Skip to main content
Erschienen in: Inflammation 6/2022

04.07.2022 | Original Article

Modulation of Microglia M2 Polarization and Alleviation of Hippocampal Neuron Injury By MiR-106b-5p/RGMa in a Mouse Model of Status Epilepticus

verfasst von: Tao Yu, Liang Huo, Jie Lei, Jing‑Jing Sun, Hua Wang

Erschienen in: Inflammation | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten

Abstract

MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level. The miRNA miR-106b-5p has been linked to epilepsy, but its specific role and mechanism of action remain unclear. This was investigated in the present study using a mouse model of pilocarpine-induced status epilepticus and an in vitro system of HT22 hippocampal cells treated with Mg2+-free solution and cocultured with BV2 microglia cells. We found that inhibiting miR-106b-5p expression promoted microglia M2 polarization, reduced the inflammatory response, and alleviated neuronal injury. These effects involved modulation of the repulsive guidance molecule A (RGMa)–Rac1–c-Jun N-terminal kinase (JNK)/p38–mitogen-activated protein kinase (MAPK) signaling axis. Our results suggest that therapeutic strategies targeting miR-106b-5p or downstream factors can be effective in preventing epileptogenesis or treating epilepsy.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Fiest, K.M., K.M. Sauro, S. Wiebe, S.B. Patten, C.S. Kwon, J. Dykeman, et al. 2017. Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology 88: 296–303.PubMedPubMedCentralCrossRef Fiest, K.M., K.M. Sauro, S. Wiebe, S.B. Patten, C.S. Kwon, J. Dykeman, et al. 2017. Prevalence and incidence of epilepsy: A systematic review and meta-analysis of international studies. Neurology 88: 296–303.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Thurman, D.J., C.E. Begley, A. Carpio, S. Helmers, D.C. Hesdorffer, J. Mu, et al. 2018. The primary prevention of epilepsy: A report of the Prevention Task Force of the International League Against Epilepsy. Epilepsia 59: 905–914.PubMedPubMedCentralCrossRef Thurman, D.J., C.E. Begley, A. Carpio, S. Helmers, D.C. Hesdorffer, J. Mu, et al. 2018. The primary prevention of epilepsy: A report of the Prevention Task Force of the International League Against Epilepsy. Epilepsia 59: 905–914.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Kalilani, L., X. Sun, B. Pelgrims, M. Noack-Rink, and V. Villanueva. 2018. The epidemiology of drug-resistant epilepsy: A systematic review and meta-analysis. Epilepsia 59: 2179–2193.PubMedCrossRef Kalilani, L., X. Sun, B. Pelgrims, M. Noack-Rink, and V. Villanueva. 2018. The epidemiology of drug-resistant epilepsy: A systematic review and meta-analysis. Epilepsia 59: 2179–2193.PubMedCrossRef
4.
Zurück zum Zitat Aronica, E., K. Fluiter, A. Iyer, E. Zurolo, J. Vreijling, E.A. van Vliet, et al. 2010. Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. European Journal of Neuroscience 31: 1100–1107.PubMedCrossRef Aronica, E., K. Fluiter, A. Iyer, E. Zurolo, J. Vreijling, E.A. van Vliet, et al. 2010. Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. European Journal of Neuroscience 31: 1100–1107.PubMedCrossRef
5.
Zurück zum Zitat Korotkov, A., D. Broekaart, L. Banchaewa, B. Pustjens, J. van Scheppingen, J.J. Anink, et al. 2020. microRNA-132 is overexpressed in glia in temporal lobe epilepsy and reduces the expression of pro-epileptogenic factors in human cultured astrocytes. Glia 68: 60–75.PubMedCrossRef Korotkov, A., D. Broekaart, L. Banchaewa, B. Pustjens, J. van Scheppingen, J.J. Anink, et al. 2020. microRNA-132 is overexpressed in glia in temporal lobe epilepsy and reduces the expression of pro-epileptogenic factors in human cultured astrocytes. Glia 68: 60–75.PubMedCrossRef
6.
Zurück zum Zitat Zhao, X., Y. Liao, S. Morgan, R. Mathur, P. Feustel, J. Mazurkiewicz, et al. 2018. Noninflammatory changes of microglia are sufficient to cause epilepsy. Cell Reports 22: 2080–2093.PubMedCrossRef Zhao, X., Y. Liao, S. Morgan, R. Mathur, P. Feustel, J. Mazurkiewicz, et al. 2018. Noninflammatory changes of microglia are sufficient to cause epilepsy. Cell Reports 22: 2080–2093.PubMedCrossRef
7.
Zurück zum Zitat Broekaart, D., J.J. Anink, J.C. Baayen, S. Idema, H.E. de Vries, E. Aronica, et al. 2018. Activation of the innate immune system is evident throughout epileptogenesis and is associated with blood-brain barrier dysfunction and seizure progression. Epilepsia 59: 1931–1944.PubMedCrossRef Broekaart, D., J.J. Anink, J.C. Baayen, S. Idema, H.E. de Vries, E. Aronica, et al. 2018. Activation of the innate immune system is evident throughout epileptogenesis and is associated with blood-brain barrier dysfunction and seizure progression. Epilepsia 59: 1931–1944.PubMedCrossRef
8.
Zurück zum Zitat Crespel, A., P. Coubes, M.C. Rousset, C. Brana, A. Rougier, G. Rondouin, et al. 2002. Inflammatory reactions in human medial temporal lobe epilepsy with hippocampal sclerosis. Brain Research 952: 159–169.PubMedCrossRef Crespel, A., P. Coubes, M.C. Rousset, C. Brana, A. Rougier, G. Rondouin, et al. 2002. Inflammatory reactions in human medial temporal lobe epilepsy with hippocampal sclerosis. Brain Research 952: 159–169.PubMedCrossRef
9.
Zurück zum Zitat Najjar, S., D. Pearlman, D.C. Miller, and O. Devinsky. 2011. Refractory epilepsy associated with microglial activation. The Neurologist 17: 249–254.PubMedCrossRef Najjar, S., D. Pearlman, D.C. Miller, and O. Devinsky. 2011. Refractory epilepsy associated with microglial activation. The Neurologist 17: 249–254.PubMedCrossRef
10.
Zurück zum Zitat Benson, M.J., S. Manzanero, and K. Borges. 2015. Complex alterations in microglial M1/M2 markers during the development of epilepsy in two mouse models. Epilepsia 56: 895–905.PubMedCrossRef Benson, M.J., S. Manzanero, and K. Borges. 2015. Complex alterations in microglial M1/M2 markers during the development of epilepsy in two mouse models. Epilepsia 56: 895–905.PubMedCrossRef
11.
Zurück zum Zitat Colonna, M., and O. Butovsky. 2017. Microglia function in the central nervous system during health and neurodegeneration. Annual Review of Immunology 35: 441–468.PubMedPubMedCentralCrossRef Colonna, M., and O. Butovsky. 2017. Microglia function in the central nervous system during health and neurodegeneration. Annual Review of Immunology 35: 441–468.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Luo, C., R. Koyama, and Y. Ikegaya. 2016. Microglia engulf viable newborn cells in the epileptic dentate gyrus. Glia 64: 1508–1517.PubMedCrossRef Luo, C., R. Koyama, and Y. Ikegaya. 2016. Microglia engulf viable newborn cells in the epileptic dentate gyrus. Glia 64: 1508–1517.PubMedCrossRef
13.
Zurück zum Zitat Wyatt-Johnson, S.K., and A.L. Brewster. 2020. Emerging roles for microglial phagocytic signaling in epilepsy. Epilepsy Currents 20: 33–38.PubMedCrossRef Wyatt-Johnson, S.K., and A.L. Brewster. 2020. Emerging roles for microglial phagocytic signaling in epilepsy. Epilepsy Currents 20: 33–38.PubMedCrossRef
14.
Zurück zum Zitat Andoh, M., Y. Ikegaya, and R. Koyama. 2019. Synaptic pruning by microglia in epilepsy. Journal of Clinical Medicine 8: 2170.PubMedCentralCrossRef Andoh, M., Y. Ikegaya, and R. Koyama. 2019. Synaptic pruning by microglia in epilepsy. Journal of Clinical Medicine 8: 2170.PubMedCentralCrossRef
15.
Zurück zum Zitat Sun, X., J. Sun, X. Shao, J. Feng, J. Yan, and Y. Qin. 2018. Inhibition of microRNA-155 modulates endotoxin tolerance by upregulating suppressor of cytokine signaling 1 in microglia. Experimental and Therapeutic Medicine 15: 4709–4716.PubMedPubMedCentral Sun, X., J. Sun, X. Shao, J. Feng, J. Yan, and Y. Qin. 2018. Inhibition of microRNA-155 modulates endotoxin tolerance by upregulating suppressor of cytokine signaling 1 in microglia. Experimental and Therapeutic Medicine 15: 4709–4716.PubMedPubMedCentral
16.
Zurück zum Zitat Yu, A., T. Zhang, H. Duan, Y. Pan, X. Zhang, G. Yang, et al. 2017. MiR-124 contributes to M2 polarization of microglia and confers brain inflammatory protection via the C/EBP-α pathway in intracerebral hemorrhage. Immunology Letters 182: 1–11.PubMedCrossRef Yu, A., T. Zhang, H. Duan, Y. Pan, X. Zhang, G. Yang, et al. 2017. MiR-124 contributes to M2 polarization of microglia and confers brain inflammatory protection via the C/EBP-α pathway in intracerebral hemorrhage. Immunology Letters 182: 1–11.PubMedCrossRef
17.
Zurück zum Zitat Tao, Y., Z. Wang, L. Wang, J. Shi, X. Guo, W. Zhou, et al. 2017. Downregulation of miR-106b attenuates inflammatory responses and joint damage in collagen-induced arthritis. Rheumatology (Oxford, England) 56: 1804–1813.CrossRef Tao, Y., Z. Wang, L. Wang, J. Shi, X. Guo, W. Zhou, et al. 2017. Downregulation of miR-106b attenuates inflammatory responses and joint damage in collagen-induced arthritis. Rheumatology (Oxford, England) 56: 1804–1813.CrossRef
18.
Zurück zum Zitat Li, P., M. Shen, F. Gao, J. Wu, J. Zhang, F. Teng, et al. 2017. An antagomir to microRNA-106b-5p ameliorates cerebral ischemia and reperfusion injury in rats via inhibiting apoptosis and oxidative stress. Molecular Neurobiology 54: 2901–2921.PubMedCrossRef Li, P., M. Shen, F. Gao, J. Wu, J. Zhang, F. Teng, et al. 2017. An antagomir to microRNA-106b-5p ameliorates cerebral ischemia and reperfusion injury in rats via inhibiting apoptosis and oxidative stress. Molecular Neurobiology 54: 2901–2921.PubMedCrossRef
19.
Zurück zum Zitat Li, J.Q., J.M. Tian, X.R. Fan, Z.Y. Wang, J. Ling, X.F. Wu, et al. 2020. miR-106b-5p induces immune imbalance of Treg/Th17 in immune thrombocytopenic purpura through NR4A3/Foxp3 pathway. Cell Cycle 19: 1265–1274.PubMedPubMedCentralCrossRef Li, J.Q., J.M. Tian, X.R. Fan, Z.Y. Wang, J. Ling, X.F. Wu, et al. 2020. miR-106b-5p induces immune imbalance of Treg/Th17 in immune thrombocytopenic purpura through NR4A3/Foxp3 pathway. Cell Cycle 19: 1265–1274.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat An, N., W. Zhao, Y. Liu, X. Yang, and P. Chen. 2016. Elevated serum miR-106b and miR-146a in patients with focal and generalized epilepsy. Epilepsy Research 127: 311–316.PubMedCrossRef An, N., W. Zhao, Y. Liu, X. Yang, and P. Chen. 2016. Elevated serum miR-106b and miR-146a in patients with focal and generalized epilepsy. Epilepsy Research 127: 311–316.PubMedCrossRef
21.
Zurück zum Zitat Zhao, J., Y. Sang, Y. Zhang, D. Zhang, J. Chen, and X. Liu. 2019. Efficacy of levetiracetam combined with sodium valproate on pediatric epilepsy and its effect on serum miR-106b in children. Experimental and Therapeutic Medicine 18: 4436–4442.PubMedPubMedCentral Zhao, J., Y. Sang, Y. Zhang, D. Zhang, J. Chen, and X. Liu. 2019. Efficacy of levetiracetam combined with sodium valproate on pediatric epilepsy and its effect on serum miR-106b in children. Experimental and Therapeutic Medicine 18: 4436–4442.PubMedPubMedCentral
22.
Zurück zum Zitat Lin, Q., J. Chen, X. Zheng, Y. Zhang, X. Tao, and J. Ye. 2020. Circular RNA circ_ANKMY2 regulates temporal lobe epilepsy progression via the miR-106b-5p/FOXP1 axis. Neurochemical Research 45: 3034–3044.PubMedCrossRef Lin, Q., J. Chen, X. Zheng, Y. Zhang, X. Tao, and J. Ye. 2020. Circular RNA circ_ANKMY2 regulates temporal lobe epilepsy progression via the miR-106b-5p/FOXP1 axis. Neurochemical Research 45: 3034–3044.PubMedCrossRef
23.
Zurück zum Zitat Zheng, D., M. Li, G. Li, J. Hu, X. Jiang, Y. Wang, et al. 2021. Circular RNA circ_DROSHA alleviates the neural damage in a cell model of temporal lobe epilepsy through regulating miR-106b-5p/MEF2C axis. Cellular Signalling 80: 109901.PubMedCrossRef Zheng, D., M. Li, G. Li, J. Hu, X. Jiang, Y. Wang, et al. 2021. Circular RNA circ_DROSHA alleviates the neural damage in a cell model of temporal lobe epilepsy through regulating miR-106b-5p/MEF2C axis. Cellular Signalling 80: 109901.PubMedCrossRef
24.
Zurück zum Zitat Siebold, C., T. Yamashita, P.P. Monnier, B.K. Mueller, and R.J. Pasterkamp. 2017. RGMs: Structural insights, molecular regulation, and downstream signaling. Trends in Cell Biology 27: 365–378.PubMedCrossRef Siebold, C., T. Yamashita, P.P. Monnier, B.K. Mueller, and R.J. Pasterkamp. 2017. RGMs: Structural insights, molecular regulation, and downstream signaling. Trends in Cell Biology 27: 365–378.PubMedCrossRef
25.
Zurück zum Zitat De Vries, M., and H.M. Cooper. 2008. Emerging roles for neogenin and its ligands in CNS development. Journal of Neurochemistry 106: 1483–1492.PubMedCrossRef De Vries, M., and H.M. Cooper. 2008. Emerging roles for neogenin and its ligands in CNS development. Journal of Neurochemistry 106: 1483–1492.PubMedCrossRef
26.
Zurück zum Zitat Xia, Y., P.B. Yu, Y. Sidis, H. Beppu, K.D. Bloch, A.L. Schneyer, et al. 2007. Repulsive guidance molecule RGMa alters utilization of bone morphogenetic protein (BMP) type II receptors by BMP2 and BMP4. The Journal of Biological Chemistry 282: 18129–18140.PubMedCrossRef Xia, Y., P.B. Yu, Y. Sidis, H. Beppu, K.D. Bloch, A.L. Schneyer, et al. 2007. Repulsive guidance molecule RGMa alters utilization of bone morphogenetic protein (BMP) type II receptors by BMP2 and BMP4. The Journal of Biological Chemistry 282: 18129–18140.PubMedCrossRef
27.
Zurück zum Zitat Tanabe, S., Y. Fujita, K. Ikuma, and T. Yamashita. 2018. Inhibiting repulsive guidance molecule-a suppresses secondary progression in mouse models of multiple sclerosis. Cell Death & Disease 9: 1061.CrossRef Tanabe, S., Y. Fujita, K. Ikuma, and T. Yamashita. 2018. Inhibiting repulsive guidance molecule-a suppresses secondary progression in mouse models of multiple sclerosis. Cell Death & Disease 9: 1061.CrossRef
28.
Zurück zum Zitat Tanabe, S., and T. Yamashita. 2014. Repulsive guidance molecule-a is involved in Th17-cell-induced neurodegeneration in autoimmune encephalomyelitis. Cell Reports 9: 1459–1470.PubMedCrossRef Tanabe, S., and T. Yamashita. 2014. Repulsive guidance molecule-a is involved in Th17-cell-induced neurodegeneration in autoimmune encephalomyelitis. Cell Reports 9: 1459–1470.PubMedCrossRef
29.
Zurück zum Zitat Harada, K., Y. Fujita, T. Okuno, S. Tanabe, Y. Koyama, H. Mochizuki, et al. 2018. Inhibition of RGMa alleviates symptoms in a rat model of neuromyelitis optica. Scientific Reports 8: 34.PubMedPubMedCentralCrossRef Harada, K., Y. Fujita, T. Okuno, S. Tanabe, Y. Koyama, H. Mochizuki, et al. 2018. Inhibition of RGMa alleviates symptoms in a rat model of neuromyelitis optica. Scientific Reports 8: 34.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Nakagawa, H., T. Ninomiya, T. Yamashita, and M. Takada. 2019. Treatment with the neutralizing antibody against repulsive guidance molecule-a promotes recovery from impaired manual dexterity in a primate model of spinal cord injury. Cerebral Cortex 29: 561–572.PubMedCrossRef Nakagawa, H., T. Ninomiya, T. Yamashita, and M. Takada. 2019. Treatment with the neutralizing antibody against repulsive guidance molecule-a promotes recovery from impaired manual dexterity in a primate model of spinal cord injury. Cerebral Cortex 29: 561–572.PubMedCrossRef
31.
Zurück zum Zitat Korecka, J.A., E.B. Moloney, R. Eggers, B. Hobo, S. Scheffer, N. Ras-Verloop, et al. 2017. Repulsive guidance molecule a (RGMa) induces neuropathological and behavioral changes that closely resemble Parkinson’s disease. The Journal of Neuroscience 37: 9361–9379.PubMedPubMedCentralCrossRef Korecka, J.A., E.B. Moloney, R. Eggers, B. Hobo, S. Scheffer, N. Ras-Verloop, et al. 2017. Repulsive guidance molecule a (RGMa) induces neuropathological and behavioral changes that closely resemble Parkinson’s disease. The Journal of Neuroscience 37: 9361–9379.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Yu, T., H. Fu, J.J. Sun, D.R. Ding, and H. Wang. 2021. miR-106b-5p upregulation is associated with microglial activation and inflammation in the mouse hippocampus following status epilepticus. Experimental Brain Research 239: 3315–3325.PubMedCrossRef Yu, T., H. Fu, J.J. Sun, D.R. Ding, and H. Wang. 2021. miR-106b-5p upregulation is associated with microglial activation and inflammation in the mouse hippocampus following status epilepticus. Experimental Brain Research 239: 3315–3325.PubMedCrossRef
33.
Zurück zum Zitat Zhu, X., Y. Yao, Y. Liu, R. Zhou, W. Zhang, Q. Hu, et al. 2019. Regulation of ADAM10 by microRNA-23a contributes to epileptogenesis in pilocarpine-induced status epilepticus mice. Frontiers in Cellular Neuroscience 13: 180.PubMedPubMedCentralCrossRef Zhu, X., Y. Yao, Y. Liu, R. Zhou, W. Zhang, Q. Hu, et al. 2019. Regulation of ADAM10 by microRNA-23a contributes to epileptogenesis in pilocarpine-induced status epilepticus mice. Frontiers in Cellular Neuroscience 13: 180.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Ren, X.Q., R. Ma, C.Q. Yang, Q.H. Liu, J. Jiao, X.L. Zhang, et al. 2016. Kangxian capsules: Effects on convulsive injuries, N-methyl-d-aspartate (NMDA) receptor subunit expression, and free Ca(2+) concentration in a rat hippocampal neuron epileptic discharge model. Seizure 40: 27–32.PubMedCrossRef Ren, X.Q., R. Ma, C.Q. Yang, Q.H. Liu, J. Jiao, X.L. Zhang, et al. 2016. Kangxian capsules: Effects on convulsive injuries, N-methyl-d-aspartate (NMDA) receptor subunit expression, and free Ca(2+) concentration in a rat hippocampal neuron epileptic discharge model. Seizure 40: 27–32.PubMedCrossRef
35.
Zurück zum Zitat Li, T., X. Zhai, J. Jiang, X. Song, W. Han, J. Ma, et al. 2017. Intraperitoneal injection of IL-4/IFN-γ modulates the proportions of microglial phenotypes and improves epilepsy outcomes in a pilocarpine model of acquired epilepsy. Brain Research 1657: 120–129.PubMedCrossRef Li, T., X. Zhai, J. Jiang, X. Song, W. Han, J. Ma, et al. 2017. Intraperitoneal injection of IL-4/IFN-γ modulates the proportions of microglial phenotypes and improves epilepsy outcomes in a pilocarpine model of acquired epilepsy. Brain Research 1657: 120–129.PubMedCrossRef
36.
Zurück zum Zitat Becker, A.J. 2018. Review: Animal models of acquired epilepsy: Insights into mechanisms of human epileptogenesis. Neuropathology and Applied Neurobiology 44: 112–129.PubMedCrossRef Becker, A.J. 2018. Review: Animal models of acquired epilepsy: Insights into mechanisms of human epileptogenesis. Neuropathology and Applied Neurobiology 44: 112–129.PubMedCrossRef
37.
Zurück zum Zitat Engel, J., Jr., and A. Pitkänen. 2020. Biomarkers for epileptogenesis and its treatment. Neuropharmacology 167: 107735.PubMedCrossRef Engel, J., Jr., and A. Pitkänen. 2020. Biomarkers for epileptogenesis and its treatment. Neuropharmacology 167: 107735.PubMedCrossRef
38.
Zurück zum Zitat Terrone, G., A. Salamone, and A. Vezzani. 2017. Inflammation and epilepsy: Preclinical findings and potential clinical translation. Current Pharmaceutical Design 23: 5569–5576.PubMedCrossRef Terrone, G., A. Salamone, and A. Vezzani. 2017. Inflammation and epilepsy: Preclinical findings and potential clinical translation. Current Pharmaceutical Design 23: 5569–5576.PubMedCrossRef
39.
Zurück zum Zitat Tang, Y., and W. Le. 2016. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Molecular Neurobiology 53: 1181–1194.PubMedCrossRef Tang, Y., and W. Le. 2016. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Molecular Neurobiology 53: 1181–1194.PubMedCrossRef
40.
Zurück zum Zitat Therajaran, P., J.A. Hamilton, T.J. O’Brien, N.C. Jones, and I. Ali. 2020. Microglial polarization in posttraumatic epilepsy: Potential mechanism and treatment opportunity. Epilepsia 61: 203–215.PubMedCrossRef Therajaran, P., J.A. Hamilton, T.J. O’Brien, N.C. Jones, and I. Ali. 2020. Microglial polarization in posttraumatic epilepsy: Potential mechanism and treatment opportunity. Epilepsia 61: 203–215.PubMedCrossRef
42.
Zurück zum Zitat Hu, X., R.K. Leak, Y. Shi, J. Suenaga, Y. Gao, P. Zheng, et al. 2015. Microglial and macrophage polarization—new prospects for brain repair. Nature Reviews. Neurology 11: 56–64.PubMedCrossRef Hu, X., R.K. Leak, Y. Shi, J. Suenaga, Y. Gao, P. Zheng, et al. 2015. Microglial and macrophage polarization—new prospects for brain repair. Nature Reviews. Neurology 11: 56–64.PubMedCrossRef
43.
Zurück zum Zitat Heo, K., Y.-J. Cho, K.-J. Cho, H.-W. Kim, H.-J. Kim, H.Y. Shin, et al. 2006. Minocycline inhibits caspase-dependent and -independent cell death pathways and is neuroprotective against hippocampal damage after treatment with kainic acid in mice. Neuroscience Letters 398: 195–200.PubMedCrossRef Heo, K., Y.-J. Cho, K.-J. Cho, H.-W. Kim, H.-J. Kim, H.Y. Shin, et al. 2006. Minocycline inhibits caspase-dependent and -independent cell death pathways and is neuroprotective against hippocampal damage after treatment with kainic acid in mice. Neuroscience Letters 398: 195–200.PubMedCrossRef
44.
Zurück zum Zitat Abraham, J., P.D. Fox, C. Condello, A. Bartolini, and S. Koh. 2012. Minocycline attenuates microglia activation and blocks the long-term epileptogenic effects of early-life seizures. Neurobiology of Disease 46: 425–430.PubMedPubMedCentralCrossRef Abraham, J., P.D. Fox, C. Condello, A. Bartolini, and S. Koh. 2012. Minocycline attenuates microglia activation and blocks the long-term epileptogenic effects of early-life seizures. Neurobiology of Disease 46: 425–430.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Feng, L., M. Murugan, D.B. Bosco, Y. Liu, J. Peng, G.A. Worrell, et al. 2019. Microglial proliferation and monocyte infiltration contribute to microgliosis following status epilepticus. Glia 67: 1434–1448.PubMedPubMedCentral Feng, L., M. Murugan, D.B. Bosco, Y. Liu, J. Peng, G.A. Worrell, et al. 2019. Microglial proliferation and monocyte infiltration contribute to microgliosis following status epilepticus. Glia 67: 1434–1448.PubMedPubMedCentral
46.
Zurück zum Zitat Scott, A.J., L. Sharpe, C. Hunt, and M. Gandy. 2017. Anxiety and depressive disorders in people with epilepsy: A meta-analysis. Epilepsia 58: 973–982.PubMedCrossRef Scott, A.J., L. Sharpe, C. Hunt, and M. Gandy. 2017. Anxiety and depressive disorders in people with epilepsy: A meta-analysis. Epilepsia 58: 973–982.PubMedCrossRef
47.
Zurück zum Zitat Pineda, E., D. Shin, R. Sankar, and A.M. Mazarati. 2010. Comorbidity between epilepsy and depression: Experimental evidence for the involvement of serotonergic, glucocorticoid, and neuroinflammatory mechanisms. Epilepsia 51: 110–114.PubMedPubMedCentralCrossRef Pineda, E., D. Shin, R. Sankar, and A.M. Mazarati. 2010. Comorbidity between epilepsy and depression: Experimental evidence for the involvement of serotonergic, glucocorticoid, and neuroinflammatory mechanisms. Epilepsia 51: 110–114.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Shen, Y., W. Peng, Q. Chen, B.D. Hammock, J. Liu, D. Li, et al. 2019. Anti-inflammatory treatment with a soluble epoxide hydrolase inhibitor attenuates seizures and epilepsy-associated depression in the LiCl-pilocarpine post-status epilepticus rat model. Brain, Behavior, and Immunity 81: 535–544.PubMedPubMedCentralCrossRef Shen, Y., W. Peng, Q. Chen, B.D. Hammock, J. Liu, D. Li, et al. 2019. Anti-inflammatory treatment with a soluble epoxide hydrolase inhibitor attenuates seizures and epilepsy-associated depression in the LiCl-pilocarpine post-status epilepticus rat model. Brain, Behavior, and Immunity 81: 535–544.PubMedPubMedCentralCrossRef
49.
50.
Zurück zum Zitat Vezzani, A., B. Lang, and E. Aronica. 2015. Immunity and inflammation in epilepsy. Cold Spring Harbor Perspectives in Medicine 6: a022699.PubMedCrossRef Vezzani, A., B. Lang, and E. Aronica. 2015. Immunity and inflammation in epilepsy. Cold Spring Harbor Perspectives in Medicine 6: a022699.PubMedCrossRef
51.
Zurück zum Zitat Xu, X., Y. Gao, F. Shan, and J. Feng. 2016. A novel role for RGMa in modulation of bone marrow-derived dendritic cells maturation induced by lipopolysaccharide. International Immunopharmacology 33: 99–107.PubMedCrossRef Xu, X., Y. Gao, F. Shan, and J. Feng. 2016. A novel role for RGMa in modulation of bone marrow-derived dendritic cells maturation induced by lipopolysaccharide. International Immunopharmacology 33: 99–107.PubMedCrossRef
52.
Zurück zum Zitat Muramatsu, R., T. Kubo, M. Mori, Y. Nakamura, Y. Fujita, T. Akutsu, et al. 2011. RGMa modulates T cell responses and is involved in autoimmune encephalomyelitis. Nature Medicine 17: 488–494.PubMedCrossRef Muramatsu, R., T. Kubo, M. Mori, Y. Nakamura, Y. Fujita, T. Akutsu, et al. 2011. RGMa modulates T cell responses and is involved in autoimmune encephalomyelitis. Nature Medicine 17: 488–494.PubMedCrossRef
53.
Zurück zum Zitat Körner, A., M. Schlegel, T. Kaussen, V. Gudernatsch, G. Hansmann, T. Schumacher, et al. 2019. Sympathetic nervous system controls resolution of inflammation via regulation of repulsive guidance molecule A. Nature Communications 10: 633.PubMedPubMedCentralCrossRef Körner, A., M. Schlegel, T. Kaussen, V. Gudernatsch, G. Hansmann, T. Schumacher, et al. 2019. Sympathetic nervous system controls resolution of inflammation via regulation of repulsive guidance molecule A. Nature Communications 10: 633.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Oda, W., Y. Fujita, K. Baba, H. Mochizuki, H. Niwa, and T. Yamashita. 2021. Inhibition of repulsive guidance molecule-a protects dopaminergic neurons in a mouse model of Parkinson’s disease. Cell Death & Disease 12: 181.CrossRef Oda, W., Y. Fujita, K. Baba, H. Mochizuki, H. Niwa, and T. Yamashita. 2021. Inhibition of repulsive guidance molecule-a protects dopaminergic neurons in a mouse model of Parkinson’s disease. Cell Death & Disease 12: 181.CrossRef
56.
Zurück zum Zitat D’Ambrosi, N., S. Rossi, V. Gerbino, and M. Cozzolino. 2014. Rac1 at the crossroad of actin dynamics and neuroinflammation in Amyotrophic Lateral Sclerosis. Frontiers in Cellular Neuroscience 8: 279.PubMedPubMedCentral D’Ambrosi, N., S. Rossi, V. Gerbino, and M. Cozzolino. 2014. Rac1 at the crossroad of actin dynamics and neuroinflammation in Amyotrophic Lateral Sclerosis. Frontiers in Cellular Neuroscience 8: 279.PubMedPubMedCentral
57.
Zurück zum Zitat Persson, A.K., M. Estacion, H. Ahn, S. Liu, S. Stamboulian-Platel, S.G. Waxman, et al. 2014. Contribution of sodium channels to lamellipodial protrusion and Rac1 and ERK1/2 activation in ATP-stimulated microglia. Glia 62: 2080–2095.PubMedCrossRef Persson, A.K., M. Estacion, H. Ahn, S. Liu, S. Stamboulian-Platel, S.G. Waxman, et al. 2014. Contribution of sodium channels to lamellipodial protrusion and Rac1 and ERK1/2 activation in ATP-stimulated microglia. Glia 62: 2080–2095.PubMedCrossRef
58.
Zurück zum Zitat Xu, Y., W. Hu, Y. Liu, P. Xu, Z. Li, R. Wu, et al. 2016. P2Y6 receptor-mediated microglial phagocytosis in radiation-induced brain injury. Molecular Neurobiology 53: 3552–3564.PubMedCrossRef Xu, Y., W. Hu, Y. Liu, P. Xu, Z. Li, R. Wu, et al. 2016. P2Y6 receptor-mediated microglial phagocytosis in radiation-induced brain injury. Molecular Neurobiology 53: 3552–3564.PubMedCrossRef
59.
Zurück zum Zitat De Caris, M.G., M. Grieco, E. Maggi, A. Francioso, F. Armeli, L. Mosca, et al. 2020. Blueberry counteracts BV-2 microglia morphological and functional switch after LPS challenge. Nutrients 12: 1830.PubMedCentralCrossRef De Caris, M.G., M. Grieco, E. Maggi, A. Francioso, F. Armeli, L. Mosca, et al. 2020. Blueberry counteracts BV-2 microglia morphological and functional switch after LPS challenge. Nutrients 12: 1830.PubMedCentralCrossRef
60.
Zurück zum Zitat Bianchi, R., I. Giambanco, and R. Donato. 2010. S100B/RAGE-dependent activation of microglia via NF-kappaB and AP-1 co-regulation of COX-2 expression by S100B, IL-1beta and TNF-alpha. Neurobiology of Aging 31: 665–677.PubMedCrossRef Bianchi, R., I. Giambanco, and R. Donato. 2010. S100B/RAGE-dependent activation of microglia via NF-kappaB and AP-1 co-regulation of COX-2 expression by S100B, IL-1beta and TNF-alpha. Neurobiology of Aging 31: 665–677.PubMedCrossRef
61.
Zurück zum Zitat Liu, Q., Y. Zhang, S. Liu, Y. Liu, X. Yang, G. Liu, et al. 2019. Cathepsin C promotes microglia M1 polarization and aggravates neuroinflammation via activation of Ca-dependent PKC/p38MAPK/NF-κB pathway. Journal of Neuroinflammation 16: 10.PubMedPubMedCentralCrossRef Liu, Q., Y. Zhang, S. Liu, Y. Liu, X. Yang, G. Liu, et al. 2019. Cathepsin C promotes microglia M1 polarization and aggravates neuroinflammation via activation of Ca-dependent PKC/p38MAPK/NF-κB pathway. Journal of Neuroinflammation 16: 10.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Plastira, I., E. Bernhart, L. Joshi, C.N. Koyani, H. Strohmaier, H. Reicher, et al. 2020. MAPK signaling determines lysophosphatidic acid (LPA)-induced inflammation in microglia. Journal of Neuroinflammation 17: 127.PubMedPubMedCentralCrossRef Plastira, I., E. Bernhart, L. Joshi, C.N. Koyani, H. Strohmaier, H. Reicher, et al. 2020. MAPK signaling determines lysophosphatidic acid (LPA)-induced inflammation in microglia. Journal of Neuroinflammation 17: 127.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Kim, E.K., and E.J. Choi. 2015. Compromised MAPK signaling in human diseases: An update. Archives of Toxicology 89: 867–882.PubMedCrossRef Kim, E.K., and E.J. Choi. 2015. Compromised MAPK signaling in human diseases: An update. Archives of Toxicology 89: 867–882.PubMedCrossRef
64.
Zurück zum Zitat Kaminska, B., Gozdz, A., Zawadzka, M., Ellert-Miklaszewska, A., and Lipko, M. 2009. MAPK signal transduction underlying brain inflammation and gliosis as therapeutic target. Anatomical Record (Hoboken, N.J.: 2007) 292: 1902–1913. Kaminska, B., Gozdz, A., Zawadzka, M., Ellert-Miklaszewska, A., and Lipko, M. 2009. MAPK signal transduction underlying brain inflammation and gliosis as therapeutic target. Anatomical Record (Hoboken, N.J.: 2007) 292: 1902–1913.
Metadaten
Titel
Modulation of Microglia M2 Polarization and Alleviation of Hippocampal Neuron Injury By MiR-106b-5p/RGMa in a Mouse Model of Status Epilepticus
verfasst von
Tao Yu
Liang Huo
Jie Lei
Jing‑Jing Sun
Hua Wang
Publikationsdatum
04.07.2022
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 6/2022
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-022-01686-1

Weitere Artikel der Ausgabe 6/2022

Inflammation 6/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei Herzinsuffizienz muss „Eisenmangel“ neu definiert werden!

16.05.2024 Herzinsuffizienz Nachrichten

Bei chronischer Herzinsuffizienz macht es einem internationalen Expertenteam zufolge wenig Sinn, die Diagnose „Eisenmangel“ am Serumferritin festzumachen. Das Team schlägt vor, sich lieber an die Transferrinsättigung zu halten.

Herzinfarkt mit 85 – trotzdem noch intensive Lipidsenkung?

16.05.2024 Hypercholesterinämie Nachrichten

Profitieren nach einem akuten Myokardinfarkt auch Betroffene über 80 Jahre noch von einer intensiven Lipidsenkung zur Sekundärprävention? Um diese Frage zu beantworten, wurden jetzt Registerdaten aus Frankreich ausgewertet.

ADHS-Medikation erhöht das kardiovaskuläre Risiko

16.05.2024 Herzinsuffizienz Nachrichten

Erwachsene, die Medikamente gegen das Aufmerksamkeitsdefizit-Hyperaktivitätssyndrom einnehmen, laufen offenbar erhöhte Gefahr, an Herzschwäche zu erkranken oder einen Schlaganfall zu erleiden. Es scheint eine Dosis-Wirkungs-Beziehung zu bestehen.

Erstmanifestation eines Diabetes-Typ-1 bei Kindern: Ein Notfall!

16.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Manifestiert sich ein Typ-1-Diabetes bei Kindern, ist das ein Notfall – ebenso wie eine diabetische Ketoazidose. Die Grundsäulen der Therapie bestehen aus Rehydratation, Insulin und Kaliumgabe. Insulin ist das Medikament der Wahl zur Behandlung der Ketoazidose.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.