Skip to main content

Open Access 31.01.2024 | Arnold-Biber Research Award

New insights into the genetics of mandibular retrognathism: novel candidate genes

Erschienen in: Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie

Abstract

Purpose

Mandibular retrognathism (MR) is a common skeletal malocclusion in humans with a strong genetic component. Single nucleotide polymorphisms (SNPs) in genes encoding epidermal growth factor (EGF) and EGF receptor (EGFR) could be involved in the etiology of mandibular retrognathism. Therefore, in this study, we investigated whether SNPs in the genes encoding for EGF and EGFR are associated with MR in German teenagers.

Methods

This nested case–control study evaluated German orthodontic patients, aged 10–18 years. DNA, which was isolated from buccal epithelial cells using two cytobrushes, was used for genotyping analysis and digital pretreatment lateral cephalograms were examined to calculate SNB and ANB. Patients with a retrognathic mandible (SNB < 78°) were included as cases, while patients with an orthognathic mandible (SNB = 78–82°) were included as controls. Four SNPs in the genes encoding for EGF and EGFR were chosen and genotyped using real-time PCR. Allele, genotype, and haplotype frequency were compared across groups (α = 5%).

Results

Finally, 119 patients were included in this study (45 orthognathic mandible, 74 retrognathic mandible). The minor allele G in rs4444903 (EGF) was statistically more frequent in individuals with an orthognathic mandible (p = 0.008). The haplotype formed by the mutant alleles for rs4444903|rs2237051 (EGF; G|A) was statistically more frequent in the orthognathic mandible group (p = 0.007). The SNPs rs4444903 and rs2237051 in EGF, and rs2227983 in EGFR were statistically associated with a decreasing risk of developing a retrognathic mandible according to univariate and multivariate statistical analysis (p < 0.05).

Conclusion

SNPs in EGF (rs4444903 and rs2237051) and EGFR (rs2227983) were associated with MR in our German sample and could be genetic biomarkers for early and individualized diagnostic identification of retrognathic mandibular development by means of genetic screening tests.
Begleitmaterial
Hinweise

Supplementary Information

The online version of this article (https://​doi.​org/​10.​1007/​s00056-023-00512-z) contains supplementary material, which is available to authorized users.
This paper received the Arnold-Biber Research Award of the German Orthodontic Society for the year 2023.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Mandibular retrognathism is defined as an abnormally posterior positioned mandible in relation to the anterior skull base [3]. Although the relation of the jaw bases and the craniofacial morphology determine an individual’s malocclusion [7], this craniofacial dysgnathia is often associated with a skeletal class II malocclusion, which occurs in about 23–29% of the population worldwide [8]. Mandibular retrognathism has a polygenic etiological background [1, 2, 14, 26]. Across different populations, some genes have been identified as etiological factors of mandibular retrognathism [9].
Single nucleotide polymorphisms (SNPs) are variations in the DNA sequence that occur, when a single nucleotide varies between members of a biological species or paired chromosomes in an individual. SNPs can influence the expression and/or functions of genes and have been explored in complex traits, including skeletal malocclusions and other dentofacial traits [13]. Previous investigations from different research groups revealed that a variety of SNPs are involved in the mandibular retrognathism phenotype [1, 2, 12, 14, 15, 26]. A recent study in a German sample showed an association between a SNP in the gene encoding the transforming growth factor beta receptor type 2 (TGFBR2) with mandibular retrognathism [12].
Growth factors are mostly proteins or steroid hormones that act as signaling molecules regulating many cellular functions such as cell proliferation, survival, and differentiation. Some growth factors stimulate a cellular response by binding to specific receptors [10]. The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that is activated by binding of its ligand, the epidermal growth factor (EGF), resulting in receptor dimerization and autophosphorylation, and activation of signaling pathways promoting proliferation. EGF and EGFR play important roles in skeletal biology [22] and their function is necessary for normal craniofacial development [19]. Resorption, formation, and maintenance of bone are coordinated by the action of several hormones, transcription factors, and growth factors [22]. Since growth factors promote the events of cell growth, the investigation of their potential role as predictive biomarkers for skeletal malocclusions is an exciting approach, which could enable early and individualized diagnostic identification of retrognathic mandibular development by means of genetic screening tests in the future. Therefore, in this study, we investigated whether SNPs in the genes encoding EGF and EGFR are involved in the etiology of mandibular retrognathism of German teenagers.

Materials and methods

This study was approved by the Human Ethics Committee at the University of Regensburg (number 19-1549-101) and conducted according to the ethical principles of the Helsinki Declaration. Informed consent was obtained from all patients and their parents or legal guardians. Furthermore, an age-appropriate assent document was also used for patients younger than 14 years.
The Strengthening the Reporting of Genetic Association study (STREGA) statement checklist [17] was used to design and report this study, and the checklist is presented in supplementary table 1.
Sample size calculation, recruitment and collection of this nested case–control study were previously described by Kirschneck et al. [12]. Briefly, German orthodontic patients were consecutively recruited during orthodontic treatment in 2020 and 2021, and the sample size was determined with a power of 0.80%, α of 0.05, and an effect size of 0.225.
Adults and patients with syndromes, congenital alterations including dental agenesis of permanent tooth/teeth (except for third molar agenesis), patients with cleft lip and/or palate (syndromic or isolated forms of cleft), and patients with facial trauma were excluded. Furthermore, after the cephalometric analysis, patients with mandibular prognathism (SNB > 82°) were also excluded. Only one individual per family was included to avoid genetic bias. In addition, to minimize genetic and phenotypic variance and maximize data interpretation, only patients with Middle European ancestry were included [12].
All patients included were teenagers not biologically related and age ranged from 10–18 years.

Cephalometric analysis

Digital pretreatment lateral cephalograms as part of patients’ orthodontic records with the mandible in maximal intercuspation were used in the cephalometric analysis. Measurements were performed by two trained and calibrated orthodontists who presented good interexaminer and intraexaminer reliability as previously reported in Kirschneck et al. [12].
The radiographs were imported as lossless TIF files into the software ivoris® analyze pro (Computer konkret AG, Falkenstein, Germany, version 8.2.15.110) and calibrated. Cephalometry based on Segner and Hasund [23] was conducted digitally, although only skeletal parameters were considered for analyses. The anatomical landmarks point A, point B, sella (S), and nasion (N) were determined manually using the cephalometric analysis software (ivoris analyze pro), and the angular measurements SNB and ANB were calculated (Fig. 1).
The phenotype definition was as follows: patients with a retrognathic mandible were selected as cases (SNB < 78°), while patients with an orthognathic mandible were selected as controls (SNB = 78–82°). Patients with mandibular prognathism were excluded (SNB > 82°).

Genetic analysis

We selected candidate SNPs at the EGF and EGFR genes (Table 1) mostly based on the minor allele frequency reported in European populations (> 20%), the SNPs function, and based on previous results of studies investigating their association with several phenotypes suggesting clinical relevance of these SNPs (http://​www.​ncbi.​nlm.​nih.​gov/​snp/​). SNPs in the promoter, coding, and intronic region were selected. The characteristics and description of the SNPs investigated in this study are presented in Table 1.
Table 1
Characteristics of studied SNPs
Tab. 1
Eigenschaften der untersuchten SNPs
Gene
SNPs
Base change
Comment
Function
Genotyping success rate
HWE p-value
EGF
rs4444903
A > G
Promoter region
EGF levels
0.975
0.074
rs2237051
G > A
Missense variant
EGF levels
0.950
> 0.999
EGFR
rs2227983
G > A
Missense variant
Decreased EGF affinity
0.966
0.824
rs763317
A > G
Intronic variant
Unknown
0.983
0.709
The meaning and impairment of the SNPs were obtained through the National Center for Biotechnolgy Information (NCBI) and LitVar
HWE Hardy–Weinberg equilibrium, EGF epidermal growth factor, EGFR epidermal growth factor receptor
For the genotyping analysis, genomic DNA was isolated from buccal epithelial cells collected using two cytobrushes placed in extraction solution (Tris-HCl 10 mmol/L, pH 7.8; EDTA 5 mmol/L; SDS 0.5%, 1 mL). Briefly, proteinase K (100 ng/mL) was added to each tube. Ammonium acetate was also added to remove nondigested proteins and the solution was then centrifuged. DNA was precipitated with isopropanol and washed with ethanol. The DNA was quantified by spectrophotometry (Nanodrop 1000; Thermo Scientific, Wilmington, DE, USA) [12].
The selected SNPs were blindly genotyped via real-time polymerase chain reaction (PCR) using the Mastercycler® ep realplex‑S thermocycler (Eppendorf AG, Hamburg, Germany). The TaqMan technology was used. A negative control template was included in each reaction plate. In addition, 10% of the samples were randomly selected for repeated analysis and showed 100% concordance. Patients with not enough DNA or DNA samples that failed to be genotyped were excluded from further analyses.

Statistical analysis

The success genotyping rate was calculated for each SNP, and the Hardy–Weinberg equilibrium was obtained by Pearson χ2 test without correction, which was also used to evaluate the distribution of gender between groups. The Mann–Whitney test compared age and SNB medians.
Allele and haplotype frequency comparisons were performed by PLINK version 1.06 (https://​zzz.​bwh.​harvard.​edu/​plink/​ld.​shtml). PLINK compares the frequencies between the major allele by Pearson χ2 test without correction and between the expected number of haplotypes by Fisher’s exact test.
The univariate Pearson χ2 without correction or Fisher’s exact test were performed for univariate genotypic analysis. For the multivariate analysis of the genotypes between the orthognathic and retrognathic mandible group a Poisson regression, which was adjusted by age, was used. Furthermore, the prevalence ratio (PR) and the 95% confidence interval (CI) were calculated. Statistical Package for Social Sciences (SPSS) version 25.0 (IBM Corp., Armonk, NY, USA) was employed for these analyses. Bilateral p-values were adopted for all tests, and p < 0.05 indicated a statistically significant difference.

Results

A total of 119 patients were included in this study (57 males and 62 females). Forty-five had an orthognathic mandible, while 74 showed a retrognathic mandible. Table 2 illustrates the characteristics of the sample. The SNB angle was statistically different between the orthognathic mandible and retrognathic mandible groups (p < 0.001).
Table 2
Characteristics of the studied sample
Tab. 2
Eigenschaften des untersuchten Kollektivs
 
Total
Orthognathic mandible
Retrognathic mandible
p-value
N (%)
119 (100)
45 (37.8)
74 (62.2)
Gender
Male (%)
57 (47.9)
25 (55.5)
32 (42.2)
0.192
Female (%)
62 (52.1)
20 (44.5)
42 (57.8)
Median age (95% CI)
12.31 (12.0–12.68)
12.68 (12.2–13.97)
12.20 (11.3–12.55)
0.034*
Median SNB (95% CI)
76.8 (75.9–77.8)
79.60 (79.10–80.20)
75.20 (74.3–75.9)
<0.001*
Gender was compared between groups by χ2 test. Age and SNB were compared between groups by Mann–Whitney test
95% CI 95% confidence interval
*p < 0.05
Table 1 shows the details of the studied SNPs and the Hardy–Weinberg equilibrium values for each SNP in the total sample. All SNPs were within the Hardy–Weinberg equilibrium (p > 0.05).
The minor allele G in rs4444903 (EGF) was statistically more frequent in the orthognathic mandible group compared to the retrognathic group (p = 0.008). The haplotype formed by the mutant alleles for rs4444903|rs2237051 (EGF; G|A) was statistically more frequent in the orthognathic mandible group in comparison with the retrognathic mandible group (p = 0.007; Table 3).
Table 3
Allele and haplotype distribution between groups
Tab. 3
Verteilung der Allele und Haplotypen zwischen den Gruppen
Chromosome
Gene
SNPs
Allele/Haplotypes
Frequency
p-value
Orthognathic mandible
Retrognathic mandible
4
EGF
rs4444903
G
0.477
0.305
0.008*
rs2237051
A
0.488
0.376
0.096
rs4444903|rs2237051
G|A
0.387
0.222
0.007*
A|A
0.113
0.154
0.382
G|G
0.089
0.089
0.988
A|G
0.410
0.534
0.071
7
EGFR
rs2227983
A
0.352
0.253
0.109
rs763317
G
0.511
0.423
0.191
rs2227983|rs763317
A|G
0.187
0.098
0.053
G|G
0.336
0.317
0.769
A|A
0.165
0.155
0.838
G|A
0.312
0.429
0.075
Frequencies between the major alleles were compared by chi-square test and between the expected number of haplotypes by Fisher exact test
EGF epidermal growth factor, EGFR epidermal growth factor receptor
*p < 0.05
Table 4 shows the uni- and multivariate comparison of the genotypes between groups. The rs4444903 and rs2237051 (EGF), and rs2227983 (EGFR) SNPs were statistically associated with a decreasing chance of presenting with a retrognathic mandible. In the codominant model, the heterozygous patients for these SNPs had less chance of exhibiting a retrognathic mandible than the dominant homozygous patients. In the dominant model, heterozygous and recessive homozygous patients had less chance of developing a retrognathic mandible than the dominant homozygous patients (p < 0.05; PR < 1.0).
Table 4
Univariate and multivariate analysis of genotypes comparison between groups
Tab. 4
Univariate und bivariate Analyse der Genotypen zum Vergleich zwischen den Gruppen
Gene
SNP
Model
Genotype
Orthognathic mandible
Retruded mandible
p-valueu
p-valuem
PR
95% CI
n
%
n
%
EGF
rs4444903
Co-Dominant
AA
8
18.18
33
45.83
Reference
AG
30
68.18
34
47.22
0.004*
0.011*
0.69
0.52–0.91
GG
6
13.64
5
6.94
0.020*
0.216
0.64
0.32–1.28
Dominant
AA
8
18.18
33
45.83
Reference
AG + GG
36
81.82
39
54.17
0.003*
0.008*
0.68
0.52–0.90
Recessive
AA + AG
38
86.36
67
93.06
Reference
GG
6
13.64
5
6.94
0.232
0.533
0.80
0.40–1.59
rs2237051
Co-Dominant
GG
9
20.45
29
42.03
Reference
GA
27
61.36
28
40.58
0.013*
0.006*
0.65
0.47–0.88
AA
8
18.18
12
17.39
0.194
0.278
0.80
0.53–1.19
Dominant
GG
9
20.45
29
42.03
Reference
GA + AA
35
79.55
40
57.97
0.017*
0.007*
0.69
0.52–0.90
Recessive
GG + GA
36
81.82
57
82.61
Reference
AA
8
18.18
12
17.39
0.914
0.941
1.01
0.68–1.50
EGFR
rs2227983
Co-Dominant
GG
16
36.36
41
57.75
Reference
GA
25
56.82
24
33.80
0.015*
0.019*
0.67
0.48–0.93
AA
3
6.82
6
8.45
> 0.999f
0.818
0.94
0.58–1.52
Dominant
GG
16
36.36
41
57.75
Reference
GA + AA
28
63.64
30
42.25
0.003f*
0.028*
0.71
0.53–0.96
Recessive
GG + GA
41
93.18
65
91.55
Reference
AA
3
6.82
6
8.45
> 0.999f
0.650
1.11
0.69–1.79
rs763317
Co-Dominant
AA
11
24.44
22
30.56
Reference
AG
22
48.89
39
54.17
0.791
0.328
0.85
0.62–1.17
GG
12
26.67
11
15.28
0.158
0.056
0.60
0.36–1.01
Dominant
AA
11
24.44
22
30.56
Reference
AG + GG
34
75.56
50
69.44
0.474
0.130
0.78
0.57–1.07
Recessive
AA + AG
33
73.33
61
84.72
Reference
GG
12
26.67
11
15.28
0.131
0.103
0.67
0.41–1.08
Frequencies between the major alleles were compared by chi-square test and between the expected number of haplotypes by Fisher exact test
EGF epidermal growth factor, EGFR epidermal growth factor receptor
*p < 0.05

Discussion

Mandibular retrognathism is a common maxillofacial alteration that can cause occlusal problems leading to class II malocclusion. The treatment of class II skeletal malocclusion due to mandibular retrognathism is one of the most common challenges in orthodontic practice. Mandibular retrognathism is also associated with esthetic problems and in severe cases with obstructive sleep apnea [11]. Therefore, studies investigating mandibular retrognathism are extremely important in the orthodontic literature and the number of research groups investigating the genetic background of this condition has been increasing in the past decade. In this study, some SNPs in the encoding genes EGF and EGFR were associated with mandibular retrognathism.
Mandibular retrognathism was previously associated with SNPs in MYO1H [1], MATN1 [2], ADAMTS9 [26], BMP2 [14], PTH, VDR, CYP24A1, and CYP27B1 [15] in different populations. Recently, a study indicated that TGFBR2 could be involved in mandibular retrognathism, and this finding was also observed in the sample evaluated in the present study [12]. In another study, four SNPs in transforming growth factor beta 1 were investigated: TGFB1 (rs1800469 and rs4803455) and TGBR2 (rs3087465 and rs764522), which are members of the growth factor family that has numerous key roles in the bone tissue controlling physiological processes [21]. The authors found that the SNP rs3087465 in TGFBR2 was associated with mandibular retrognathism [12]. Thus, we raised the hypothesis that other SNPs in growth factors encoding genes could be involved in the etiology of mandibular retrognathism.
Growth and development of the skeletal system is the main component or driver for postnatal somatic growth. During childhood and adolescence, bone lengthening and acquisition of peak bone mass and its trabecular organization are achieved, involving the production of calcified cartilage and its conversion and modeling into trabecular bone. Mandibular condylar cartilage is known as the center of most growth in the craniofacial complex and is associated with maxillofacial skeletal morphogenesis [20]. Although previous studies demonstrated some important functions of EGF and EGF-like ligands in regulating bone growth and modeling, the expression, roles, and action mechanisms of the EGF family of growth factors and its receptor in bone growth regulation are less explored than for other growth factors [27], especially in craniofacial growth and development.
In our research, the minor allele of the two studied SNPs in EGF (rs4444903 and rs2237051), as well as their haplotype (G|A), were associated with a decreasing risk of mandibular retrognathism. An in vitro experiment observed that EGF negatively regulated chondrogenesis through the inhibition of precartilage condensation and also by modulating signaling [28]. A study with an animal model also showed that defects in bone lengthening were observed in EGF transgenic mice [5]. EGF level can be modulated by the functional selected SNP in EGF at position 61 (A > G; SNP rs4444903), in which the GG genotype has a higher gene expression than the AA genotype [25]. This could explain why the AA genotype was more frequent in patients with a retrognathic mandible. Similar results were observed in Brazilian patients with dentofacial deformities, in which the SNP rs4444903 was involved in mandibular measurements [4].
The rs2237051 SNP in the coding region of the EGF gene is a missense substitution (Met708Ile) and was also associated with mandibular retrognathism in our sample. Although this SNP has never been previously explored in craniofacial growth, it has been explored in dental research in past years. The SNP rs2237051 was associated with generalized aggressive periodontitis [16, 26] and was recently associated with an increased risk of peri-implantitis [6]. In our sample, the GG genotype was more common in patients with a retrognathic mandible than in patients with an orthognathic mandible.
We also found an association between the EGFR and mandibular retrognathism. We observed that the SNP rs2227983 was involved in the risk of developing a retrognathic mandible. The SNP rs2227983 is located in the coding region of the gene and is a missense substitution at codon 497 (Arg497Lys) that leads to an attenuation in ligand binding and growth stimulation [18]. EGFR is expressed in chondroblasts of the developing ossification centers [27]. An animal model study showed that in egfr null mice the growth plate was significantly increased in the region of hypertrophic chondrocytes [24]. Newborn egfr−/− mice presented facial mediolateral defects including narrow, elongated snouts, and an underdeveloped lower jaw [19].
In our study, the three associated SNPs are classified as potentially functional: SNPs that can result in amino acid changes of the corresponding proteins (the missense SNPs), or the SNPs located in the promoter region of the gene and potentially influencing gene expression and EGF levels, which point them as interesting possible biomarkers. Briefly, our research raises potential future research avenues in orthodontic research, since the functional SNPs rs4444903, rs2237051, and rs2227983 could be biomarkers for mandibular retrognathism and should be explored in other populations.

Conclusion

Single nucleotide polymorphisms in the encoding genes EGF and EGFR were associated with mandibular retrognathism in a German sample and could be genetic biomarkers for early and individualized diagnostic identification of retrognathic mandibular development by means of genetic screening tests, which could supplement the cephalometric evaluation in young growing children for individualized orthodontic diagnostics, treatment planning, and prognosis.

Funding

This study was financed in part by the Alexander-von-Humboldt-Foundation (Küchler/Kirschneck July 2019) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Declarations

Conflict of interest

E. Paddenberg-Schubert, E. Küchler, C.L. Bitencourt Reis, A.C. Silva-Sousa and C. Kirschneck declare that they have no competing interests.

Ethical standards

All procedures performed in studies involving human participants or on human tissue were in accordance with the ethical standards of the institutional and/or national research committee and with the 1975 Helsinki declaration and its later amendments or comparable ethical standards. Approval was granted by the Ethics Committee of University Regensburg (Date 13 November 2019; no. 19-1549-101). Informed consent was obtained from all individual participants included in the study. Furthermore, an age-appropriate assent document was also used for patients younger than 14 years.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Dent – Das Online-Abo der Zahnmedizin

Online-Abonnement

Mit e.Dent erhalten Sie Zugang zu allen zahnmedizinischen Fortbildungen und unseren zahnmedizinischen und ausgesuchten medizinischen Zeitschriften.

Journal of Orofacial Orthopedics - Fortschritte der Kieferorthopädie

Print-Titel

 

• Offizielles Organ der Deutschen Gesellschaft für Kieferorthopädie (DGKFO)

• Gelistet in: Science Citation Index Expanded (SciSearch), Journal Citation Reports/Science Edition, PubMed/Medline, SCOPUS, EMBASE, Google Scholar, EBSCO, Academic OneFile, CSA Environmental Sciences, EMCare, Gale, OCLC, SCImago, Summon by ProQuest

 

Anhänge

Supplementary Information

Literatur
23.
Zurück zum Zitat Segner D, Hasund A (2003) Individualisierte Kephalometrie, 4th edn. Segner, Hamburg Segner D, Hasund A (2003) Individualisierte Kephalometrie, 4th edn. Segner, Hamburg
Metadaten
Titel
New insights into the genetics of mandibular retrognathism: novel candidate genes
Publikationsdatum
31.01.2024
Erschienen in
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie
Print ISSN: 1434-5293
Elektronische ISSN: 1615-6714
DOI
https://doi.org/10.1007/s00056-023-00512-z

Parodontalbehandlung verbessert Prognose bei Katheterablation

19.04.2024 Vorhofflimmern Nachrichten

Werden Personen mit Vorhofflimmern in der Blanking-Periode nach einer Katheterablation gegen eine bestehende Parodontitis behandelt, verbessert dies die Erfolgsaussichten. Dafür sprechen die Resultate einer prospektiven Untersuchung.

Invasive Zahnbehandlung: Wann eine Antibiotikaprophylaxe vor infektiöser Endokarditis schützt

11.04.2024 Endokarditis Nachrichten

Bei welchen Personen eine Antibiotikaprophylaxe zur Prävention einer infektiösen Endokarditis nach invasiven zahnärztlichen Eingriffen sinnvoll ist, wird diskutiert. Neue Daten stehen im Einklang mit den europäischen Leitlinienempfehlungen.

Zell-Organisatoren unter Druck: Mechanismen des embryonalen Zahnwachstums aufgedeckt

08.04.2024 Zahnmedizin Nachrichten

Der Aufbau von Geweben und Organen während der Embryonalentwicklung wird von den Zellen bemerkenswert choreografiert. Für diesen Prozess braucht es spezielle sogenannte „Organisatoren“. In einer aktuellen Veröffentlichung im Fachjournal Nature Cell Biology berichten Forschende durch welchen Vorgang diese Organisatoren im Gewebe entstehen und wie sie dann die Bildung von Zähnen orchestrieren.

Die Oralprophylaxe & Kinderzahnheilkunde umbenannt

11.03.2024 Kinderzahnmedizin Nachrichten

Infolge der Umbenennung der Deutschen Gesellschaft für Kinderzahnheilkunde in Deutsche Gesellschaft für Kinderzahnmedizin (DGKiZ) wird deren Mitgliederzeitschrift Oralprophylaxe & Kinderzahnheilkunde in Oralprophylaxe & Kinderzahnmedizin umbenannt. Aus diesem Grunde trägt die erste Ausgabe in 2024 erstmalig den neuen Titel.

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Zahnmedizin und bleiben Sie gut informiert – ganz bequem per eMail.