Skip to main content
Erschienen in: Cardiovascular Toxicology 1/2010

01.03.2010

Mechanisms of Myocyte Cytotoxicity Induced by the Multikinase Inhibitor Sorafenib

verfasst von: Brian B. Hasinoff, Daywin Patel

Erschienen in: Cardiovascular Toxicology | Ausgabe 1/2010

Einloggen, um Zugang zu erhalten

Abstract

The use of the anticancer multikinase inhibitor sorafenib is associated with cardiac ischemia or infarction and an increase in hypertension. We investigated various mechanisms that might be responsible for its cardiotoxicity in a neonatal rat myocyte model. As measured by lactate dehydrogenase release, sorafenib treatment of myocytes caused dose-dependent damage at therapeutically relevant concentrations. It had been hypothesized that inhibition of RAF1 and BRAF kinases may be responsible for sorafenib-induced cardiotoxicity. However, because sorafenib treatment did not inhibit phosphorylation of ERK (extracellular signal-regulated kinase), it was concluded that sorafenib did not exert its damaging effects through RAF inhibition of the RAF/MEK/ERK kinase cascade. The clinically approved doxorubicin cardioprotective agent dexrazoxane did not protect myocytes from damage. At lower sorafenib concentrations, at least, these results are consistent with sorafenib not being able to induce significant oxidative damage. In conclusion, given the extreme lack of kinase selectivity that sorafenib exhibits, it is likely that inhibition of kinases other than RAF, or combinations of kinases, contributes to the cardiotoxic effects of sorafenib.
Literatur
1.
Zurück zum Zitat Strumberg, D., Clark, J. W., Awada, A., Moore, M. J., Richly, H., Hendlisz, A., et al. (2007). Safety, pharmacokinetics, and preliminary antitumor activity of sorafenib: A review of four phase I trials in patients with advanced refractory solid tumors. The Oncologist, 12, 426–437.CrossRefPubMed Strumberg, D., Clark, J. W., Awada, A., Moore, M. J., Richly, H., Hendlisz, A., et al. (2007). Safety, pharmacokinetics, and preliminary antitumor activity of sorafenib: A review of four phase I trials in patients with advanced refractory solid tumors. The Oncologist, 12, 426–437.CrossRefPubMed
2.
Zurück zum Zitat Chen, M. H., Kerkela, R., & Force, T. (2008). Mechanisms of cardiac dysfunction associated with tyrosine kinase inhibitor cancer therapeutics. Circulation, 118, 84–95.CrossRefPubMed Chen, M. H., Kerkela, R., & Force, T. (2008). Mechanisms of cardiac dysfunction associated with tyrosine kinase inhibitor cancer therapeutics. Circulation, 118, 84–95.CrossRefPubMed
3.
Zurück zum Zitat Wilhelm, S. M., Carter, C., Tang, L., Wilkie, D., McNabola, A., Rong, H., et al. (2004). BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Research, 64, 7099–7109.CrossRefPubMed Wilhelm, S. M., Carter, C., Tang, L., Wilkie, D., McNabola, A., Rong, H., et al. (2004). BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Research, 64, 7099–7109.CrossRefPubMed
4.
Zurück zum Zitat Karaman, M. W., Herrgard, S., Treiber, D. K., Gallant, P., Atteridge, C. E., Campbell, B. T., et al. (2008). A quantitative analysis of kinase inhibitor selectivity. Nature Biotechnology, 26, 127–132.CrossRefPubMed Karaman, M. W., Herrgard, S., Treiber, D. K., Gallant, P., Atteridge, C. E., Campbell, B. T., et al. (2008). A quantitative analysis of kinase inhibitor selectivity. Nature Biotechnology, 26, 127–132.CrossRefPubMed
5.
Zurück zum Zitat Kane, R. C., Farrell, A. T., Madabushi, R., Booth, B., Chattopadhyay, S., Sridhara, R., et al. (2009). Sorafenib for the treatment of unresectable hepatocellular carcinoma. The Oncologist, 14, 95–100.CrossRefPubMed Kane, R. C., Farrell, A. T., Madabushi, R., Booth, B., Chattopadhyay, S., Sridhara, R., et al. (2009). Sorafenib for the treatment of unresectable hepatocellular carcinoma. The Oncologist, 14, 95–100.CrossRefPubMed
6.
Zurück zum Zitat Zhang, X., Crespo, A., & Fernandez, A. (2008). Turning promiscuous kinase inhibitors into safer drugs. Trends in Biotechnology, 26, 295–301.CrossRefPubMed Zhang, X., Crespo, A., & Fernandez, A. (2008). Turning promiscuous kinase inhibitors into safer drugs. Trends in Biotechnology, 26, 295–301.CrossRefPubMed
7.
Zurück zum Zitat Orphanos, G. S., Ioannidis, G. N., & Ardavanis, A. G. (2009). Cardiotoxicity induced by tyrosine kinase inhibitors. Acta Oncologica, 48, 964–970.CrossRefPubMed Orphanos, G. S., Ioannidis, G. N., & Ardavanis, A. G. (2009). Cardiotoxicity induced by tyrosine kinase inhibitors. Acta Oncologica, 48, 964–970.CrossRefPubMed
9.
Zurück zum Zitat Schmidinger, M., Zielinski, C. C., Vogl, U. M., Bojic, A., Bojic, M., Schukro, C., et al. (2008). Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. Journal of Clinical Oncology, 26, 5204–5212.CrossRefPubMed Schmidinger, M., Zielinski, C. C., Vogl, U. M., Bojic, A., Bojic, M., Schukro, C., et al. (2008). Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. Journal of Clinical Oncology, 26, 5204–5212.CrossRefPubMed
10.
Zurück zum Zitat Hasinoff, B. B., Patel, D., & O’Hara, K. A. (2008). Mechanisms of myocyte cytotoxicity induced by the multiple receptor tyrosine kinase inhibitor sunitinib. Molecular Pharmacology, 74, 1722–1728.CrossRefPubMed Hasinoff, B. B., Patel, D., & O’Hara, K. A. (2008). Mechanisms of myocyte cytotoxicity induced by the multiple receptor tyrosine kinase inhibitor sunitinib. Molecular Pharmacology, 74, 1722–1728.CrossRefPubMed
11.
Zurück zum Zitat Force, T., Krause, D. S., & Van Etten, R. A. (2007). Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nature Reviews Cancer, 7, 332–344.CrossRefPubMed Force, T., Krause, D. S., & Van Etten, R. A. (2007). Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nature Reviews Cancer, 7, 332–344.CrossRefPubMed
12.
Zurück zum Zitat Hasinoff, B. B., & Herman, E. H. (2007). Dexrazoxane: How it works in cardiac and tumor cells. Is it a prodrug or is it a drug? Cardiovascular Toxicology, 7, 140–144.CrossRefPubMed Hasinoff, B. B., & Herman, E. H. (2007). Dexrazoxane: How it works in cardiac and tumor cells. Is it a prodrug or is it a drug? Cardiovascular Toxicology, 7, 140–144.CrossRefPubMed
13.
Zurück zum Zitat Hasinoff, B. B., Patel, D., & Wu, X. (2003). The oral iron chelator ICL670A (deferasirox) does not protect myocytes against doxorubicin. Free Radical Biology and Medicine, 35, 1469–1479.CrossRefPubMed Hasinoff, B. B., Patel, D., & Wu, X. (2003). The oral iron chelator ICL670A (deferasirox) does not protect myocytes against doxorubicin. Free Radical Biology and Medicine, 35, 1469–1479.CrossRefPubMed
14.
Zurück zum Zitat Barnabé, N., Butler, M., & Hasinoff, B. B. (2001). The effect of the catalytic topoisomerase II inhibitor dexrazoxane (ICRF-187) on CC9C10 hybridoma viability and productivity. Cytotechnology, 37, 107–117.CrossRefPubMed Barnabé, N., Butler, M., & Hasinoff, B. B. (2001). The effect of the catalytic topoisomerase II inhibitor dexrazoxane (ICRF-187) on CC9C10 hybridoma viability and productivity. Cytotechnology, 37, 107–117.CrossRefPubMed
15.
Zurück zum Zitat Hasinoff, B. B., Patel, D., & Wu, X. (2007). The cytotoxicity of celecoxib towards cardiac myocytes is cyclooxygenase-2 independent. Cardiovascular Toxicology, 7, 19–27.CrossRefPubMed Hasinoff, B. B., Patel, D., & Wu, X. (2007). The cytotoxicity of celecoxib towards cardiac myocytes is cyclooxygenase-2 independent. Cardiovascular Toxicology, 7, 19–27.CrossRefPubMed
16.
Zurück zum Zitat Schroeder, P. E., Patel, D., & Hasinoff, B. B. (2008). The dihydroorotase inhibitor 5-aminoorotic acid inhibits the metabolism in the rat of the cardioprotective drug dexrazoxane and its one-ring open metabolites. Drug Metabolism and Disposition, 36, 1780–1785.CrossRefPubMed Schroeder, P. E., Patel, D., & Hasinoff, B. B. (2008). The dihydroorotase inhibitor 5-aminoorotic acid inhibits the metabolism in the rat of the cardioprotective drug dexrazoxane and its one-ring open metabolites. Drug Metabolism and Disposition, 36, 1780–1785.CrossRefPubMed
17.
Zurück zum Zitat Adderley, S. R., & Fitzgerald, D. J. (1999). Oxidative damage of cardiomyocytes is limited by extracellular regulated kinases 1/2-mediated induction of cyclooxygenase-2. Journal of Biological Chemistry, 274, 5038–5046.CrossRefPubMed Adderley, S. R., & Fitzgerald, D. J. (1999). Oxidative damage of cardiomyocytes is limited by extracellular regulated kinases 1/2-mediated induction of cyclooxygenase-2. Journal of Biological Chemistry, 274, 5038–5046.CrossRefPubMed
18.
Zurück zum Zitat Hershko, C., Link, G., Tzahor, M., Kaltwasser, J. P., Athias, P., Grynberg, A., et al. (1993). Anthracycline cytotoxicity is potentiated by iron and inhibited by deferoxamine: Studies in rat heart cells in culture. Journal of Laboratory and Clinical Medicine, 122, 245–251.PubMed Hershko, C., Link, G., Tzahor, M., Kaltwasser, J. P., Athias, P., Grynberg, A., et al. (1993). Anthracycline cytotoxicity is potentiated by iron and inhibited by deferoxamine: Studies in rat heart cells in culture. Journal of Laboratory and Clinical Medicine, 122, 245–251.PubMed
19.
Zurück zum Zitat Barnabé, N., Zastre, J., Venkataram, S., & Hasinoff, B. B. (2002). Deferiprone protects against doxorubicin-induced myocyte cytotoxicity. Free Radical Biology and Medicine, 33, 266–275.CrossRefPubMed Barnabé, N., Zastre, J., Venkataram, S., & Hasinoff, B. B. (2002). Deferiprone protects against doxorubicin-induced myocyte cytotoxicity. Free Radical Biology and Medicine, 33, 266–275.CrossRefPubMed
20.
Zurück zum Zitat Li, F., Wang, X., Capasso, J. M., & Gerdes, A. M. (1996). Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. Journal of Molecular and Cellular Cardiology, 28, 1737–1746.CrossRefPubMed Li, F., Wang, X., Capasso, J. M., & Gerdes, A. M. (1996). Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. Journal of Molecular and Cellular Cardiology, 28, 1737–1746.CrossRefPubMed
21.
Zurück zum Zitat Will, Y., Dykens, J. A., Nadanaciva, S., Hirakawa, B., Jamieson, J., Marroquin, L. D., et al. (2008). Effect of the multitargeted tyrosine kinase inhibitors imatinib, dasatinib, sunitinib, and sorafenib on mitochondrial function in isolated rat heart mitochondria and H9c2 cells. Toxicological Sciences, 106, 153–161.CrossRefPubMed Will, Y., Dykens, J. A., Nadanaciva, S., Hirakawa, B., Jamieson, J., Marroquin, L. D., et al. (2008). Effect of the multitargeted tyrosine kinase inhibitors imatinib, dasatinib, sunitinib, and sorafenib on mitochondrial function in isolated rat heart mitochondria and H9c2 cells. Toxicological Sciences, 106, 153–161.CrossRefPubMed
22.
Zurück zum Zitat Liu, L., Cao, Y., Chen, C., Zhang, X., McNabola, A., Wilkie, D., et al. (2006). Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Research, 66, 11851–11858.CrossRefPubMed Liu, L., Cao, Y., Chen, C., Zhang, X., McNabola, A., Wilkie, D., et al. (2006). Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Research, 66, 11851–11858.CrossRefPubMed
23.
Zurück zum Zitat Wang, G. Q., Gong, Y., Burczynski, F. J., & Hasinoff, B. B. (2008). Cell lysis with dimethyl sulfoxide produces stable homogeneous solutions in the dichlorofluorescin oxidative stress assay. Free Radical Research, 42, 435–441.CrossRefPubMed Wang, G. Q., Gong, Y., Burczynski, F. J., & Hasinoff, B. B. (2008). Cell lysis with dimethyl sulfoxide produces stable homogeneous solutions in the dichlorofluorescin oxidative stress assay. Free Radical Research, 42, 435–441.CrossRefPubMed
24.
Zurück zum Zitat Yamaguchi, O., Watanabe, T., Nishida, K., Kashiwase, K., Higuchi, Y., Takeda, T., et al. (2004). Cardiac-specific disruption of the c-raf-1 gene induces cardiac dysfunction and apoptosis. Journal of Clinical Investigation, 114, 937–943.PubMed Yamaguchi, O., Watanabe, T., Nishida, K., Kashiwase, K., Higuchi, Y., Takeda, T., et al. (2004). Cardiac-specific disruption of the c-raf-1 gene induces cardiac dysfunction and apoptosis. Journal of Clinical Investigation, 114, 937–943.PubMed
25.
Zurück zum Zitat Harris, I. S., Zhang, S., Treskov, I., Kovacs, A., Weinheimer, C., & Muslin, A. J. (2004). Raf-1 kinase is required for cardiac hypertrophy and cardiomyocyte survival in response to pressure overload. Circulation, 110, 718–723.CrossRefPubMed Harris, I. S., Zhang, S., Treskov, I., Kovacs, A., Weinheimer, C., & Muslin, A. J. (2004). Raf-1 kinase is required for cardiac hypertrophy and cardiomyocyte survival in response to pressure overload. Circulation, 110, 718–723.CrossRefPubMed
26.
Zurück zum Zitat McCubrey, J. A., Lahair, M. M., & Franklin, R. A. (2006). Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxidants & Redox Signaling, 8, 1775–1789.CrossRef McCubrey, J. A., Lahair, M. M., & Franklin, R. A. (2006). Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxidants & Redox Signaling, 8, 1775–1789.CrossRef
27.
Zurück zum Zitat Klein, M., Schermuly, R. T., Ellinghaus, P., Milting, H., Riedl, B., Nikolova, S., et al. (2008). Combined tyrosine and serine/threonine kinase inhibition by sorafenib prevents progression of experimental pulmonary hypertension and myocardial remodeling. Circulation, 118, 2081–2090.CrossRefPubMed Klein, M., Schermuly, R. T., Ellinghaus, P., Milting, H., Riedl, B., Nikolova, S., et al. (2008). Combined tyrosine and serine/threonine kinase inhibition by sorafenib prevents progression of experimental pulmonary hypertension and myocardial remodeling. Circulation, 118, 2081–2090.CrossRefPubMed
29.
Zurück zum Zitat Force, T., & Kerkela, R. (2008). Cardiotoxicity of the new cancer therapeutics-mechanisms of, and approaches to, the problem. Drug Discovery Today, 13, 778–784.CrossRefPubMed Force, T., & Kerkela, R. (2008). Cardiotoxicity of the new cancer therapeutics-mechanisms of, and approaches to, the problem. Drug Discovery Today, 13, 778–784.CrossRefPubMed
30.
Zurück zum Zitat Hsieh, P. C., MacGillivray, C., Gannon, J., Cruz, F. U., & Lee, R. T. (2006). Local controlled intramyocardial delivery of platelet-derived growth factor improves postinfarction ventricular function without pulmonary toxicity. Circulation, 114, 637–644.CrossRefPubMed Hsieh, P. C., MacGillivray, C., Gannon, J., Cruz, F. U., & Lee, R. T. (2006). Local controlled intramyocardial delivery of platelet-derived growth factor improves postinfarction ventricular function without pulmonary toxicity. Circulation, 114, 637–644.CrossRefPubMed
31.
Zurück zum Zitat Hellstrom, M., Kalen, M., Lindahl, P., Abramsson, A., & Betsholtz, C. (1999). Role of PDGF-B and PDGFR-β in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development, 126, 3047–3055.PubMed Hellstrom, M., Kalen, M., Lindahl, P., Abramsson, A., & Betsholtz, C. (1999). Role of PDGF-B and PDGFR-β in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development, 126, 3047–3055.PubMed
Metadaten
Titel
Mechanisms of Myocyte Cytotoxicity Induced by the Multikinase Inhibitor Sorafenib
verfasst von
Brian B. Hasinoff
Daywin Patel
Publikationsdatum
01.03.2010
Verlag
Humana Press Inc
Erschienen in
Cardiovascular Toxicology / Ausgabe 1/2010
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-009-9056-0

Weitere Artikel der Ausgabe 1/2010

Cardiovascular Toxicology 1/2010 Zur Ausgabe