansano BSDM et al (2021) Enhancing the therapeutic potential of mesenchymal stem cells with light-emitting diode: implications and molecular mechanisms. Oxidative Med Cell Longev 2021:6663539CrossRef
22.
Zurück zum Zitat Werfel S et al (2016) Characterization of circular RNAs in human, mouse and rat hearts. J Mol Cell Cardiol 98:103–107PubMedCrossRef Werfel S et al (2016) Characterization of circular RNAs in human, mouse and rat hearts. J Mol Cell Cardiol 98:103–107PubMedCrossRef
23.
Zurück zum Zitat Xia S et al (2017) Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes. Brief Bioinform 18(6):984–992PubMed Xia S et al (2017) Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes. Brief Bioinform 18(6):984–992PubMed
24.
Zurück zum Zitat Pan T et al (2018) Heat stress alters genome-wide profiles of circular RNAs in Arabidopsis. Plant Mol Biol 96(3):217–229PubMedCrossRef Pan T et al (2018) Heat stress alters genome-wide profiles of circular RNAs in Arabidopsis. Plant Mol Biol 96(3):217–229PubMedCrossRef
25.
Zurück zum Zitat Chen X et al (2019) CircRNA_28313/miR-195a/CSF1 axis modulates osteoclast differentiation to affect OVX-induced bone absorption in mice. RNA Biol 16(9):1249–1262PubMedPubMedCentralCrossRef Chen X et al (2019) CircRNA_28313/miR-195a/CSF1 axis modulates osteoclast differentiation to affect OVX-induced bone absorption in mice. RNA Biol 16(9):1249–1262PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Song M et al (2018) Circular RNA in liver: health and diseases. Adv Exp Med Biol 1087:245–257PubMedCrossRef Song M et al (2018) Circular RNA in liver: health and diseases. Adv Exp Med Biol 1087:245–257PubMedCrossRef
27.
Zurück zum Zitat Yu L, Liu Y (2019) circRNA_0016624 could sponge miR-98 to regulate BMP2 expression in postmenopausal osteoporosis. Biochem Biophys Res Commun 516(2):546–550PubMedCrossRef Yu L, Liu Y (2019) circRNA_0016624 could sponge miR-98 to regulate BMP2 expression in postmenopausal osteoporosis. Biochem Biophys Res Commun 516(2):546–550PubMedCrossRef
28.
Zurück zum Zitat Xu X et al (2020) Circular RNA circ_0011269 sponges miR-122 to regulate RUNX2 expression and promotes osteoporosis progression. J Cell Biochem Xu X et al (2020) Circular RNA circ_0011269 sponges miR-122 to regulate RUNX2 expression and promotes osteoporosis progression. J Cell Biochem
29.
30.
31.
Zurück zum Zitat Li Z et al. (2020) miR-124-3p promotes BMSC osteogenesis via suppressing the GSK-3β/β-catenin signaling pathway in diabetic osteoporosis rats. In Vitro Cell Dev Biol Anim Li Z et al. (2020) miR-124-3p promotes BMSC osteogenesis via suppressing the GSK-3β/β-catenin signaling pathway in diabetic osteoporosis rats. In Vitro Cell Dev Biol Anim
32.
Zurück zum Zitat Zhang RF et al (2018) Low-level laser irradiation promotes the differentiation of bone marrow stromal cells into osteoblasts through the APN/Wnt/β-catenin pathway. Eur Rev Med Pharmacol Sci 22(9):2860–2868PubMed Zhang RF et al (2018) Low-level laser irradiation promotes the differentiation of bone marrow stromal cells into osteoblasts through the APN/Wnt/β-catenin pathway. Eur Rev Med Pharmacol Sci 22(9):2860–2868PubMed
33.
Zurück zum Zitat Duan P, Bonewald LF (2016) The role of the wnt/β-catenin signaling pathway in formation and maintenance of bone and teeth. Int J Biochem Cell Biol 77(Pt A):23–29PubMedPubMedCentralCrossRef Duan P, Bonewald LF (2016) The role of the wnt/β-catenin signaling pathway in formation and maintenance of bone and teeth. Int J Biochem Cell Biol 77(Pt A):23–29PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Li WT, Leu YC, Wu JL (2010) Red-light light-emitting diode irradiation increases the proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells. Photomed Laser Surg 28(Suppl 1):S157–S165PubMedCrossRef Li WT, Leu YC, Wu JL (2010) Red-light light-emitting diode irradiation increases the proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells. Photomed Laser Surg 28(Suppl 1):S157–S165PubMedCrossRef
35.
Zurück zum Zitat Moon JH et al (2018) Enhanced survival of ischemic skin flap by combined treatment with bone marrow-derived stem cells and low-level light irradiation. Lasers Med Sci 33(1):1–9PubMedCrossRef Moon JH et al (2018) Enhanced survival of ischemic skin flap by combined treatment with bone marrow-derived stem cells and low-level light irradiation. Lasers Med Sci 33(1):1–9PubMedCrossRef
36.
37.
Zurück zum Zitat He JH et al (2018) The CircRNA-ACAP2/Hsa-miR-21-5p/ Tiam1 regulatory feedback circuit affects the proliferation, migration, and invasion of colon cancer SW480 cells. Cell Physiol Biochem 49(4):1539–1550PubMedCrossRef He JH et al (2018) The CircRNA-ACAP2/Hsa-miR-21-5p/ Tiam1 regulatory feedback circuit affects the proliferation, migration, and invasion of colon cancer SW480 cells. Cell Physiol Biochem 49(4):1539–1550PubMedCrossRef
38.
Zurück zum Zitat Yang W et al. (2020) MicroRNA-124-3p.1 promotes cell proliferation through Axin1-dependent Wnt signaling pathway and predicts a poor prognosis of triple-negative breast cancer. J Clin Lab Anal e23266 Yang W et al. (2020) MicroRNA-124-3p.1 promotes cell proliferation through Axin1-dependent Wnt signaling pathway and predicts a poor prognosis of triple-negative breast cancer. J Clin Lab Anal e23266
39.
Zurück zum Zitat Yang A et al (2018) Mechanisms of Zuogui pill in treating osteoporosis: perspective from bone marrow mesenchymal stem cells. Evid Based Complement Alternat Med 2018:3717391PubMedPubMedCentralCrossRef Yang A et al (2018) Mechanisms of Zuogui pill in treating osteoporosis: perspective from bone marrow mesenchymal stem cells. Evid Based Complement Alternat Med 2018:3717391PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Borzabadi-Farahani A (2016) Effect of low-level laser irradiation on proliferation of human dental mesenchymal stem cells; a systemic review. J Photochem Photobiol B 162:577–582PubMedCrossRef Borzabadi-Farahani A (2016) Effect of low-level laser irradiation on proliferation of human dental mesenchymal stem cells; a systemic review. J Photochem Photobiol B 162:577–582PubMedCrossRef
41.
Zurück zum Zitat Liu Y, Zhang H (2016) Low-level laser irradiation precondition for cardiac regenerative therapy. Photomed Laser Surg 34(11):572–579PubMedCrossRef Liu Y, Zhang H (2016) Low-level laser irradiation precondition for cardiac regenerative therapy. Photomed Laser Surg 34(11):572–579PubMedCrossRef
42.
Zurück zum Zitat Zhang H et al (2010) Low level laser irradiation precondition to create friendly milieu of infarcted myocardium and enhance early survival of transplanted bone marrow cells. J Cell Mol Med 14(7):1975–1987PubMedPubMedCentralCrossRef Zhang H et al (2010) Low level laser irradiation precondition to create friendly milieu of infarcted myocardium and enhance early survival of transplanted bone marrow cells. J Cell Mol Med 14(7):1975–1987PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Wu YH et al (2012) Effects of low-level laser irradiation on mesenchymal stem cell proliferation: a microarray analysis. Lasers Med Sci 27(2):509–519PubMedCrossRef Wu YH et al (2012) Effects of low-level laser irradiation on mesenchymal stem cell proliferation: a microarray analysis. Lasers Med Sci 27(2):509–519PubMedCrossRef
44.
Zurück zum Zitat Giannelli M et al (2013) Photoactivation of bone marrow mesenchymal stromal cells with diode laser: effects and mechanisms of action. J Cell Physiol 228(1):172–181PubMedCrossRef Giannelli M et al (2013) Photoactivation of bone marrow mesenchymal stromal cells with diode laser: effects and mechanisms of action. J Cell Physiol 228(1):172–181PubMedCrossRef
45.
Zurück zum Zitat Al-Azab M et al (2020) Indian hedgehog regulates senescence in bone marrow-derived mesenchymal stem cell through modulation of ROS/mTOR/4EBP1, p70S6K1/2 pathway. Aging (Albany NY) 12(7):5693–5715CrossRef Al-Azab M et al (2020) Indian hedgehog regulates senescence in bone marrow-derived mesenchymal stem cell through modulation of ROS/mTOR/4EBP1, p70S6K1/2 pathway. Aging (Albany NY) 12(7):5693–5715CrossRef
46.
47.
Zurück zum Zitat Wang J et al (2012) MicroRNA-193 pro-proliferation effects for bone mesenchymal stem cells after low-level laser irradiation treatment through inhibitor of growth family, member 5. Stem Cells Dev 21(13):2508–2519PubMedPubMedCentralCrossRef Wang J et al (2012) MicroRNA-193 pro-proliferation effects for bone mesenchymal stem cells after low-level laser irradiation treatment through inhibitor of growth family, member 5. Stem Cells Dev 21(13):2508–2519PubMedPubMedCentralCrossRef
Metadaten
Titel
LLLI promotes BMSC proliferation through circRNA_0001052/miR-124-3p
Publikationsdatum
21.04.2021
Erschienen in
Lasers in Medical Science / Ausgabe 2/2022
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-021-03322-0

Weitere Artikel der Ausgabe 2/2022

Lasers in Medical Science 2/2022 Zur Ausgabe