Skip to main content
Erschienen in: Cardiovascular Toxicology 2/2007

01.06.2007

Dexrazoxane: how it works in cardiac and tumor cells. Is it a prodrug or is it a drug?

verfasst von: Brian B. Hasinoff, Eugene H. Herman

Erschienen in: Cardiovascular Toxicology | Ausgabe 2/2007

Einloggen, um Zugang zu erhalten

Abstract

Dexrazoxane is highly effective in reducing anthracycline-induced cardiotoxicity and extravasation injury and is used clinically for these indications. Dexrazoxane has two biological activities: it is a prodrug that is hydrolyzed to an iron chelating EDTA-type structure and it is also a strong inhibitor of topoisomerase II. Doxorubicin is able to be reductively activated to produce damaging reactive oxygen species. Iron-dependent cellular damage is thought to be responsible for its cardiotoxicity. The available experimental evidence supports the conclusion that dexrazoxane reduces doxorubicin cardiotoxicity by binding free iron and preventing site-specific oxidative stress on cardiac tissue. However, it cannot be ruled out that dexrazoxane may also be protective through its ability to inhibit topoisomerase II.
Literatur
1.
Zurück zum Zitat Swain, S. M., & Vici, P. (2004). The current and future role of dexrazoxane as a cardioprotectant in anthracycline treatment: Expert panel review. Journal of Cancer Research and Clinical Oncology, 130, 1–7.PubMedCrossRef Swain, S. M., & Vici, P. (2004). The current and future role of dexrazoxane as a cardioprotectant in anthracycline treatment: Expert panel review. Journal of Cancer Research and Clinical Oncology, 130, 1–7.PubMedCrossRef
2.
Zurück zum Zitat Minotti, G., Recalcati, S., Menna, P., Salvatorelli, E., Corna, G., & Cairo, G. (2004). Doxorubicin cardiotoxicity and the control of iron metabolism: Quinone-dependent and independent mechanisms. Methods in Enzymology, 378, 340–361.PubMed Minotti, G., Recalcati, S., Menna, P., Salvatorelli, E., Corna, G., & Cairo, G. (2004). Doxorubicin cardiotoxicity and the control of iron metabolism: Quinone-dependent and independent mechanisms. Methods in Enzymology, 378, 340–361.PubMed
3.
Zurück zum Zitat Herman, E. H., & Ferrans, V. J. (1990). Examination of the potential long-lasting protective effect of ICRF-187 against anthracycline-induced chronic cardiomyopathy. Cancer Treatment Reviews, 17, 155–160.PubMedCrossRef Herman, E. H., & Ferrans, V. J. (1990). Examination of the potential long-lasting protective effect of ICRF-187 against anthracycline-induced chronic cardiomyopathy. Cancer Treatment Reviews, 17, 155–160.PubMedCrossRef
4.
Zurück zum Zitat Hasinoff, B. B., Hellmann, K., Herman, E. H., & Ferrans, V. J. (1998). Chemical, biological and clinical aspects of dexrazoxane and other bisdioxopiperazines. Current Medicinal Chemistry, 5, 1–28.PubMed Hasinoff, B. B., Hellmann, K., Herman, E. H., & Ferrans, V. J. (1998). Chemical, biological and clinical aspects of dexrazoxane and other bisdioxopiperazines. Current Medicinal Chemistry, 5, 1–28.PubMed
5.
Zurück zum Zitat Diop, N. K., Vitellaro, L. K., Arnold, P., Shang, M., & Marusak, R. A. (2000). Iron complexes of the cardioprotective agent dexrazoxane (ICRF-187) and its desmethyl derivative, ICRF-154: Solid state structure, solution thermodynamics, and DNA cleavage activity. Journal of Inorganic Biochemistry, 78, 209–216.PubMedCrossRef Diop, N. K., Vitellaro, L. K., Arnold, P., Shang, M., & Marusak, R. A. (2000). Iron complexes of the cardioprotective agent dexrazoxane (ICRF-187) and its desmethyl derivative, ICRF-154: Solid state structure, solution thermodynamics, and DNA cleavage activity. Journal of Inorganic Biochemistry, 78, 209–216.PubMedCrossRef
6.
Zurück zum Zitat Hasinoff, B. B., Schroeder, P. E., & Patel, D. (2003). The metabolites of the cardioprotective drug dexrazoxane do not protect myocytes from doxorubicin-induced cytotoxicity. Molecular Pharmacology, 64, 670–678.PubMedCrossRef Hasinoff, B. B., Schroeder, P. E., & Patel, D. (2003). The metabolites of the cardioprotective drug dexrazoxane do not protect myocytes from doxorubicin-induced cytotoxicity. Molecular Pharmacology, 64, 670–678.PubMedCrossRef
7.
Zurück zum Zitat Hasinoff, B. B. (2002). Dexrazoxane (ICRF-187) protects cardiac myocytes against hypoxia-reoxygenation damage. Cardiovascular Toxiciology, 2, 111–118.CrossRef Hasinoff, B. B. (2002). Dexrazoxane (ICRF-187) protects cardiac myocytes against hypoxia-reoxygenation damage. Cardiovascular Toxiciology, 2, 111–118.CrossRef
8.
Zurück zum Zitat Fortune, J. M., & Osheroff, N. (2000). Topoisomerase II as a target for anticancer drugs: When enzymes stop being nice. Progress in Nucleic Acid Research Molecular Biology, 64, 221–253.CrossRef Fortune, J. M., & Osheroff, N. (2000). Topoisomerase II as a target for anticancer drugs: When enzymes stop being nice. Progress in Nucleic Acid Research Molecular Biology, 64, 221–253.CrossRef
9.
Zurück zum Zitat Swift, L. M., & Sarvazyan, N. (2000). Localization of dichlorofluorescin in cardiac myocytes: Implications for assessment of oxidative stress. American Journal of Physiology and Heart and Circulatory Physiology, 278, H982–H990. Swift, L. M., & Sarvazyan, N. (2000). Localization of dichlorofluorescin in cardiac myocytes: Implications for assessment of oxidative stress. American Journal of Physiology and Heart and Circulatory Physiology, 278, H982–H990.
10.
Zurück zum Zitat Hasinoff, B. B., Schnabl, K. L., Marusak, R. A., Patel, D., & Huebner, E. (2003). Dexrazoxane (ICRF-187) protects cardiac myocytes against doxorubicin by preventing damage to mitochondria. Cardiovascular Toxiciology, 3, 89–99.CrossRef Hasinoff, B. B., Schnabl, K. L., Marusak, R. A., Patel, D., & Huebner, E. (2003). Dexrazoxane (ICRF-187) protects cardiac myocytes against doxorubicin by preventing damage to mitochondria. Cardiovascular Toxiciology, 3, 89–99.CrossRef
11.
Zurück zum Zitat Sarvazyan, N. (1996). Visualization of doxorubicin-induced oxidative stress in isolated cardiac myocytes. American Journal of Physiology, 271, H2079–H2085.PubMed Sarvazyan, N. (1996). Visualization of doxorubicin-induced oxidative stress in isolated cardiac myocytes. American Journal of Physiology, 271, H2079–H2085.PubMed
12.
Zurück zum Zitat Malisza, K. L., & Hasinoff, B. B. (1996). Hydroxyl radical production by the iron complex of the hydrolysis product of the antioxidant cardioprotective agent ICRF-187 (dexrazoxane). Redox Report, 2, 69–73. Malisza, K. L., & Hasinoff, B. B. (1996). Hydroxyl radical production by the iron complex of the hydrolysis product of the antioxidant cardioprotective agent ICRF-187 (dexrazoxane). Redox Report, 2, 69–73.
13.
Zurück zum Zitat Schroeder, P. E., Jensen, P. B., Sehested, M., Hofland, K. F., Langer, S. W., & Hasinoff, B. B. (2003). Metabolism of dexrazoxane (ICRF-187) used as a rescue agent in cancer patients treated with high-dose etoposide. Cancer Chemotherapy and Pharmacology, 52, 167–174.PubMedCrossRef Schroeder, P. E., Jensen, P. B., Sehested, M., Hofland, K. F., Langer, S. W., & Hasinoff, B. B. (2003). Metabolism of dexrazoxane (ICRF-187) used as a rescue agent in cancer patients treated with high-dose etoposide. Cancer Chemotherapy and Pharmacology, 52, 167–174.PubMedCrossRef
14.
Zurück zum Zitat Schroeder, P. E., & Hasinoff, B. B. (2005). Metabolism of the one-ring open metabolites of the cardioprotective drug dexrazoxane to its active metal chelating form in the rat. Drug Metabolism and Disposition, 33, 1367–1372.PubMedCrossRef Schroeder, P. E., & Hasinoff, B. B. (2005). Metabolism of the one-ring open metabolites of the cardioprotective drug dexrazoxane to its active metal chelating form in the rat. Drug Metabolism and Disposition, 33, 1367–1372.PubMedCrossRef
15.
Zurück zum Zitat Hasinoff, B. B., Kuschak, T. I., Yalowich, J. C., & Creighton, A. M. (1995). A QSAR study comparing the cytotoxicity and DNA topoisomerase II inhibitory effects of bisdioxopiperazine analogs of ICRF-187 (dexrazoxane). Biochemical Pharmacology, 50, 953–958.PubMedCrossRef Hasinoff, B. B., Kuschak, T. I., Yalowich, J. C., & Creighton, A. M. (1995). A QSAR study comparing the cytotoxicity and DNA topoisomerase II inhibitory effects of bisdioxopiperazine analogs of ICRF-187 (dexrazoxane). Biochemical Pharmacology, 50, 953–958.PubMedCrossRef
16.
Zurück zum Zitat Classen, S., Olland, S., & Berger, J. M. (2003). Structure of the topoisomerase II ATPase region and its mechanism of inhibition by the chemotherapeutic agent ICRF-187. Proceedings of the National Academy Sciences of the United States of America, 100, 14510.CrossRef Classen, S., Olland, S., & Berger, J. M. (2003). Structure of the topoisomerase II ATPase region and its mechanism of inhibition by the chemotherapeutic agent ICRF-187. Proceedings of the National Academy Sciences of the United States of America, 100, 14510.CrossRef
17.
Zurück zum Zitat Hasinoff, B. B., Abram, M. E., Chee, G.-L., Huebner, E., Byard, E. H., Barnabé, N., Ferrans, V. J., Yu, Z.-X., & Yalowich, J. C. (2000). The catalytic DNA topoisomerase II inhibitor dexrazoxane (ICRF-187) induces endopolyploidy in Chinese hamster ovary cells. The Journal of Pharmacology and Experimental Therapeutics, 295, 474–483.PubMed Hasinoff, B. B., Abram, M. E., Chee, G.-L., Huebner, E., Byard, E. H., Barnabé, N., Ferrans, V. J., Yu, Z.-X., & Yalowich, J. C. (2000). The catalytic DNA topoisomerase II inhibitor dexrazoxane (ICRF-187) induces endopolyploidy in Chinese hamster ovary cells. The Journal of Pharmacology and Experimental Therapeutics, 295, 474–483.PubMed
18.
Zurück zum Zitat Hasinoff, B. B., Abram, M. E., Barnabé, N., Khelifa, T., Allan, W. P., & Yalowich, J. C. (2001). The catalytic DNA topoisomerase II inhibitor dexrazoxane (ICRF-187) induces differentiation and apoptosis in human leukemia K562 cells. Molecular Pharmacology, 59, 453–461.PubMed Hasinoff, B. B., Abram, M. E., Barnabé, N., Khelifa, T., Allan, W. P., & Yalowich, J. C. (2001). The catalytic DNA topoisomerase II inhibitor dexrazoxane (ICRF-187) induces differentiation and apoptosis in human leukemia K562 cells. Molecular Pharmacology, 59, 453–461.PubMed
19.
Zurück zum Zitat Hasinoff, B. B., Yalowich, J. C., Ling, Y., & Buss, J. L. (1996). The effect of dexrazoxane (ICRF-87) on doxorubicin- and daunorubicin-mediated growth inhibition of Chinese hamster ovary cells. Anticancer Drugs, 7, 558–567.PubMedCrossRef Hasinoff, B. B., Yalowich, J. C., Ling, Y., & Buss, J. L. (1996). The effect of dexrazoxane (ICRF-87) on doxorubicin- and daunorubicin-mediated growth inhibition of Chinese hamster ovary cells. Anticancer Drugs, 7, 558–567.PubMedCrossRef
20.
Zurück zum Zitat Sehested, M., Jensen, P. B., Sorensen, B. S., Holm, B., Friche, E., & Demant, E. J. F. (1993). Antagonistic effect of the cardioprotector (+)-1,2-bis(3,5-dioxopiperazinyl-1-yl)propane (ICRF-187) on DNA breaks and cytotoxicity induced by the topoisomerase II directed drugs daunorubicin and etoposide (VP-16). Biochemical Pharmacology, 46, 389–393.PubMedCrossRef Sehested, M., Jensen, P. B., Sorensen, B. S., Holm, B., Friche, E., & Demant, E. J. F. (1993). Antagonistic effect of the cardioprotector (+)-1,2-bis(3,5-dioxopiperazinyl-1-yl)propane (ICRF-187) on DNA breaks and cytotoxicity induced by the topoisomerase II directed drugs daunorubicin and etoposide (VP-16). Biochemical Pharmacology, 46, 389–393.PubMedCrossRef
21.
Zurück zum Zitat Hasinoff, B. B., Kuschak, T. I., Creighton, A. M., Fattman, C. L., Allan, W. P., Thampatty, P., & Yalowich, J. C. (1997). Characterization of a Chinese hamster ovary cell line with acquired resistance to the bisdioxopiperazine dexrazoxane (ICRF-187) catalytic inhibitor of topoisomerase II. Biochemical Pharmacology, 53, 1843–1853.PubMedCrossRef Hasinoff, B. B., Kuschak, T. I., Creighton, A. M., Fattman, C. L., Allan, W. P., Thampatty, P., & Yalowich, J. C. (1997). Characterization of a Chinese hamster ovary cell line with acquired resistance to the bisdioxopiperazine dexrazoxane (ICRF-187) catalytic inhibitor of topoisomerase II. Biochemical Pharmacology, 53, 1843–1853.PubMedCrossRef
22.
Zurück zum Zitat Pouillart, P. (2004). Evaluating the role of dexrazoxane as a cardioprotectant in cancer patients receiving anthracyclines. Cancer Treatment Reviews, 30, 643–650.PubMedCrossRef Pouillart, P. (2004). Evaluating the role of dexrazoxane as a cardioprotectant in cancer patients receiving anthracyclines. Cancer Treatment Reviews, 30, 643–650.PubMedCrossRef
23.
Zurück zum Zitat Swain, S. M., Whaley, F. S., Gerber, M. C., Weisberg, S., York, M., Spicer, D., Jones, S. E., Wadler, S., Desai, A., Vogel, C., Speyer, J., Mittelman, A., Reddy, S., Pendergrass, K., Velez-Garcia, E., Ewer, M. S., Bianchine, J. R., & Gams, R. A. (1997). Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. Journal of Clinical Oncology, 15, 1318–1332.PubMed Swain, S. M., Whaley, F. S., Gerber, M. C., Weisberg, S., York, M., Spicer, D., Jones, S. E., Wadler, S., Desai, A., Vogel, C., Speyer, J., Mittelman, A., Reddy, S., Pendergrass, K., Velez-Garcia, E., Ewer, M. S., Bianchine, J. R., & Gams, R. A. (1997). Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. Journal of Clinical Oncology, 15, 1318–1332.PubMed
Metadaten
Titel
Dexrazoxane: how it works in cardiac and tumor cells. Is it a prodrug or is it a drug?
verfasst von
Brian B. Hasinoff
Eugene H. Herman
Publikationsdatum
01.06.2007
Verlag
Humana Press Inc
Erschienen in
Cardiovascular Toxicology / Ausgabe 2/2007
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-007-0023-3

Weitere Artikel der Ausgabe 2/2007

Cardiovascular Toxicology 2/2007 Zur Ausgabe