Skip to main content
Erschienen in: BMC Pediatrics 1/2021

Open Access 01.12.2021 | Research article

Neck circumference and cardiometabolic risk in children and adolescents: the moderator role of cardiorespiratory fitness

verfasst von: Ana Paula Sehn, Caroline Brand, Letícia Welser, Anelise Reis Gaya, Cesar Agostinis-Sobrinho, Carlos Cristi-Montero, Elza Daniel de Mello, Cézane Priscila Reuter

Erschienen in: BMC Pediatrics | Ausgabe 1/2021

Abstract

Background

The increased incidence of cardiometabolic risk factors has become a public health issue, especially in childhood and adolescence. Thus, early identification is essential to avoid or reduce future complications in adulthood. In this sense, the present study aimed to verify the influence of cardiorespiratory fitness (CRF) as a moderator in the association between neck circumference (NC) and cardiometabolic risk in children and adolescents.

Methods

Cross-sectional study that included 2418 randomly selected children and adolescents (52.5% girls), aged 6 to 17 years old. Anthropometric measurements, such as NC and body mass index (BMI), and CRF was measured by the six-minute running/walking test, as well as cardiometabolic risk (systolic blood pressure, glucose, HDL-C, and triglycerides), were assessed.

Results

For all age groups, NC showed a negative relationship with CRF. A significant interaction term was found for CRF x NC with cardiometabolic risk for children (6 to 9 years old), early adolescents (10 to 12 years old), and middle adolescents (13 to 17 years old). It was found that children who accomplished more than 1092.49 m in CRF test were protected against cardiometabolic risk when considering NC. In adolescents, protection against cardiometabolic risk was found when the CRF test was completed above 1424.14 m and 1471.87 m (early and middle stage, respectively).

Conclusions

CRF is inversely associated with NC and acts as a moderator in the relationship between NC and cardiometabolic risk in children and adolescents. Therefore, this detrimental health impact linked to fatness might be attenuated by improving CRF levels.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
BMI
Body mass index
CRF
Cardiorespiratory fitness
HDL-C
High-density lipoprotein cholesterol
NC
Neck circumference
UNISC
University of Santa Cruz do Sul

Background

The increased incidence of cardiometabolic risk factors such as obesity, and physical inactivity, has become a public health issue, especially in childhood and adolescence worldwide [1, 2]. Thus, early identification is essential for generating strategies and monitoring public health progress to avoid or reduce adulthood complications [3, 4].
In this sense, overweight and obesity are strongly associated with the development of cardiometabolic diseases [57]. Obesity plays an essential role in metabolic disorders, since leads to a low-grade chronic inflammation increasing the concentration of proinflammatory proteins, such as neutrophils, monocytes, and C-reactive protein [8]. In addition, adiposity influence the development of dyslipidemia, increasing liver adipocytes [9], as well as in blood pressure levels [10], due to an increase of inflammatory markers, such as interleukin-6 that can cause an increase in C-reactive protein. This increase of C-reactive protein is associated with less nitric oxide that causes lower vasodilation dependent on the endothelium, and consequently enhances the risk of developing cardiometabolic diseases [11]. Therefore, adipose tissue is a complex and highly active metabolic endocrine organ [12].
Anthropometric measures, such as body mass index (BMI) and waist circumference, are the most common tools to identify overweight and obesity in children and adolescents [13, 14]. Also, there is evidence indicating that neck circumference (NC) presents a good correlation with adiposity, BMI, and waist circumference [15, 16], demonstrating accuracy of 77.2% for diagnostic of obesity [17]. Thus, it is considered an accurate tool for screening and assessing overweight and obesity in different age groups [15, 1820]. This measure is simple, practical, and low-cost, as well as it has been suggested as a better alternative than waist circumference [21]. Moreover, NC demonstrates a similar relationship that other adiposity measures with cardiometabolic diseases in childhood [22]. A recent study developed with Brazilian adolescents showed that NC presented good sensitivity and specificity to identify excess weight [23]. Thus, NC can be used to identify cardiometabolic diseases in the pediatric population [3, 2426].
In contrast, cardiorespiratory fitness (CRF) has an important role in improving cardiometabolic health, as it is known that when individuals present high CRF levels, lower is their cardiometabolic risk profile [27, 28]. Evidence indicates that direct measures are more recommended for evaluating CRF related to cardiovascular disease [29], however, indirect measures, such as field tests are also considered as a useful alternative [3032]. The six-minute running/walking test is commonly used for the evaluation of Brazilian schoolchildren, due to low operating costs, ease of application and the opportunity to evaluate a large number of individuals simultaneously [33, 34]. It is also useful for tracking children and adolescents at risk of developing negative health outcomes [35, 36]. The possible mechanisms by which CRF exerts these benefits are associated to a reduction of low-grade inflammation due to the high utilization of nutrients as a source of energy, mitochondrial biogenesis, reduction of visceral fat and blood lipid profile [37].
CRF seems to be inversely related to NC [24], although this relationship is under-explored in the literature, the association between NC and cardiometabolic risk is already established. However, there is no evidence indicating the moderator role of CRF in the relationship between these variables, as well as the point at which the level of CRF begins to protect against the development of cardiometabolic diseases. Due to the high prevalence of fatness at the global level and their close relationship with cardiometabolic diseases is relevant to explore factors that could mitigate this unfavorable scenario on the children and adolescent’s health status. Taking these aspects into consideration we hypothesized that high CRF levels could counteract the deleterious influence of NC in cardiometabolic risk. In this sense, the present study aimed to verify the association between CRF and NC and the moderator role of CRF in the relationship between NC and cardiometabolic risk in children and adolescents.

Methods

This is a cross-sectional study developed with 2418 children and adolescents aged 6 to 17 years old, from private and public schools from the city of Santa Cruz do Sul-RS, Brazil. The sample was randomly selected. Since 2004, the same schools have participated in this research called “Schoolchildren’s Health” to form a cohort. For this, a survey was carried out in the city to obtain the number of schools (n = 50) and enrolled students (n = 17,688). The population density of schoolchildren in all regions of the city, including public (municipal and state) and private schools, was considered to perform the sample size calculation. This study was approved by the Human Research Ethics Committee of the University of Santa Cruz do Sul (UNISC) (number 1.498.305) and followed the resolution 466/2012 of the National Council of Health in Brazil.
The sample size calculation for the present study was performed using the G*Power 3.1 program (Heinrich-Heine-Universität - Düsseldorf, Germany). According to Faul, Erdfelder, Buchner, & Lang [38], the most appropriate statistical test to use is multiple linear regression. As reference parameters it was used: test power (1 - β) = 0.95, effect size (f2) = 0.02 and significance level α = 0.05, estimating a minimum sample of 995 individuals.

Measures

NC was measured with the most prominent portion of the thyroid cartilage taken as a reference, with plastic tape, and accuracy of 0.1 cm. Weight and height were assessed through an anthropometric scale with a coupled stadiometer (Filizola®), while the BMI was calculated through the formula: weight/height2. CRF was assessed by the six-minute running/walking test performed on an athletics track, in which the individual should run or walk performing the greatest number of laps. The evaluator noted, and later, added the distance covered by the individuals. The result was obtained in meters. This test followed the protocols by Projeto Esporte Brasil [39].
Sex and ethnicity were obtained through a self-reported questionnaire, in which they should tick one of the following options: sex (female and male) and ethnicity (white, black, brown/mulatto, indigenous and yellow). The criteria proposed by Tanner, established maturation stages, considering figures of breast development in girls and testicular development in boys. For this, the evaluator showed the figures with the different stages, and the individual should indicate which stage he/she was in at the current moment. Five stages were considered, which were subsequently categorized into four categories: prepubertal (stage I), initial development (stage II), continuous maturation (stages III and IV), and matured (stage V) [40]. Blood pressure was measured using the auscultatory method with a sphygmomanometer, a stethoscope on the left arm and, a cuff appropriate to the individual’s brachial circumference. It was recommended that the individual remains at rest for 5 min. Two measurements were made, considering the lowest systolic blood pressure. Biochemical parameters (glucose, high-density lipoprotein cholesterol (HDL-C) and triglycerides) were assessed by collecting blood samples after 12 h of fasting. Analyzes were performed on the Miura 200 automated equipment (ISE, Rome, Italy) using serum samples and commercial Kovalent / DiaSys kits (DiaSys Diagnostic Systems, Germany).
A z-score was used to establish cardiometabolic risk, in which the individual z-score of the following variables is added: systolic blood pressure, glucose, HDL-C, and triglycerides. The z-score was calculated using the following formula: z-score ([value of a continuous variable - cutoff points] / standard deviation). The cutoff points and standard deviation were used as proposed by Stavnsbo et al. [41]. HDL-C has an inverse relationship with cardiometabolic risk, so it was multiplied by − 1. Age and sex were also considered for the calculation of the individual z-score of the variables.

Statistical analysis

Descriptive statistics were used to characterize the sample. The mean and standard deviation were used for continuous variables and relative and absolute frequency for categorical variables. ANOVA and chi-square were applied to compare groups according to age classification. Generalized linear models were used to verify the direct relationship among CRF, NC and cardiometabolic risk.
Linear regression models were used to test moderation analyzes through the PROCESS macro for the Statistical Package for Social Sciences version 23.0 (SPSS; IBM Corp, Armonk, NY, USA). Children and adolescents present different characteristics of development, thus for a better explanation of the the results within the age groups, the analyzes were divided in children (6 to 9 years), early adolescents (10 to 12 years old), and middle adolescents (13 to 17 years old). The following models have been tested: interaction CRF x NC and cardiometabolic risk in children (6 to 9 years old (Model 1); in early adolescents (10 to 12 years old (Model 2); and in middle adolescents (13 to 17 years old (Model 3). Variables that presented interaction were tested according to the Johnson-Newman technique to establish the moderation point, in which CRF was classified according to tertiles. All analyses were adjusted for sex, ethnicity, and maturational stage. The level of statistical significance was established as p < 0.05.

Results

Participant’s characteristics are presented in Table 1 according to age classification. Adolescents from 13 to 17 years old showed higher mean values of NC, CRF, systolic blood pressure, glucose, triglycerides, and cardiometabolic risk in comparison with other age groups. In addition, children from 6 to 9 years old, showed higher mean values of HDL-C were observed compared early and middle adolescence group.
Table 1
Participant’s characteristics
Characteristics
Mean (SD)
Children
(n = 613)
Early Adolescence group
(n = 876)
Middle Adolescence group
(n = 929)
Age (years)
8.04 (0.93)
11.03 (0.84)
14.40 (1.26)a
Weight (kg)
32.79 (8.65)
45.27 (12.14)
58.24 (12.76)a
Height (m)
1.33 (0.08)
1.50 (0.08)
1.63 (0.09)a
Body mass index (kg/m2)
18.35 (3.57)
20.08 (4.42)
21.82 (3.79)a
Neck circumference (cm)
28.13 (2.39)
30.19 (2.84)
32.58 (2.81)a
Cardiorespiratory fitness (m)
832.17 (141.92)
860.64 (171.42)
950.34 (223.95)a
Systolic blood pressure (mmHg)
97.01 (11.46)
103.62 (11.86)
111.55 (11.88)a
Glucose (mmol/L)
4.75 (0.36)
4.92 (0.37)
4.92 (0.39)a
High-density lipoprotein cholesterol (mmol/L)
1.75 (0.28)
1.52 (0.27)
1.43 (0.26)a
Triglycerides (mmol/L)
0.74 (0.33)
0.80 (0.35)
0.81 (0.37)a
Cardiometabolic risk (z-score)
−0.38 (2.34)
−0.32 (2.40)
−0.09 (2.24)a
n (%)
Sex
  Male
291 (47.5)
367 (41.9)
413 (44.5)
  Feminine
322 (52.5)
509 (58.1)
516 (55.5)
Cardiorespiratory fitness
  Healthy
451 (73.6)
374 (42.7)
274 (29.5)a
  Risk
162 (26.4)
502 (57.3)
655 (70.5)
Maturational stage
  Pre-pubertal
367 (61.6)*
116 (13.7)
14 (1.5)
  Initial development
151 (25.3)
301 (35.6)*
80 (8.7)
  Continuous maturation (stage III and IV)
63 (10.6)
399 (47.2)
652 (71.1)a
  Maturated
15 (2.5)
29 (3.4)
171 (18.6)a
Ethnicity
  White
510 (83.7)
677 (77.8)
705 (76.5)a
  Black
40 (6.6)
68 (7.8)
64 (6.9)
  Brown/mulatto
59 (9.7)
116 (13.3)
138 (15.0)a
  Indigenous
0 (0.0)
4 (0.5)
8 (0.9)
  Yellow
0 (0.0)
5 (0.6)
7 (0.8)
SD Standard deviation, n number of participants, % percentage. aANOVA or chi-square for differences between children, early or middle adolescence groups (p < 0.05)
For all age groups, NC showed a negative association with CRF, indicating that higher CRF is associated with lower NC (Table 2).
Table 2
Association between neck circumference and cardiorespiratory fitness
 
CRF
β
(95%) CI
p
Children
 NC
−17.261
−21.730; −12.791
< 0.001
Early adolescent group
 NC
−12.683
−16.517; − 8849
< 0.001
Middle adolescent group
 NC
−8.200
−12.970; −3.430
0.001
CRF cardiorespiratory fitness, NC neck circumference, CI confidence interval. All analyses were adjusted for sex, ethnicity, and sexual maturation
In Table 3 is presented the moderator role of CRF in the relationship between NC and cardiometabolic risk. A significant interaction term was found for CRF x NC with cardiometabolic risk in children and adolescents.
Table 3
Moderation of cardiorespiratory fitness in the relationship between neck circumference and cardiometabolic risk
 
Cardiometabolic risk
β
CI (95%)
p
Children 6 to 9 years old
 CRF
−0.004
−0.006; −0.003
< 0.001
 NC
0.464
0.392; 0.535
< 0.001
 CRF x NC
− 0.001
− 0.001; 0.000
0.001
Early adolescent group
 CRF
−0.003
−0.004; − 0.002
< 0.001
 NC
0.411
0.359; 0.462
< 0.001
 CRF x NC
0.001
−0.001; 0.000
0.019
Middle adolescent group
 CRF
−0.002
−0.003; − 0.002
< 0.001
 NC
0.330
0.276; 0.383
< 0.001
 CRF x NC
0.000
−0.001; 0.000
0.003
CRF cardiorespiratory fitness, NC neck circumference, CI confidence interval. All analyses were adjusted for sex, ethnicity, and sexual maturation
Considering the observed interactions, we intend to establish from which point of CRF there was a protection against cardiometabolic risk. Significant association between NC and cardiometabolic risk were observed in all levels of CRF in children (Fig. 1a), early adolescence (Fig. 1b), and middle adolescence groups (Fig. 1c). Besides, it was found that children who reach more than 1092.5 m in CRF test were protected against cardiometabolic risk when considering NC. In both adolescent groups, protection against cardiometabolic risk was found when the CRF test distance was above 1424.1 m and 1471.9 m, respectively.

Discussion

Findings of the present study indicate that CRF is inversely associated with NC in children and adolescents of different age groups. Besides, to the best of our knowledge, this is the first study to show that CRF is a moderator in the relationship between NC and cardiometabolic risk factors. Also, the applied analyzes made it possible to establish the level of CRF that children and adolescents must achieve to protect against cardiometabolic risk when NC is considered.
The relationship between CRF and different anthropometric indicators has been widely shown in the literature, which includes an inverse association with BMI, waist circumference, and waist to height ratio [4246]. However, much less is known about the relation between CRF and NC. Our results indicated that CRF is inversely associated with NC, which is in accordance with a study developed with Spanish children and adolescents [24]. As far as we know, the present study is the only evidence in the literature exploring the link between those variables; nevertheless, CRF was not investigated as a primary outcome but as a moderator. Indeed, CRF is a significant health indicator related to the function of different body systems and organs involved in human health status, such as cardiorespiratory, endocrine-metabolic, and musculoskeletal [47, 48].
Also, it is widely described that NC is associated with some cardiometabolic risk factors in children and adolescents, such as systolic blood pressure, total cholesterol, HDL-C, and clustered cardiovascular diseases risk factors [2426, 49]. Therefore, these findings indicate that NC is an effective screening measure for identifying metabolic disease risk also at younger ages.
Taking this evidence into consideration, we intend to go further in order to understand the role of CRF in the association between NC and cardiometabolic risk. Results showed that the strength of the relationship between NC and cardiometabolic risk vary according to the level of CRF, highlighting its role as a moderator. This means that in children and adolescents with high CRF levels, there was no longer an association between NC and cardiometabolic risk factors.
In this study, we also indicated the CRF point from which there was no longer an association between NC and cardiometabolic risk. In children, this point was 1092.5 m, early adolescents must achieve 1424.1 m, and in the age group, middle adolescents should accomplish 1471.9 m. The reference values for the CRF test applied in the present study indicate that achieving this goal, children and adolescents from all the age groups considered would be classified in the healthy zone for physical fitness [39]. Therefore, to present protection against cardiometabolic risk, they should achieve significantly high CRF levels. In this context, the role of adiposity must be taken into consideration, once it is known that increased body fat is likely to lead to a decrease in fitness levels in children [50], mainly where body weight is lifted or carried over distance (i.e. running), which may intervene in the tests results [51].
Our study adds to the evidence that NC may be an appropriate marker for cardiometabolic health and could be considered mainly in epidemiological studies, as is a more straightforward and more practical anthropometric parameter, not impeded by clothing, ethical questions, or last meal [21]. More importantly, our data bring new evidence showing the crucial role of CRF, once it can protect against cardiometabolic risk when considering NC. Confirming the idea that appropriate levels CRF, indeed, can mitigate the consequences of body adiposity on cardiometabolic health, although our data showed that only very high CRF levels exert a protection. Still, it is suggested that regardless of body weight, it is important to achieve appropriate CRF levels [44, 52, 53]. This aspect is of great relevance, mainly when considering that the development of different cardiometabolic risk factors has its origin in childhood and can be taken to adulthood [54]. Also, CRF is a modifiable factor that can be enhanced through regular moderate to vigorous physical activity practice [55], highlighting its relevance in the context investigated in the present study.
The cross-sectional data limits us from evaluating the effect of changes in CRF in the analyzed variables. Also, the test used to assess CRF is not a direct measure of aerobic capacity, although it is validated and applied in many investigations [2, 56, 57]. The cutoff points and standard deviation used as proposed by Stavnsbo et al. 2018 does not includes children from Latin American countries [41]. This study was strengthened by the large sample size, investigating moderations according to different age groups and mainly determining the moderation point, since there is no evidence in the literature regarding this aspect.

Conclusions

CRF is inversely associated with NC and acts as an essential moderator in the relationship between NC and cardiometabolic risk both in children and adolescents. Based on these findings, this detrimental health impact linked to fatness might be attenuated, or even eliminate, by significant improvement in CRF. Thus, this physical fitness marker should be considered in future intervention studies in the pediatric population.

Acknowledgments

We thank the collaboration of the schools, our research group from Health Research Laboratory (LAPES), as well as all the support of the University of Santa Cruz do Sul – UNISC and Higher Education Personnel Improvement Coordination - Brazil (CAPES) - Financing Code 001.

Declarations

This study was approved by the Human Research Ethics Committee of the University of Santa Cruz do Sul (UNISC) (number 1.498.305) and followed the resolution 466/2012 of the National Council of Health in Brazil. The informed consent form for participation in this study was provided by the legal guardian of the participants.
Not applicable.

Competing interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Faienza MF, Chiarito M, Molina-Molina E, Shanmugam H, Lammert F, Krawczyk M, et al. Childhood obesity, cardiovascular and liver health: a growing epidemic with age. World J Pediatr. 2020;16(5):438–5. Faienza MF, Chiarito M, Molina-Molina E, Shanmugam H, Lammert F, Krawczyk M, et al. Childhood obesity, cardiovascular and liver health: a growing epidemic with age. World J Pediatr. 2020;16(5):438–5.
2.
Zurück zum Zitat Gaya AR, Dias AF, Lemes VB, Gonçalves JC, Marques PA, Guedes G, et al. Aggregation of risk indicators to cardiometabolic and musculoskeletal health in Brazilian adolescents in the periods 2008/09 and 2013/14. J Pediatr. 2018;94, 177:–83. Gaya AR, Dias AF, Lemes VB, Gonçalves JC, Marques PA, Guedes G, et al. Aggregation of risk indicators to cardiometabolic and musculoskeletal health in Brazilian adolescents in the periods 2008/09 and 2013/14. J Pediatr. 2018;94, 177:–83.
3.
Zurück zum Zitat González-Cortés CA, Téran-García M, Luevano-Contreras C, Portales-Pérez DP, Vargas-Morales JM, Cubillas-Tejeda AC, et al. Neck circumference and its association with cardiometabolic risk factors in pediatric population. Medicine. 2019;55:1–9. González-Cortés CA, Téran-García M, Luevano-Contreras C, Portales-Pérez DP, Vargas-Morales JM, Cubillas-Tejeda AC, et al. Neck circumference and its association with cardiometabolic risk factors in pediatric population. Medicine. 2019;55:1–9.
4.
Zurück zum Zitat NCD-RisC NRFC (NCD-RWG). Trends in cardiometabolic risk factors in the Americas between 1980 and 2014: a pooled analysis of population-based surveys. Lancet Global Health. 2020;8:e123–33.CrossRef NCD-RisC NRFC (NCD-RWG). Trends in cardiometabolic risk factors in the Americas between 1980 and 2014: a pooled analysis of population-based surveys. Lancet Global Health. 2020;8:e123–33.CrossRef
5.
Zurück zum Zitat Chung ST, Onuzuruike AU, Magge SN. Cardiometabolic risk in obese children. Ann N Y Acad Sci. 2018;1411:166–83.CrossRef Chung ST, Onuzuruike AU, Magge SN. Cardiometabolic risk in obese children. Ann N Y Acad Sci. 2018;1411:166–83.CrossRef
6.
Zurück zum Zitat Mastroeni SS, Mastroeni MF, Gonçalves MD, Debortoli G, da Silva NN, Bernal RT, et al. Cardiometabolic risk markers of normal weight and excess body weight in Brazilian adolescents. Appl Physiol Nutr Metab. 2016;41:659–65.CrossRef Mastroeni SS, Mastroeni MF, Gonçalves MD, Debortoli G, da Silva NN, Bernal RT, et al. Cardiometabolic risk markers of normal weight and excess body weight in Brazilian adolescents. Appl Physiol Nutr Metab. 2016;41:659–65.CrossRef
7.
Zurück zum Zitat Pogodina A, Rychkova L, Kravtzova O, Klimkina J, Kosovtzeva A. Cardiometabolic risk factors and health-related quality of life in adolescents with obesity. Child Obes. 2017;13:499–506.CrossRef Pogodina A, Rychkova L, Kravtzova O, Klimkina J, Kosovtzeva A. Cardiometabolic risk factors and health-related quality of life in adolescents with obesity. Child Obes. 2017;13:499–506.CrossRef
8.
Zurück zum Zitat Volp AC, Alfenas CG, Costa NM, Minim VP, Stringueta PC, Bressan J. Capacidade dos Biomarcadores Inflamatórios em Predizer a Síndrome Metabólica. Arq Bras Endocrinol Metab. 2008;52:3537–49.CrossRef Volp AC, Alfenas CG, Costa NM, Minim VP, Stringueta PC, Bressan J. Capacidade dos Biomarcadores Inflamatórios em Predizer a Síndrome Metabólica. Arq Bras Endocrinol Metab. 2008;52:3537–49.CrossRef
9.
Zurück zum Zitat Klop B, Willem J, Elte F, Cabezas MC. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients. 2013;5:1218–40.CrossRef Klop B, Willem J, Elte F, Cabezas MC. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients. 2013;5:1218–40.CrossRef
10.
Zurück zum Zitat Falkner B. Recent clinical and translational advances in pediatric hypertension. Hypertension. 2015;65:926–31.CrossRef Falkner B. Recent clinical and translational advances in pediatric hypertension. Hypertension. 2015;65:926–31.CrossRef
11.
Zurück zum Zitat Teixeira BC, Lopes AL, Macedo RCO, Correa CS, Ramis TR, Ribeiro JL, et al. Marcadores inflamatórios, função endotelial e riscos cardiovasculares. J Vasc Bras. 2014;13:108–15.CrossRef Teixeira BC, Lopes AL, Macedo RCO, Correa CS, Ramis TR, Ribeiro JL, et al. Marcadores inflamatórios, função endotelial e riscos cardiovasculares. J Vasc Bras. 2014;13:108–15.CrossRef
12.
Zurück zum Zitat Romacho T, Elsen M, Rohrborn D, Eckel J. Adipose tissue and its role in organ crosstalk. Acta Physiol. 2014;210:733–53.CrossRef Romacho T, Elsen M, Rohrborn D, Eckel J. Adipose tissue and its role in organ crosstalk. Acta Physiol. 2014;210:733–53.CrossRef
13.
Zurück zum Zitat Alves Junior CA, Mocellin MC, Gonçalves ECA, Silva DA, Trindade EB. Anthropometric indicators as body fat discriminators in children and adolescents: a systematic review and meta-analysis. Adv Nutr An Int Rev J. 2017;8:718–27.CrossRef Alves Junior CA, Mocellin MC, Gonçalves ECA, Silva DA, Trindade EB. Anthropometric indicators as body fat discriminators in children and adolescents: a systematic review and meta-analysis. Adv Nutr An Int Rev J. 2017;8:718–27.CrossRef
15.
Zurück zum Zitat Asif M, Aslam M, Wyszyńska J, Altaf S, Ahmad S. Diagnostic performance of neck circumference and cut-off values for identifying overweight and obese pakistani children: a receiver operating characteristic analysis. J Clin Res Pediatr Endocrinol. 2020;12:366–76.CrossRef Asif M, Aslam M, Wyszyńska J, Altaf S, Ahmad S. Diagnostic performance of neck circumference and cut-off values for identifying overweight and obese pakistani children: a receiver operating characteristic analysis. J Clin Res Pediatr Endocrinol. 2020;12:366–76.CrossRef
16.
Zurück zum Zitat Taheri M, Kajbaf TZ, Taheri MR, Aminzadeh M. Neck circumference as a useful marker for screening overweight and obesity in children and adolescents. Oman Med J. 2016;31:170–5.CrossRef Taheri M, Kajbaf TZ, Taheri MR, Aminzadeh M. Neck circumference as a useful marker for screening overweight and obesity in children and adolescents. Oman Med J. 2016;31:170–5.CrossRef
17.
Zurück zum Zitat Mucelin E, Traebert J, Zaidan MA, Piovezan AP, Nunes RD, Traebert E. Accuracy of neck circumference for diagnosing overweight in six- and seven-year-old children. J Pediatr. 2020;S0021-7557(20):30252–7. Mucelin E, Traebert J, Zaidan MA, Piovezan AP, Nunes RD, Traebert E. Accuracy of neck circumference for diagnosing overweight in six- and seven-year-old children. J Pediatr. 2020;S0021-7557(20):30252–7.
19.
Zurück zum Zitat de Souza MFC, Gurgel RQ, Barreto ÍD de C, Shanmugam S. Neck circumference as screening measure for identifying adolescents with overweight and obesity. J Hum Growth Dev. 2016;26:260–6.CrossRef de Souza MFC, Gurgel RQ, Barreto ÍD de C, Shanmugam S. Neck circumference as screening measure for identifying adolescents with overweight and obesity. J Hum Growth Dev. 2016;26:260–6.CrossRef
20.
Zurück zum Zitat Coutinho CA, Longui CA, Monte O, Conde W, Kochi C. Measurement of neck circumference and its correlation with body composition in a sample of students in Saõ Paulo, Brazil. Horm Res Paediatr. 2014;82:179–86.CrossRef Coutinho CA, Longui CA, Monte O, Conde W, Kochi C. Measurement of neck circumference and its correlation with body composition in a sample of students in Saõ Paulo, Brazil. Horm Res Paediatr. 2014;82:179–86.CrossRef
21.
Zurück zum Zitat Joshipura K, Muñoz-Torres F, Vergara J, Palacios C, Pérez CM. Neck circumference may be a better alternative to standard anthropometric measures. J Diabetes Res. 2016:6058916. Joshipura K, Muñoz-Torres F, Vergara J, Palacios C, Pérez CM. Neck circumference may be a better alternative to standard anthropometric measures. J Diabetes Res. 2016:6058916.
22.
Zurück zum Zitat Androutsos O, Grammatikaki E, Moschonis G, Roma-Giannikou E, Chrousos GP, Manios Y, et al. Neck circumference: a useful screening tool of cardiovascular risk in children. Pediatr Obes. 2012;7:187–95.CrossRef Androutsos O, Grammatikaki E, Moschonis G, Roma-Giannikou E, Chrousos GP, Manios Y, et al. Neck circumference: a useful screening tool of cardiovascular risk in children. Pediatr Obes. 2012;7:187–95.CrossRef
23.
Zurück zum Zitat Folmann AG, Wolf VLW, Roman EP, Guerra-Júnior G. Neck circumference and excess weight: proposal of cutoff points for Brazilian adolescents. J Pediatr. 2020;97:191–6.CrossRef Folmann AG, Wolf VLW, Roman EP, Guerra-Júnior G. Neck circumference and excess weight: proposal of cutoff points for Brazilian adolescents. J Pediatr. 2020;97:191–6.CrossRef
24.
Zurück zum Zitat Castro-Piñero J, Delgado-Alfonso A, Gracia-Marco L, Gómez-Martínez S, Esteban-Cornejo I, Veiga OL, et al. Neck circumference and clustered cardiovascular risk factors in children and adolescents: cross-sectional study. BMJ Open. 2017;7:1–9.CrossRef Castro-Piñero J, Delgado-Alfonso A, Gracia-Marco L, Gómez-Martínez S, Esteban-Cornejo I, Veiga OL, et al. Neck circumference and clustered cardiovascular risk factors in children and adolescents: cross-sectional study. BMJ Open. 2017;7:1–9.CrossRef
25.
Zurück zum Zitat Ataie-Jafari A, Namazi N, Djalalinia S, Chaghamirzayi P, Abdar ME, Zadehe SS, et al. Neck circumference and its association with cardiometabolic risk factors: a systematic review and meta-analysis. Diabetol Metab Syndr. 2018;10:1–34.CrossRef Ataie-Jafari A, Namazi N, Djalalinia S, Chaghamirzayi P, Abdar ME, Zadehe SS, et al. Neck circumference and its association with cardiometabolic risk factors: a systematic review and meta-analysis. Diabetol Metab Syndr. 2018;10:1–34.CrossRef
26.
Zurück zum Zitat Kelishadi R, Heidari-Beni M, Qorbani M, Motamed-Gorji N, Motlagh ME, Ziaodini H, et al. Association between neck and wrist circumferences and cardiometabolic risk in children and adolescents: the CASPIAN-V study. Nutrition. 2017;43–44:32–8.CrossRef Kelishadi R, Heidari-Beni M, Qorbani M, Motamed-Gorji N, Motlagh ME, Ziaodini H, et al. Association between neck and wrist circumferences and cardiometabolic risk in children and adolescents: the CASPIAN-V study. Nutrition. 2017;43–44:32–8.CrossRef
27.
Zurück zum Zitat García-Hermoso A, Ramírez-Vélez R, García-Alonso Y, Alonso-Martínez AM, Izquierdo M. Association of cardiorespiratory fitness levels during youth with health risk later in life. JAMA. 2020;174:952–60. García-Hermoso A, Ramírez-Vélez R, García-Alonso Y, Alonso-Martínez AM, Izquierdo M. Association of cardiorespiratory fitness levels during youth with health risk later in life. JAMA. 2020;174:952–60.
28.
29.
Zurück zum Zitat Kaminsky LA, Arena R, Ellingsen Ø, Harber MP, Myers J, Ozemek C, et al. Cardiorespiratory fitness and cardiovascular disease - the past, present, and future. Prog Cardiovasc Dis. 2019;62:86–93.CrossRef Kaminsky LA, Arena R, Ellingsen Ø, Harber MP, Myers J, Ozemek C, et al. Cardiorespiratory fitness and cardiovascular disease - the past, present, and future. Prog Cardiovasc Dis. 2019;62:86–93.CrossRef
30.
Zurück zum Zitat Mayorga-Vega D, Bocanegra-Parrilla R, Ornelas M, Viciana J. Criterion-related validity of the distance- and time-based walk/run field tests for estimating cardiorespiratory fitness: a systematic review and meta-analysis. PLoS One. 2016;11:e0151671.CrossRef Mayorga-Vega D, Bocanegra-Parrilla R, Ornelas M, Viciana J. Criterion-related validity of the distance- and time-based walk/run field tests for estimating cardiorespiratory fitness: a systematic review and meta-analysis. PLoS One. 2016;11:e0151671.CrossRef
31.
Zurück zum Zitat Mayorga-Vega D, Aguilar-Soto P, Viciana J. Criterion-related validity of the 20-m shuttle run test for estimating cardiorespiratory fitness: a meta-analysis. J Sport Sci Med. 2015;14:536–47. Mayorga-Vega D, Aguilar-Soto P, Viciana J. Criterion-related validity of the 20-m shuttle run test for estimating cardiorespiratory fitness: a meta-analysis. J Sport Sci Med. 2015;14:536–47.
32.
Zurück zum Zitat Hamlin MJ, Fraser M, Lizamore CA, Draper N, Shearman JP, Kimber NE. Measurement of cardiorespiratory fitness in children from two commonly used field tests after accounting for body fatness and maturity. J Hum Kinet. 2014;40:83–92.CrossRef Hamlin MJ, Fraser M, Lizamore CA, Draper N, Shearman JP, Kimber NE. Measurement of cardiorespiratory fitness in children from two commonly used field tests after accounting for body fatness and maturity. J Hum Kinet. 2014;40:83–92.CrossRef
33.
Zurück zum Zitat Brand C, Sehn AP, Gaya AA, Mota J, Brazo-Sayavera S, Renner JD, et al. Physical fitness as a moderator in the relationship between adiposity and cardiometabolic risk factors in children and adolescents. J Sport Med Phys fFtness. 2020;60. Brand C, Sehn AP, Gaya AA, Mota J, Brazo-Sayavera S, Renner JD, et al. Physical fitness as a moderator in the relationship between adiposity and cardiometabolic risk factors in children and adolescents. J Sport Med Phys fFtness. 2020;60.
34.
Zurück zum Zitat Silveira JF, Barbian CD, Burgos LT, Renner JD, Paiva DN, Reuter CP. Association between the screen time and the cardiorespiratory fitness with the presence of metabolic risk in schoolchildren. Rev Paul Pediatr. 2020;38:e2019134.CrossRef Silveira JF, Barbian CD, Burgos LT, Renner JD, Paiva DN, Reuter CP. Association between the screen time and the cardiorespiratory fitness with the presence of metabolic risk in schoolchildren. Rev Paul Pediatr. 2020;38:e2019134.CrossRef
35.
Zurück zum Zitat Gaya A, Lemos A, Gaya A, Teixeira D, Pinheiro E, Moreira R. PROESP-Br Projeto Esporte Brasil Manual de testes e avaliação; 2016. p. 1–20. Gaya A, Lemos A, Gaya A, Teixeira D, Pinheiro E, Moreira R. PROESP-Br Projeto Esporte Brasil Manual de testes e avaliação; 2016. p. 1–20.
36.
Zurück zum Zitat Gonçalves EC, Alves Junior CA, Nunes HE, De Souza MC, Silva DA. Prevalence of Brazilian children and youth who meet health criteria for cardiorespiratory fitness: systematic review. Rev Bras Cineantropometria e Desempenho Hum. 2018;20:446–71.CrossRef Gonçalves EC, Alves Junior CA, Nunes HE, De Souza MC, Silva DA. Prevalence of Brazilian children and youth who meet health criteria for cardiorespiratory fitness: systematic review. Rev Bras Cineantropometria e Desempenho Hum. 2018;20:446–71.CrossRef
37.
Zurück zum Zitat Wedell-Neergaard AS, Eriksen L, Grønbæk M, Pedersen BK, Krogh-Madsen R, Tolstrup J. Low fitness is associated with abdominal adiposity and low-grade inflammation independent of BMI. PLoS One. 2018;13:1–11. Wedell-Neergaard AS, Eriksen L, Grønbæk M, Pedersen BK, Krogh-Madsen R, Tolstrup J. Low fitness is associated with abdominal adiposity and low-grade inflammation independent of BMI. PLoS One. 2018;13:1–11.
38.
Zurück zum Zitat Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149–60.CrossRef Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149–60.CrossRef
39.
Zurück zum Zitat Gaya A, Gaya A. Testing and evaluation manual for the Project Sport Brazil - PROESP-BR; 2016. p. 26.Gaya A, Gaya A. Manual de testes e avaliação do Projeto Esporte Brasil – PROESP-BR; 2016, p. 1-26. Gaya A, Gaya A. Testing and evaluation manual for the Project Sport Brazil - PROESP-BR; 2016. p. 26.Gaya A, Gaya A. Manual de testes e avaliação do Projeto Esporte Brasil – PROESP-BR; 2016, p. 1-26.
41.
Zurück zum Zitat Stavnsbo M, Resaland GK, Anderssen SA, Steene-Johannessen J, Domazet SL, Skrede T, et al. Reference values for cardiometabolic risk scores in children and adolescents: suggesting a common standard. Atherosclerosis. 2018;278:299–306.CrossRef Stavnsbo M, Resaland GK, Anderssen SA, Steene-Johannessen J, Domazet SL, Skrede T, et al. Reference values for cardiometabolic risk scores in children and adolescents: suggesting a common standard. Atherosclerosis. 2018;278:299–306.CrossRef
43.
Zurück zum Zitat Lee HS, Jeong WW, Choi YJ, Seo YG, Noh HM, Song HJ, et al. Association between physical fitness and cardiometabolic risk of children and adolescents in Korea. Korean J Fam Med. 2019;40:159–64.CrossRef Lee HS, Jeong WW, Choi YJ, Seo YG, Noh HM, Song HJ, et al. Association between physical fitness and cardiometabolic risk of children and adolescents in Korea. Korean J Fam Med. 2019;40:159–64.CrossRef
44.
Zurück zum Zitat Cristi-Montero C, Courel-Ibáñez J, Ortega FB, Castro-Piñero J, Santaliestra-Pasias A, Polito A, et al. Mediation role of cardiorespiratory fitness on the association between fatness and cardiometabolic risk in European adolescents: The HELENA study. J Sport Healh Sci. 2019;8:1.CrossRef Cristi-Montero C, Courel-Ibáñez J, Ortega FB, Castro-Piñero J, Santaliestra-Pasias A, Polito A, et al. Mediation role of cardiorespiratory fitness on the association between fatness and cardiometabolic risk in European adolescents: The HELENA study. J Sport Healh Sci. 2019;8:1.CrossRef
46.
Zurück zum Zitat Dyrstad SM, Edvardsen E, Hansen BH, Anderssen SA. Waist circumference thresholds and cardiorespiratory fitness. J Sport Health Sci. 2019;8:17–22.CrossRef Dyrstad SM, Edvardsen E, Hansen BH, Anderssen SA. Waist circumference thresholds and cardiorespiratory fitness. J Sport Health Sci. 2019;8:17–22.CrossRef
47.
Zurück zum Zitat Lang JJ, Tomkinson GR, Janssen I, Ruiz JR, Ortega FB, Léger L, et al. Making a case for cardiorespiratory fitness surveillance among children and youth. Exerc Sport Sci Rev. 2018;46:66–75.CrossRef Lang JJ, Tomkinson GR, Janssen I, Ruiz JR, Ortega FB, Léger L, et al. Making a case for cardiorespiratory fitness surveillance among children and youth. Exerc Sport Sci Rev. 2018;46:66–75.CrossRef
48.
Zurück zum Zitat Ortega FB, Ruiz JR, Castillo MJ, Sjostrom M. Physical fitness in childhood and adolescence: a powerful marker of health. Int J Obes. 2008;32:1–11.CrossRef Ortega FB, Ruiz JR, Castillo MJ, Sjostrom M. Physical fitness in childhood and adolescence: a powerful marker of health. Int J Obes. 2008;32:1–11.CrossRef
50.
Zurück zum Zitat Johansson L, Brissman M, Morinder G, Westerståhl M, Marcus C. Reference values and secular trends for cardiorespiratory fitness in children and adolescents with obesity. Acta Paediatr Int J Paediatr. 2020;109:1665–71.CrossRef Johansson L, Brissman M, Morinder G, Westerståhl M, Marcus C. Reference values and secular trends for cardiorespiratory fitness in children and adolescents with obesity. Acta Paediatr Int J Paediatr. 2020;109:1665–71.CrossRef
51.
Zurück zum Zitat Olds TS, Ridley K, Tomkinson GR. Declines in aerobic fitness: are they only due to increasing fatness? Med Sport Sci. 2007;50:226–40.CrossRef Olds TS, Ridley K, Tomkinson GR. Declines in aerobic fitness: are they only due to increasing fatness? Med Sport Sci. 2007;50:226–40.CrossRef
52.
Zurück zum Zitat Ortega FB, Ruiz JR, Labayen I, Lavie CJ, Blair SN. The fat but fit paradox: what we know and don’t know about it. Br J Sports Med. 2018;52:151–3.CrossRef Ortega FB, Ruiz JR, Labayen I, Lavie CJ, Blair SN. The fat but fit paradox: what we know and don’t know about it. Br J Sports Med. 2018;52:151–3.CrossRef
53.
Zurück zum Zitat Shang X, Li Y, Xu H, Zhang Q, Hu X, Liu A, et al. Independent and interactive associations of fitness and fatness with changes in cardiometabolic risk in children: a longitudinal analysis. Front Endocrinol. 2020;11:342.CrossRef Shang X, Li Y, Xu H, Zhang Q, Hu X, Liu A, et al. Independent and interactive associations of fitness and fatness with changes in cardiometabolic risk in children: a longitudinal analysis. Front Endocrinol. 2020;11:342.CrossRef
54.
Zurück zum Zitat Bugge A, El-Naaman B, Mcmurray RG, Froberg K, Andersen LB. Tracking of clustered cardiovascular disease risk factors from childhood to adolescence. Pediatr Res. 2013;73:245–9.CrossRef Bugge A, El-Naaman B, Mcmurray RG, Froberg K, Andersen LB. Tracking of clustered cardiovascular disease risk factors from childhood to adolescence. Pediatr Res. 2013;73:245–9.CrossRef
56.
Zurück zum Zitat Lorenzi T. Testes de Corrida/Caminhada de 6 e 9 minutos: Validação e Determinantes Metabólicos em Adolescentes. Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil, 2006. Lorenzi T. Testes de Corrida/Caminhada de 6 e 9 minutos: Validação e Determinantes Metabólicos em Adolescentes. Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil, 2006.
Metadaten
Titel
Neck circumference and cardiometabolic risk in children and adolescents: the moderator role of cardiorespiratory fitness
verfasst von
Ana Paula Sehn
Caroline Brand
Letícia Welser
Anelise Reis Gaya
Cesar Agostinis-Sobrinho
Carlos Cristi-Montero
Elza Daniel de Mello
Cézane Priscila Reuter
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
BMC Pediatrics / Ausgabe 1/2021
Elektronische ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-021-02696-y

Weitere Artikel der Ausgabe 1/2021

BMC Pediatrics 1/2021 Zur Ausgabe

Neuer Typ-1-Diabetes bei Kindern am Wochenende eher übersehen

23.04.2024 Typ-1-Diabetes Nachrichten

Wenn Kinder an Werktagen zum Arzt gehen, werden neu auftretender Typ-1-Diabetes und diabetische Ketoazidosen häufiger erkannt als bei Arztbesuchen an Wochenenden oder Feiertagen.

Neue Studienergebnisse zur Myopiekontrolle mit Atropin

22.04.2024 Fehlsichtigkeit Nachrichten

Augentropfen mit niedrig dosiertem Atropin können helfen, das Fortschreiten einer Kurzsichtigkeit bei Kindern zumindest zu verlangsamen, wie die Ergebnisse einer aktuellen Studie mit verschiedenen Dosierungen zeigen.

Spinale Muskelatrophie: Neugeborenen-Screening lohnt sich

18.04.2024 Spinale Muskelatrophien Nachrichten

Seit 2021 ist die Untersuchung auf spinale Muskelatrophie Teil des Neugeborenen-Screenings in Deutschland. Eine Studie liefert weitere Evidenz für den Nutzen der Maßnahme.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.