Skip to main content
Erschienen in: Annals of Hematology 5/2024

01.08.2023 | Review Article

Non-coding RNAs in leukemia drug resistance: new perspectives on molecular mechanisms and signaling pathways

verfasst von: Atefe Rahmati, Alireza Mafi, Omid Vakili, Firooze Soleymani, Zahra Alishahi, Sheida Yahyazadeh, Yasaman Gholinezhad, Malihe Rezaee, Thomas P. Johnston, Amirhossein Sahebkar

Erschienen in: Annals of Hematology | Ausgabe 5/2024

Einloggen, um Zugang zu erhalten

Abstract

Like almost all cancer types, timely diagnosis is needed for leukemias to be effectively cured. Drug efflux, attenuated drug uptake, altered drug metabolism, and epigenetic alterations are just several of the key mechanisms by which drug resistance develops. All of these mechanisms are orchestrated by up- and downregulators, in which non-coding RNAs (ncRNAs) do not encode specific proteins in most cases; albeit, some of them have been found to exhibit the potential for protein-coding. Notwithstanding, ncRNAs are chiefly known for their contribution to the regulation of physiological processes, as well as the pathological ones, such as cell proliferation, apoptosis, and immune responses. Specifically, in the case of leukemia chemo-resistance, ncRNAs have been recognized to be responsible for modulating the initiation and progression of drug resistance. Herein, we comprehensively reviewed the role of ncRNAs, specifically its effect on molecular mechanisms and signaling pathways, in the development of leukemia drug resistance.
Literatur
1.
Zurück zum Zitat Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13(10):714–726PubMedCrossRef Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13(10):714–726PubMedCrossRef
2.
Zurück zum Zitat Short NJ, Konopleva M, Kadia TM, Borthakur G, Ravandi F, DiNardo CD et al (2020) Advances in the treatment of acute myeloid leukemia: new drugs and new challenges advances in AML therapeutics. Cancer discovery 10(4):506–525PubMedCrossRef Short NJ, Konopleva M, Kadia TM, Borthakur G, Ravandi F, DiNardo CD et al (2020) Advances in the treatment of acute myeloid leukemia: new drugs and new challenges advances in AML therapeutics. Cancer discovery 10(4):506–525PubMedCrossRef
3.
Zurück zum Zitat Crick FH (1958) On protein synthesis. Symp Soc Exp Biol 12:138–63PubMed Crick FH (1958) On protein synthesis. Symp Soc Exp Biol 12:138–63PubMed
4.
Zurück zum Zitat Kimura T (2020) Non-coding natural antisense RNA: mechanisms of action in the regulation of target gene expression and its clinical implications. Yakugaku Zasshi 140(5):687–700PubMedCrossRef Kimura T (2020) Non-coding natural antisense RNA: mechanisms of action in the regulation of target gene expression and its clinical implications. Yakugaku Zasshi 140(5):687–700PubMedCrossRef
5.
Zurück zum Zitat Wong CM, Tsang FH, Ng IO (2018) Non-coding RNAs in hepatocellular carcinoma: molecular functions and pathological implications. Nat Rev Gastroenterol Hepatol 15(3):137–151PubMedCrossRef Wong CM, Tsang FH, Ng IO (2018) Non-coding RNAs in hepatocellular carcinoma: molecular functions and pathological implications. Nat Rev Gastroenterol Hepatol 15(3):137–151PubMedCrossRef
6.
Zurück zum Zitat Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906PubMedCrossRef Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906PubMedCrossRef
8.
Zurück zum Zitat Saw PE, Xu X, Chen J, Song EW (2021) Non-coding RNAs: the new central dogma of cancer biology. Sci China Life Sci 64(1):22–50PubMedCrossRef Saw PE, Xu X, Chen J, Song EW (2021) Non-coding RNAs: the new central dogma of cancer biology. Sci China Life Sci 64(1):22–50PubMedCrossRef
9.
Zurück zum Zitat Zhang P, Wu W, Chen Q, Chen M (2019) Non-coding RNAs and their integrated networks. J Integr Bioinform 16(3):20190027 Zhang P, Wu W, Chen Q, Chen M (2019) Non-coding RNAs and their integrated networks. J Integr Bioinform 16(3):20190027
10.
Zurück zum Zitat Panni S, Lovering RC, Porras P, Orchard S (1863) Non-coding RNA regulatory networks. Biochim Biophys Acta Gene Regul Mech 2020(6):194417CrossRef Panni S, Lovering RC, Porras P, Orchard S (1863) Non-coding RNA regulatory networks. Biochim Biophys Acta Gene Regul Mech 2020(6):194417CrossRef
15.
Zurück zum Zitat Anastasiadou E, Jacob LS, Slack FJ (2018) Non-coding RNA networks in cancer. Nat Rev Cancer 18(1):5–18PubMedCrossRef Anastasiadou E, Jacob LS, Slack FJ (2018) Non-coding RNA networks in cancer. Nat Rev Cancer 18(1):5–18PubMedCrossRef
16.
Zurück zum Zitat E Nicolas F. Role of ncRNAs in development, diagnosis and treatment of human cancer. Recent Pat Anticancer Drug Discov 2017;12(2):128-135 E Nicolas F. Role of ncRNAs in development, diagnosis and treatment of human cancer. Recent Pat Anticancer Drug Discov 2017;12(2):128-135
17.
Zurück zum Zitat Salehi M, Vafadar A, Khatami SH, Taheri-Anganeh M, Vakili O, Savardashtaki A et al Gastrointestinal cancer drug resistance: the role of exosomal miRNAs. Mol Biol Rep 49(3):2421–2432 Salehi M, Vafadar A, Khatami SH, Taheri-Anganeh M, Vakili O, Savardashtaki A et al Gastrointestinal cancer drug resistance: the role of exosomal miRNAs. Mol Biol Rep 49(3):2421–2432
18.
Zurück zum Zitat Movahedpour A, Khatami SH, Khorsand M, Salehi M, Savardashtaki A, Mirmajidi SH et al (2021) Exosomal noncoding RNAs: key players in glioblastoma drug resistance. Mol Cell Biochem 476:4081–4092PubMedCrossRef Movahedpour A, Khatami SH, Khorsand M, Salehi M, Savardashtaki A, Mirmajidi SH et al (2021) Exosomal noncoding RNAs: key players in glioblastoma drug resistance. Mol Cell Biochem 476:4081–4092PubMedCrossRef
23.
24.
Zurück zum Zitat Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X (2013) MicroRNA: function, detection, and bioanalysis. Chem Rev 113(8):6207–6233PubMedCrossRef Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X (2013) MicroRNA: function, detection, and bioanalysis. Chem Rev 113(8):6207–6233PubMedCrossRef
25.
Zurück zum Zitat Bahmyari S, Jamali Z, Khatami SH, Vakili O, Roozitalab M, Savardashtaki A et al (2021) microRNAs in female infertility: an overview. Cell Biochem Funct 39(8):955–969PubMedCrossRef Bahmyari S, Jamali Z, Khatami SH, Vakili O, Roozitalab M, Savardashtaki A et al (2021) microRNAs in female infertility: an overview. Cell Biochem Funct 39(8):955–969PubMedCrossRef
27.
Zurück zum Zitat Mafi A, Rahmati A, Babaei Aghdam Z, Salami R, Salami M, Vakili O et al (2022) Recent insights into the microRNA-dependent modulation of gliomas from pathogenesis to diagnosis and treatment. Cell Mol Biol Lett 27(1):1–32CrossRef Mafi A, Rahmati A, Babaei Aghdam Z, Salami R, Salami M, Vakili O et al (2022) Recent insights into the microRNA-dependent modulation of gliomas from pathogenesis to diagnosis and treatment. Cell Mol Biol Lett 27(1):1–32CrossRef
28.
Zurück zum Zitat Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003;17(24):3011-6 Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003;17(24):3011-6
29.
Zurück zum Zitat Vishnoi A, Rani S (2017) MiRNA Biogenesis and regulation of diseases: an overview. Methods Mol Biol 1509:1–10PubMedCrossRef Vishnoi A, Rani S (2017) MiRNA Biogenesis and regulation of diseases: an overview. Methods Mol Biol 1509:1–10PubMedCrossRef
30.
Zurück zum Zitat Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY). 2016;8(4):603-619 Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY). 2016;8(4):603-619
31.
Zurück zum Zitat Azimi Sanavi M, Mahdavian F, Dorosti N, Karami N, Karami S, Khatami SH et al A review of highly sensitive electrochemical genosensors for microRNA detection: a novel diagnostic platform for neurodegenerative diseases diagnostics. Biotechnol Appl Biochem Azimi Sanavi M, Mahdavian F, Dorosti N, Karami N, Karami S, Khatami SH et al A review of highly sensitive electrochemical genosensors for microRNA detection: a novel diagnostic platform for neurodegenerative diseases diagnostics. Biotechnol Appl Biochem
33.
34.
Zurück zum Zitat Babar IA, Cheng CJ, Booth CJ, Liang X, Weidhaas JB, Saltzman WM et al (2012) Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci U S A 109(26):E1695–E1704PubMedPubMedCentralCrossRef Babar IA, Cheng CJ, Booth CJ, Liang X, Weidhaas JB, Saltzman WM et al (2012) Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci U S A 109(26):E1695–E1704PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529PubMedPubMedCentralCrossRef Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Ghasabi M, Mansoori B, Mohammadi A, Duijf PH, Shomali N, Shirafkan N et al (2019) MicroRNAs in cancer drug resistance: basic evidence and clinical applications. J Cell Physiol 234(3):2152–2168PubMedCrossRef Ghasabi M, Mansoori B, Mohammadi A, Duijf PH, Shomali N, Shirafkan N et al (2019) MicroRNAs in cancer drug resistance: basic evidence and clinical applications. J Cell Physiol 234(3):2152–2168PubMedCrossRef
37.
Zurück zum Zitat Giovannetti E, Erozenci A, Smit J, Danesi R, Peters GJ (2012) Molecular mechanisms underlying the role of microRNAs (miRNAs) in anticancer drug resistance and implications for clinical practice. Crit Rev Oncol Hematol 81(2):103–122PubMedCrossRef Giovannetti E, Erozenci A, Smit J, Danesi R, Peters GJ (2012) Molecular mechanisms underlying the role of microRNAs (miRNAs) in anticancer drug resistance and implications for clinical practice. Crit Rev Oncol Hematol 81(2):103–122PubMedCrossRef
38.
Zurück zum Zitat Liang YN, Tang YL, Ke ZY, Chen YQ, Luo XQ, Zhang H et al (2017) MiR-124 contributes to glucocorticoid resistance in acute lymphoblastic leukemia by promoting proliferation, inhibiting apoptosis and targeting the glucocorticoid receptor. J Steroid Biochem Mol Biol 172:62–68PubMedCrossRef Liang YN, Tang YL, Ke ZY, Chen YQ, Luo XQ, Zhang H et al (2017) MiR-124 contributes to glucocorticoid resistance in acute lymphoblastic leukemia by promoting proliferation, inhibiting apoptosis and targeting the glucocorticoid receptor. J Steroid Biochem Mol Biol 172:62–68PubMedCrossRef
39.
Zurück zum Zitat Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294(5543):858–862PubMedCrossRef Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294(5543):858–862PubMedCrossRef
40.
Zurück zum Zitat Brockdorff N, Ashworth A, Kay GF, McCabe VM, Norris DP, Cooper PJ et al (1992) The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71(3):515–526PubMedCrossRef Brockdorff N, Ashworth A, Kay GF, McCabe VM, Norris DP, Cooper PJ et al (1992) The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71(3):515–526PubMedCrossRef
41.
Zurück zum Zitat Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G et al (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477(7364):295–300PubMedPubMedCentralCrossRef Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G et al (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477(7364):295–300PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789PubMedPubMedCentralCrossRef Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H et al (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22(9):1775–1789PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Zhang X, Hong R, Chen W, Xu M, Wang L (2019) The role of long noncoding RNA in major human disease. Bioorg Chem 92:103214PubMedCrossRef Zhang X, Hong R, Chen W, Xu M, Wang L (2019) The role of long noncoding RNA in major human disease. Bioorg Chem 92:103214PubMedCrossRef
44.
Zurück zum Zitat Statello L, Guo CJ, Chen LL, Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22(2):96–118PubMedCrossRef Statello L, Guo CJ, Chen LL, Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22(2):96–118PubMedCrossRef
45.
Zurück zum Zitat Gourvest M, Brousset P, Bousquet M (2019) Long noncoding RNAs in acute myeloid leukemia: functional characterization and clinical relevance. Cancers (Basel) 11(11):1638 Gourvest M, Brousset P, Bousquet M (2019) Long noncoding RNAs in acute myeloid leukemia: functional characterization and clinical relevance. Cancers (Basel) 11(11):1638
46.
Zurück zum Zitat Novikova IV, Hennelly SP, Tung CS, Sanbonmatsu KY (2013) Rise of the RNA machines: exploring the structure of long non-coding RNAs. J Mol Biol 425(19):3731–3746PubMedCrossRef Novikova IV, Hennelly SP, Tung CS, Sanbonmatsu KY (2013) Rise of the RNA machines: exploring the structure of long non-coding RNAs. J Mol Biol 425(19):3731–3746PubMedCrossRef
47.
Zurück zum Zitat Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20(3):300–307PubMedCrossRef Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20(3):300–307PubMedCrossRef
48.
Zurück zum Zitat McCabe EM, Rasmussen TP (2021) lncRNA involvement in cancer stem cell function and epithelial-mesenchymal transitions. Semin Cancer Biol 75:38–48PubMedCrossRef McCabe EM, Rasmussen TP (2021) lncRNA involvement in cancer stem cell function and epithelial-mesenchymal transitions. Semin Cancer Biol 75:38–48PubMedCrossRef
49.
Zurück zum Zitat Alessio E, Bonadio RS, Buson L, Chemello F, Cagnin S (2020) A single cell but many different transcripts: a journey into the world of long non-coding RNAs. Int J Mol Sci 21(1):302 Alessio E, Bonadio RS, Buson L, Chemello F, Cagnin S (2020) A single cell but many different transcripts: a journey into the world of long non-coding RNAs. Int J Mol Sci 21(1):302
50.
Zurück zum Zitat Luo H, Zhu G, Xu J, Lai Q, Yan B, Guo Y et al (2019) HOTTIP lncRNA promotes hematopoietic stem cell self-renewal leading to AML-like disease in mice. Cancer Cell 36(6):645–59.e8PubMedPubMedCentralCrossRef Luo H, Zhu G, Xu J, Lai Q, Yan B, Guo Y et al (2019) HOTTIP lncRNA promotes hematopoietic stem cell self-renewal leading to AML-like disease in mice. Cancer Cell 36(6):645–59.e8PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Li W, Zhai L, Wang H, Liu C, Zhang J, Chen W et al (2016) Downregulation of LncRNA GAS5 causes trastuzumab resistance in breast cancer. Oncotarget 7(19):27778–27786PubMedPubMedCentralCrossRef Li W, Zhai L, Wang H, Liu C, Zhang J, Chen W et al (2016) Downregulation of LncRNA GAS5 causes trastuzumab resistance in breast cancer. Oncotarget 7(19):27778–27786PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Zhang XW, Bu P, Liu L, Zhang XZ, Li J (2015) Overexpression of long non-coding RNA PVT1 in gastric cancer cells promotes the development of multidrug resistance. Biochem Biophys Res Commun 462(3):227–232PubMedCrossRef Zhang XW, Bu P, Liu L, Zhang XZ, Li J (2015) Overexpression of long non-coding RNA PVT1 in gastric cancer cells promotes the development of multidrug resistance. Biochem Biophys Res Commun 462(3):227–232PubMedCrossRef
53.
Zurück zum Zitat Movahedpour A, Vakili O, Khalifeh M, Mousavi P, Mahmoodzadeh A, Taheri-Anganeh M et al (2022) Mammalian target of rapamycin (mTOR) signaling pathway and traumatic brain injury: a novel insight into targeted therapy. Cell Biochem Funct 40(3):232–247PubMedCrossRef Movahedpour A, Vakili O, Khalifeh M, Mousavi P, Mahmoodzadeh A, Taheri-Anganeh M et al (2022) Mammalian target of rapamycin (mTOR) signaling pathway and traumatic brain injury: a novel insight into targeted therapy. Cell Biochem Funct 40(3):232–247PubMedCrossRef
54.
Zurück zum Zitat Yu Y, Kou D, Liu B, Huang Y, Li S, Qi Y et al (2020) LncRNA MEG3 contributes to drug resistance in acute myeloid leukemia by positively regulating ALG9 through sponging miR-155. Int J Lab Hematol 42(4):464–472PubMedCrossRef Yu Y, Kou D, Liu B, Huang Y, Li S, Qi Y et al (2020) LncRNA MEG3 contributes to drug resistance in acute myeloid leukemia by positively regulating ALG9 through sponging miR-155. Int J Lab Hematol 42(4):464–472PubMedCrossRef
56.
Zurück zum Zitat Huang G, Li S, Yang N, Zou Y, Zheng D, Xiao T (2017) Recent progress in circular RNAs in human cancers. Cancer Lett 404:8–18PubMedCrossRef Huang G, Li S, Yang N, Zou Y, Zheng D, Xiao T (2017) Recent progress in circular RNAs in human cancers. Cancer Lett 404:8–18PubMedCrossRef
57.
Zurück zum Zitat Salami R, Salami M, Mafi A, Vakili O, Asemi Z (2022) Circular RNAs and glioblastoma multiforme: focus on molecular mechanisms. Cell Commun Signal 20(1):13PubMedPubMedCentralCrossRef Salami R, Salami M, Mafi A, Vakili O, Asemi Z (2022) Circular RNAs and glioblastoma multiforme: focus on molecular mechanisms. Cell Commun Signal 20(1):13PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51(6):792–806PubMedCrossRef Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51(6):792–806PubMedCrossRef
59.
Zurück zum Zitat Mafi A, Yadegar N, Salami M, Salami R, Vakili O, Aghadavod E (2021) Circular RNAs; powerful microRNA sponges to overcome diabetic nephropathy. Pathol Res Pract 227:153618PubMedCrossRef Mafi A, Yadegar N, Salami M, Salami R, Vakili O, Aghadavod E (2021) Circular RNAs; powerful microRNA sponges to overcome diabetic nephropathy. Pathol Res Pract 227:153618PubMedCrossRef
60.
Zurück zum Zitat Najafi S, Zarch SMA, Majidpoor J, Pordel S, Aghamiri S, Rasul MF et al (2022) Recent insights into the roles of circular RNAs in human brain development and neurologic diseases. Int J Biol Macromol 225:1038–1048PubMedCrossRef Najafi S, Zarch SMA, Majidpoor J, Pordel S, Aghamiri S, Rasul MF et al (2022) Recent insights into the roles of circular RNAs in human brain development and neurologic diseases. Int J Biol Macromol 225:1038–1048PubMedCrossRef
61.
Zurück zum Zitat Li Z, Huang C, Bao C, Chen L, Lin M, Wang X et al (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–264PubMedCrossRef Li Z, Huang C, Bao C, Chen L, Lin M, Wang X et al (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–264PubMedCrossRef
63.
Zurück zum Zitat Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338PubMedCrossRef Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338PubMedCrossRef
64.
Zurück zum Zitat Vakili O, Asili P, Babaei Z, Mirahmad M, Keshavarzmotamed A, Asemi Z, et al (2022) Circular RNAs in Alzheimer’s disease: a new perspective of diagnostic and therapeutic targets. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders). https://doi.org/10.2174/1871527321666220829164211 Vakili O, Asili P, Babaei Z, Mirahmad M, Keshavarzmotamed A, Asemi Z, et al (2022) Circular RNAs in Alzheimer’s disease: a new perspective of diagnostic and therapeutic targets. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders). https://​doi.​org/​10.​2174/​1871527321666220​829164211
65.
Zurück zum Zitat Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388PubMedCrossRef Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388PubMedCrossRef
66.
Zurück zum Zitat Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66PubMedCrossRef Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66PubMedCrossRef
67.
Zurück zum Zitat Dorostgou Z, Yadegar N, Dorostgou Z, Khorvash F, Vakili O (2022) Novel insights into the role of circular RNAs in Parkinson disease: an emerging renaissance in the management of neurodegenerative diseases. J Neurosci Res 100(9):1775–1790PubMedCrossRef Dorostgou Z, Yadegar N, Dorostgou Z, Khorvash F, Vakili O (2022) Novel insights into the role of circular RNAs in Parkinson disease: an emerging renaissance in the management of neurodegenerative diseases. J Neurosci Res 100(9):1775–1790PubMedCrossRef
68.
Zurück zum Zitat Kristensen LS, Hansen TB, Venø MT, Kjems J (2018) Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37(5):555–565PubMedCrossRef Kristensen LS, Hansen TB, Venø MT, Kjems J (2018) Circular RNAs in cancer: opportunities and challenges in the field. Oncogene 37(5):555–565PubMedCrossRef
69.
Zurück zum Zitat Croce CM (2016) Retraction: are circRNAs involved in cancer pathogenesis? Nat Rev Clin Oncol 13(11):658PubMed Croce CM (2016) Retraction: are circRNAs involved in cancer pathogenesis? Nat Rev Clin Oncol 13(11):658PubMed
70.
Zurück zum Zitat Liu J, Kong F, Lou S, Yang D, Gu L (2018) Global identification of circular RNAs in chronic myeloid leukemia reveals hsa_circ_0080145 regulates cell proliferation by sponging miR-29b. Biochem Biophys Res Commun 504(4):660–665PubMedCrossRef Liu J, Kong F, Lou S, Yang D, Gu L (2018) Global identification of circular RNAs in chronic myeloid leukemia reveals hsa_circ_0080145 regulates cell proliferation by sponging miR-29b. Biochem Biophys Res Commun 504(4):660–665PubMedCrossRef
71.
Zurück zum Zitat Xu T, Wang M, Jiang L, Ma L, Wan L, Chen Q et al (2020) CircRNAs in anticancer drug resistance: recent advances and future potential. Mol Cancer 19(1):127PubMedPubMedCentralCrossRef Xu T, Wang M, Jiang L, Ma L, Wan L, Chen Q et al (2020) CircRNAs in anticancer drug resistance: recent advances and future potential. Mol Cancer 19(1):127PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Cao HX, Miao CF, Sang LN, Huang YM, Zhang R, Sun L et al (2020) Circ_0009910 promotes imatinib resistance through ULK1-induced autophagy by sponging miR-34a-5p in chronic myeloid leukemia. Life Sci 243:117255PubMedCrossRef Cao HX, Miao CF, Sang LN, Huang YM, Zhang R, Sun L et al (2020) Circ_0009910 promotes imatinib resistance through ULK1-induced autophagy by sponging miR-34a-5p in chronic myeloid leukemia. Life Sci 243:117255PubMedCrossRef
73.
Zurück zum Zitat Liu Y, Dong Y, Zhao L, Su L, Luo J (2018) Circular RNA-MTO1 suppresses breast cancer cell viability and reverses monastrol resistance through regulating the TRAF4/Eg5 axis. Int J Oncol 53(4):1752–1762PubMed Liu Y, Dong Y, Zhao L, Su L, Luo J (2018) Circular RNA-MTO1 suppresses breast cancer cell viability and reverses monastrol resistance through regulating the TRAF4/Eg5 axis. Int J Oncol 53(4):1752–1762PubMed
75.
Zurück zum Zitat Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY et al (2009) Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 27(9):2059–2068PubMedCrossRef Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY et al (2009) Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells 27(9):2059–2068PubMedCrossRef
76.
Zurück zum Zitat Kobayashi S, Boggon TJ, Dayaram T, Jänne PA, Kocher O, Meyerson M et al (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352(8):786–792PubMedCrossRef Kobayashi S, Boggon TJ, Dayaram T, Jänne PA, Kocher O, Meyerson M et al (2005) EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med 352(8):786–792PubMedCrossRef
77.
Zurück zum Zitat Ward RA, Fawell S, Floc'h N, Flemington V, McKerrecher D, Smith PD (2021) Challenges and opportunities in cancer drug resistance. Chem Rev 121(6):3297–3351PubMedCrossRef Ward RA, Fawell S, Floc'h N, Flemington V, McKerrecher D, Smith PD (2021) Challenges and opportunities in cancer drug resistance. Chem Rev 121(6):3297–3351PubMedCrossRef
78.
Zurück zum Zitat Moeinabadi-Bidgoli K, Rezaee M, Rismanchi H, Mohammadi MM, Babajani A (2022) Mesenchymal stem cell-derived antimicrobial peptides as potential anti-neoplastic agents: new insight into anticancer mechanisms of stem cells and exosomes. Front Cell Dev Biol 10:900418 Moeinabadi-Bidgoli K, Rezaee M, Rismanchi H, Mohammadi MM, Babajani A (2022) Mesenchymal stem cell-derived antimicrobial peptides as potential anti-neoplastic agents: new insight into anticancer mechanisms of stem cells and exosomes. Front Cell Dev Biol 10:900418
79.
Zurück zum Zitat Farawela HM, Khorshied MM, Kassem NM, Kassem HA, Zawam HM (2014) The clinical relevance and prognostic significance of adenosine triphosphate ATP-binding cassette (ABCB5) and multidrug resistance (MDR1) genes expression in acute leukemia: an Egyptian study. J Cancer Res Clin Oncol 140(8):1323–1330PubMedCrossRef Farawela HM, Khorshied MM, Kassem NM, Kassem HA, Zawam HM (2014) The clinical relevance and prognostic significance of adenosine triphosphate ATP-binding cassette (ABCB5) and multidrug resistance (MDR1) genes expression in acute leukemia: an Egyptian study. J Cancer Res Clin Oncol 140(8):1323–1330PubMedCrossRef
80.
Zurück zum Zitat Ji Q, Qiu L (2016) Mechanism study of PEGylated polyester and β-cyclodextrin integrated micelles on drug resistance reversal in MRP1-overexpressed HL60/ADR cells. Colloids Surf B Biointerfaces 144:203–213PubMedCrossRef Ji Q, Qiu L (2016) Mechanism study of PEGylated polyester and β-cyclodextrin integrated micelles on drug resistance reversal in MRP1-overexpressed HL60/ADR cells. Colloids Surf B Biointerfaces 144:203–213PubMedCrossRef
81.
Zurück zum Zitat Hart SM, Ganeshaguru K, Scheper RJ, Prentice HG, Hoffbrand AV, Mehta AB (1997) Expression of the human major vault protein LRP in acute myeloid leukemia. Exp Hematol 25(12):1227–1232PubMed Hart SM, Ganeshaguru K, Scheper RJ, Prentice HG, Hoffbrand AV, Mehta AB (1997) Expression of the human major vault protein LRP in acute myeloid leukemia. Exp Hematol 25(12):1227–1232PubMed
82.
Zurück zum Zitat Shtil AA, Ktitorova OV, Kakpakova ES, Holian O (2000) Differential effects of the MDR1 (multidrug resistance) gene-activating agents on protein kinase C: evidence for redundancy of mechanisms of acquired MDR in leukemia cells. Leuk Lymphoma 40(1-2):191–195PubMedCrossRef Shtil AA, Ktitorova OV, Kakpakova ES, Holian O (2000) Differential effects of the MDR1 (multidrug resistance) gene-activating agents on protein kinase C: evidence for redundancy of mechanisms of acquired MDR in leukemia cells. Leuk Lymphoma 40(1-2):191–195PubMedCrossRef
83.
Zurück zum Zitat Perl AE, Altman JK, Cortes J, Smith C, Litzow M, Baer MR et al (2017) Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1-2 study. Lancet Oncol 18(8):1061–1075PubMedPubMedCentralCrossRef Perl AE, Altman JK, Cortes J, Smith C, Litzow M, Baer MR et al (2017) Selective inhibition of FLT3 by gilteritinib in relapsed or refractory acute myeloid leukaemia: a multicentre, first-in-human, open-label, phase 1-2 study. Lancet Oncol 18(8):1061–1075PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Stephen AG, Esposito D, Bagni RK, McCormick F (2014) Dragging ras back in the ring. Cancer Cell 25(3):272–281PubMedCrossRef Stephen AG, Esposito D, Bagni RK, McCormick F (2014) Dragging ras back in the ring. Cancer Cell 25(3):272–281PubMedCrossRef
85.
Zurück zum Zitat Chen P, Huang H, Wu J, Lu R, Wu Y, Jiang X et al (2015) Bone marrow stromal cells protect acute myeloid leukemia cells from anti-CD44 therapy partly through regulating PI3K/Akt-p27(Kip1) axis. Mol Carcinog 54(12):1678–1685PubMedCrossRef Chen P, Huang H, Wu J, Lu R, Wu Y, Jiang X et al (2015) Bone marrow stromal cells protect acute myeloid leukemia cells from anti-CD44 therapy partly through regulating PI3K/Akt-p27(Kip1) axis. Mol Carcinog 54(12):1678–1685PubMedCrossRef
86.
Zurück zum Zitat Tazzari PL, Cappellini A, Ricci F, Evangelisti C, Papa V, Grafone T et al (2007) Multidrug resistance-associated protein 1 expression is under the control of the phosphoinositide 3 kinase/Akt signal transduction network in human acute myelogenous leukemia blasts. Leukemia 21(3):427–438PubMedCrossRef Tazzari PL, Cappellini A, Ricci F, Evangelisti C, Papa V, Grafone T et al (2007) Multidrug resistance-associated protein 1 expression is under the control of the phosphoinositide 3 kinase/Akt signal transduction network in human acute myelogenous leukemia blasts. Leukemia 21(3):427–438PubMedCrossRef
87.
Zurück zum Zitat Liu X, Liao W, Peng H, Luo X, Luo Z, Jiang H et al (2016) miR-181a promotes G1/S transition and cell proliferation in pediatric acute myeloid leukemia by targeting ATM. J Cancer Res Clin Oncol 142(1):77–87PubMedCrossRef Liu X, Liao W, Peng H, Luo X, Luo Z, Jiang H et al (2016) miR-181a promotes G1/S transition and cell proliferation in pediatric acute myeloid leukemia by targeting ATM. J Cancer Res Clin Oncol 142(1):77–87PubMedCrossRef
88.
Zurück zum Zitat Tian P, Yan L (2016) Inhibition of microRNA-149-5p induces apoptosis of acute myeloid leukemia cell line THP-1 by targeting Fas ligand (FASLG). Med Sci Monit 22:5116–5123PubMedPubMedCentralCrossRef Tian P, Yan L (2016) Inhibition of microRNA-149-5p induces apoptosis of acute myeloid leukemia cell line THP-1 by targeting Fas ligand (FASLG). Med Sci Monit 22:5116–5123PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2(5):561–566PubMedCrossRef Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2(5):561–566PubMedCrossRef
90.
Zurück zum Zitat Milojkovic D, Apperley J (2009) Mechanisms of resistance to imatinib and second-generation tyrosine inhibitors in chronic myeloid leukemia. Clin Cancer Res 15(24):7519–7527PubMedCrossRef Milojkovic D, Apperley J (2009) Mechanisms of resistance to imatinib and second-generation tyrosine inhibitors in chronic myeloid leukemia. Clin Cancer Res 15(24):7519–7527PubMedCrossRef
91.
Zurück zum Zitat Eiring AM, Page BDG, Kraft IL, Mason CC, Vellore NA, Resetca D et al (2015) Combined STAT3 and BCR-ABL1 inhibition induces synthetic lethality in therapy-resistant chronic myeloid leukemia. Leukemia 29(3):586–597PubMedCrossRef Eiring AM, Page BDG, Kraft IL, Mason CC, Vellore NA, Resetca D et al (2015) Combined STAT3 and BCR-ABL1 inhibition induces synthetic lethality in therapy-resistant chronic myeloid leukemia. Leukemia 29(3):586–597PubMedCrossRef
92.
Zurück zum Zitat Ma L, Shan Y, Bai R, Xue L, Eide CA, Ou J et al (2014) A therapeutically targetable mechanism of BCR-ABL-independent imatinib resistance in chronic myeloid leukemia. Sci Transl Med 6(252):252ra121PubMedPubMedCentralCrossRef Ma L, Shan Y, Bai R, Xue L, Eide CA, Ou J et al (2014) A therapeutically targetable mechanism of BCR-ABL-independent imatinib resistance in chronic myeloid leukemia. Sci Transl Med 6(252):252ra121PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Holleman A, Cheok MH, den Boer ML, Yang W, Veerman AJ, Kazemier KM et al (2004) Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med 351(6):533–542PubMedCrossRef Holleman A, Cheok MH, den Boer ML, Yang W, Veerman AJ, Kazemier KM et al (2004) Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med 351(6):533–542PubMedCrossRef
94.
Zurück zum Zitat Bhojwani D, Kang H, Moskowitz NP, Min DJ, Lee H, Potter JW et al (2006) Biologic pathways associated with relapse in childhood acute lymphoblastic leukemia: a children’s oncology group study. Blood 108(2):711–717PubMedPubMedCentralCrossRef Bhojwani D, Kang H, Moskowitz NP, Min DJ, Lee H, Potter JW et al (2006) Biologic pathways associated with relapse in childhood acute lymphoblastic leukemia: a childrens oncology group study. Blood 108(2):711–717PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Swerts K, De Moerloose B, Dhooge C, Laureys G, Benoit Y, Philippé J (2006) Prognostic significance of multidrug resistance-related proteins in childhood acute lymphoblastic leukaemia. Eur J Cancer 42(3):295–309PubMedCrossRef Swerts K, De Moerloose B, Dhooge C, Laureys G, Benoit Y, Philippé J (2006) Prognostic significance of multidrug resistance-related proteins in childhood acute lymphoblastic leukaemia. Eur J Cancer 42(3):295–309PubMedCrossRef
96.
Zurück zum Zitat Pal Singh S, Dammeijer F, Hendriks RW (2018) Role of Bruton’s tyrosine kinase in B cells and malignancies. Mol Cancer 17(1):1–23CrossRef Pal Singh S, Dammeijer F, Hendriks RW (2018) Role of Bruton’s tyrosine kinase in B cells and malignancies. Mol Cancer 17(1):1–23CrossRef
97.
Zurück zum Zitat Liang C, Tian D, Ren X, Ding S, Jia M, Xin M et al (2018) The development of Bruton’s tyrosine kinase (BTK) inhibitors from 2012 to 2017: a mini-review. Eur J Med Chem 151:315–326PubMedCrossRef Liang C, Tian D, Ren X, Ding S, Jia M, Xin M et al (2018) The development of Brutons tyrosine kinase (BTK) inhibitors from 2012 to 2017: a mini-review. Eur J Med Chem 151:315–326PubMedCrossRef
98.
Zurück zum Zitat Woyach JA, Furman RR, Liu TM, Ozer HG, Zapatka M, Ruppert AS et al (2014) Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N Engl J Med 370(24):2286–2294PubMedPubMedCentralCrossRef Woyach JA, Furman RR, Liu TM, Ozer HG, Zapatka M, Ruppert AS et al (2014) Resistance mechanisms for the Brutons tyrosine kinase inhibitor ibrutinib. N Engl J Med 370(24):2286–2294PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Chen B, Dragomir MP, Yang C, Li Q, Horst D, Calin GA (2022) Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Ther 7(1):121PubMedPubMedCentralCrossRef Chen B, Dragomir MP, Yang C, Li Q, Horst D, Calin GA (2022) Targeting non-coding RNAs to overcome cancer therapy resistance. Signal Transduct Target Ther 7(1):121PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Wang WT, Han C, Sun YM, Chen TQ, Chen YQ (2019) Noncoding RNAs in cancer therapy resistance and targeted drug development. J Hematol Oncol. 12(1):55PubMedPubMedCentralCrossRef Wang WT, Han C, Sun YM, Chen TQ, Chen YQ (2019) Noncoding RNAs in cancer therapy resistance and targeted drug development. J Hematol Oncol. 12(1):55PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Zebisch A, Hatzl S, Pichler M, Wölfler A, Sill H (2016) Therapeutic resistance in acute myeloid leukemia: the role of non-coding RNAs. Int J Mol Sci 17(12):2080PubMedPubMedCentralCrossRef Zebisch A, Hatzl S, Pichler M, Wölfler A, Sill H (2016) Therapeutic resistance in acute myeloid leukemia: the role of non-coding RNAs. Int J Mol Sci 17(12):2080PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Taghvimi S, Vakili O, Soltani Fard E, Khatami SH, Karami N, Taheri-Anganeh M et al (2022) Exosomal microRNAs and long noncoding RNAs: novel mediators of drug resistance in lung cancer. J Cell Physiol 237(4):2095–2106PubMedCrossRef Taghvimi S, Vakili O, Soltani Fard E, Khatami SH, Karami N, Taheri-Anganeh M et al (2022) Exosomal microRNAs and long noncoding RNAs: novel mediators of drug resistance in lung cancer. J Cell Physiol 237(4):2095–2106PubMedCrossRef
103.
Zurück zum Zitat Pavlíková L, Šereš M, Breier A, Sulová Z (2022) The roles of microRNAs in cancer multidrug resistance. Cancers (Basel) 14(4):1090 Pavlíková L, Šereš M, Breier A, Sulová Z (2022) The roles of microRNAs in cancer multidrug resistance. Cancers (Basel) 14(4):1090
105.
Zurück zum Zitat Sun YP, Lu F, Han XY, Ji M, Zhou Y, Zhang AM et al (2016) MiR-424 and miR-27a increase TRAIL sensitivity of acute myeloid leukemia by targeting PLAG1. Oncotarget 7(18):25276–25290PubMedPubMedCentralCrossRef Sun YP, Lu F, Han XY, Ji M, Zhou Y, Zhang AM et al (2016) MiR-424 and miR-27a increase TRAIL sensitivity of acute myeloid leukemia by targeting PLAG1. Oncotarget 7(18):25276–25290PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Liu Y, Lei P, Qiao H, Sun K, Lu X, Bao F et al (2020) MicroRNA-33b regulates sensitivity to daunorubicin in acute myelocytic leukemia by regulating eukaryotic translation initiation factor 5A-2. J Cell Biochem 121(1):385–393PubMedCrossRef Liu Y, Lei P, Qiao H, Sun K, Lu X, Bao F et al (2020) MicroRNA-33b regulates sensitivity to daunorubicin in acute myelocytic leukemia by regulating eukaryotic translation initiation factor 5A-2. J Cell Biochem 121(1):385–393PubMedCrossRef
107.
Zurück zum Zitat Liu Y, Lei P, Qiao H, Sun K, Lu X, Bao F et al (2019) miR-9 Enhances the chemosensitivity of AML cells to daunorubicin by targeting the EIF5A2/MCL-1 axis. Int J Biol Sci 15(3):579–586PubMedPubMedCentralCrossRef Liu Y, Lei P, Qiao H, Sun K, Lu X, Bao F et al (2019) miR-9 Enhances the chemosensitivity of AML cells to daunorubicin by targeting the EIF5A2/MCL-1 axis. Int J Biol Sci 15(3):579–586PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Vandewalle V, Essaghir A, Bollaert E, Lenglez S, Graux C, Schoemans H et al (2021) miR-15a-5p and miR-21-5p contribute to chemoresistance in cytogenetically normal acute myeloid leukaemia by targeting PDCD4, ARL2 and BTG2. J Cell Mol Med 25(1):575–585PubMedCrossRef Vandewalle V, Essaghir A, Bollaert E, Lenglez S, Graux C, Schoemans H et al (2021) miR-15a-5p and miR-21-5p contribute to chemoresistance in cytogenetically normal acute myeloid leukaemia by targeting PDCD4, ARL2 and BTG2. J Cell Mol Med 25(1):575–585PubMedCrossRef
109.
Zurück zum Zitat Bai H, Xu R, Cao Z, Wei D, Wang C (2011) Involvement of miR-21 in resistance to daunorubicin by regulating PTEN expression in the leukaemia K562 cell line. FEBS Lett 585(2):402–408PubMedCrossRef Bai H, Xu R, Cao Z, Wei D, Wang C (2011) Involvement of miR-21 in resistance to daunorubicin by regulating PTEN expression in the leukaemia K562 cell line. FEBS Lett 585(2):402–408PubMedCrossRef
110.
Zurück zum Zitat Li Y, Zhu X, Gu J, Dong D, Yao J, Lin C et al (2010) Anti-miR-21 oligonucleotide sensitizes leukemic K562 cells to arsenic trioxide by inducing apoptosis. Cancer Sci 101(4):948–954PubMedCrossRef Li Y, Zhu X, Gu J, Dong D, Yao J, Lin C et al (2010) Anti-miR-21 oligonucleotide sensitizes leukemic K562 cells to arsenic trioxide by inducing apoptosis. Cancer Sci 101(4):948–954PubMedCrossRef
111.
Zurück zum Zitat Bollaert E, Claus M, Vandewalle V, Lenglez S, Essaghir A, Demoulin J-B et al (2021) MiR-15a-5p confers chemoresistance in acute myeloid leukemia by inhibiting autophagy induced by daunorubicin. Int J Mol Sci 22(10):5153PubMedPubMedCentralCrossRef Bollaert E, Claus M, Vandewalle V, Lenglez S, Essaghir A, Demoulin J-B et al (2021) MiR-15a-5p confers chemoresistance in acute myeloid leukemia by inhibiting autophagy induced by daunorubicin. Int J Mol Sci 22(10):5153PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Wang Z, Fang Z, Lu R, Zhao H, Gong T, Liu D et al (2019) MicroRNA-204 potentiates the sensitivity of acute myeloid leukemia cells to arsenic trioxide. Oncol Res 27(9):1035PubMedPubMedCentralCrossRef Wang Z, Fang Z, Lu R, Zhao H, Gong T, Liu D et al (2019) MicroRNA-204 potentiates the sensitivity of acute myeloid leukemia cells to arsenic trioxide. Oncol Res 27(9):1035PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Ganesan S, Palani HK, Lakshmanan V, Balasundaram N, Alex AA, David S et al (2019) Stromal cells downregulate miR-23a-5p to activate protective autophagy in acute myeloid leukemia. Cell Death Dis 10(10):1–14CrossRef Ganesan S, Palani HK, Lakshmanan V, Balasundaram N, Alex AA, David S et al (2019) Stromal cells downregulate miR-23a-5p to activate protective autophagy in acute myeloid leukemia. Cell Death Dis 10(10):1–14CrossRef
114.
Zurück zum Zitat Zhang Y, Liu Y, Xu X (2017) Upregulation of miR-142-3p improves drug sensitivity of acute myelogenous leukemia through reducing P-glycoprotein and repressing autophagy by targeting HMGB1. Transl Oncol 10(3):410–418PubMedPubMedCentralCrossRef Zhang Y, Liu Y, Xu X (2017) Upregulation of miR-142-3p improves drug sensitivity of acute myelogenous leukemia through reducing P-glycoprotein and repressing autophagy by targeting HMGB1. Transl Oncol 10(3):410–418PubMedPubMedCentralCrossRef
115.
Zurück zum Zitat Lu F, Zhang J, Ji M, Li P, Du Y, Wang H et al (2014) miR-181b increases drug sensitivity in acute myeloid leukemia via targeting HMGB1 and Mcl-1. Int J Oncol 45(1):383–392PubMedCrossRef Lu F, Zhang J, Ji M, Li P, Du Y, Wang H et al (2014) miR-181b increases drug sensitivity in acute myeloid leukemia via targeting HMGB1 and Mcl-1. Int J Oncol 45(1):383–392PubMedCrossRef
116.
Zurück zum Zitat Zhang Y, Chu X, Wei Q (2021) MiR-451 promotes cell apoptosis and inhibits autophagy in pediatric acute myeloid leukemia by targeting HMGB1. J Environ Pathol Toxicol Oncol 40(2):45–53PubMedCrossRef Zhang Y, Chu X, Wei Q (2021) MiR-451 promotes cell apoptosis and inhibits autophagy in pediatric acute myeloid leukemia by targeting HMGB1. J Environ Pathol Toxicol Oncol 40(2):45–53PubMedCrossRef
117.
Zurück zum Zitat Dai C-W, Bai Q-W, Zhang G-S, Cao Y-X, Shen J-K, Pei M-F et al (2014) MicroRNA let-7f is down-regulated in patients with refractory acute myeloid leukemia and is involved in chemotherapy resistance of adriamycin-resistant leukemic cells. Leuk Lymphoma 55(7):1645–1648PubMedCrossRef Dai C-W, Bai Q-W, Zhang G-S, Cao Y-X, Shen J-K, Pei M-F et al (2014) MicroRNA let-7f is down-regulated in patients with refractory acute myeloid leukemia and is involved in chemotherapy resistance of adriamycin-resistant leukemic cells. Leuk Lymphoma 55(7):1645–1648PubMedCrossRef
118.
Zurück zum Zitat Cao YX, Wen F, Luo ZY, Long XX, Luo C, Liao P et al (2020) Downregulation of microRNA let-7f mediated the adriamycin resistance in leukemia cell line. J Cell Biochem 121(10):4022–4033PubMedCrossRef Cao YX, Wen F, Luo ZY, Long XX, Luo C, Liao P et al (2020) Downregulation of microRNA let-7f mediated the adriamycin resistance in leukemia cell line. J Cell Biochem 121(10):4022–4033PubMedCrossRef
119.
Zurück zum Zitat Krakowsky RH, Wurm AA, Gerloff D, Katzerke C, Bräuer-Hartmann D, Hartmann J-U et al (2018) miR-451a abrogates treatment resistance in FLT3-ITD-positive acute myeloid leukemia. Blood Cancer J 8(3):1–4CrossRef Krakowsky RH, Wurm AA, Gerloff D, Katzerke C, Bräuer-Hartmann D, Hartmann J-U et al (2018) miR-451a abrogates treatment resistance in FLT3-ITD-positive acute myeloid leukemia. Blood Cancer J 8(3):1–4CrossRef
120.
Zurück zum Zitat Jia Y, Liu W, Zhan H-E, Yi X-P, Liang H, Zheng Q-L et al (2020) Roles of hsa-miR-12462 and SLC9A1 in acute myeloid leukemia. J Hematol Oncol 13(1):101PubMedPubMedCentralCrossRef Jia Y, Liu W, Zhan H-E, Yi X-P, Liang H, Zheng Q-L et al (2020) Roles of hsa-miR-12462 and SLC9A1 in acute myeloid leukemia. J Hematol Oncol 13(1):101PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Xiao Y, Deng T, Su C, Shang Z (2017) MicroRNA 217 inhibits cell proliferation and enhances chemosensitivity to doxorubicin in acute myeloid leukemia by targeting KRAS. Oncol Lett 13(6):4986–4994PubMedPubMedCentralCrossRef Xiao Y, Deng T, Su C, Shang Z (2017) MicroRNA 217 inhibits cell proliferation and enhances chemosensitivity to doxorubicin in acute myeloid leukemia by targeting KRAS. Oncol Lett 13(6):4986–4994PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Liu H, Liu M, Zhang J, Liang Y (2020) Downregulated miR-130a enhances the sensitivity of acute myeloid leukemia cells to adriamycin. Mol Med Rep 22(4):2810–2816PubMedPubMedCentral Liu H, Liu M, Zhang J, Liang Y (2020) Downregulated miR-130a enhances the sensitivity of acute myeloid leukemia cells to adriamycin. Mol Med Rep 22(4):2810–2816PubMedPubMedCentral
123.
Zurück zum Zitat Li X, Xu L, Sheng X, Cai J, Liu J, Yin T et al (2018) Upregulated microRNA-146a expression induced by granulocyte colony-stimulating factor enhanced low-dosage chemotherapy response in aged acute myeloid leukemia patients. Exp Hematol 68:66–79.e3PubMedCrossRef Li X, Xu L, Sheng X, Cai J, Liu J, Yin T et al (2018) Upregulated microRNA-146a expression induced by granulocyte colony-stimulating factor enhanced low-dosage chemotherapy response in aged acute myeloid leukemia patients. Exp Hematol 68:66–79.e3PubMedCrossRef
124.
Zurück zum Zitat L-j T, G-k S, T-j Z, Wu D-h, J-d Z, Ma B-b et al (2019) Down-regulation of miR-29c is a prognostic biomarker in acute myeloid leukemia and can reduce the sensitivity of leukemic cells to decitabine. Cancer Cell Int 19(1):177CrossRef L-j T, G-k S, T-j Z, Wu D-h, J-d Z, Ma B-b et al (2019) Down-regulation of miR-29c is a prognostic biomarker in acute myeloid leukemia and can reduce the sensitivity of leukemic cells to decitabine. Cancer Cell Int 19(1):177CrossRef
125.
Zurück zum Zitat Wu YY, Lai HF, Huang TC, Chen YG, Ye RH, Chang PY et al (2021) Aberrantly reduced expression of miR-342-5p contributes to CCND1-associated chronic myeloid leukemia progression and imatinib resistance. Cell Death Dis 12(10):908PubMedPubMedCentralCrossRef Wu YY, Lai HF, Huang TC, Chen YG, Ye RH, Chang PY et al (2021) Aberrantly reduced expression of miR-342-5p contributes to CCND1-associated chronic myeloid leukemia progression and imatinib resistance. Cell Death Dis 12(10):908PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Dong Y, Lin Y, Gao X, Zhao Y, Wan Z, Wang H et al (2019) Targeted blocking of miR328 lysosomal degradation with alkalized exosomes sensitizes the chronic leukemia cells to imatinib. Appl Microbiol Biotechnol 103(23-24):9569–9582PubMedCrossRef Dong Y, Lin Y, Gao X, Zhao Y, Wan Z, Wang H et al (2019) Targeted blocking of miR328 lysosomal degradation with alkalized exosomes sensitizes the chronic leukemia cells to imatinib. Appl Microbiol Biotechnol 103(23-24):9569–9582PubMedCrossRef
127.
Zurück zum Zitat Jin J, Yao J, Yue F, Jin Z, Li D, Wang S (2018) Decreased expression of microRNA-214 contributes to imatinib mesylate resistance of chronic myeloid leukemia patients by upregulating ABCB1 gene expression. Exp Ther Med 16(3):1693–1700PubMedPubMedCentral Jin J, Yao J, Yue F, Jin Z, Li D, Wang S (2018) Decreased expression of microRNA-214 contributes to imatinib mesylate resistance of chronic myeloid leukemia patients by upregulating ABCB1 gene expression. Exp Ther Med 16(3):1693–1700PubMedPubMedCentral
128.
Zurück zum Zitat Soltani I, Douzi K, Gharbi H, Benhassine I, Teber M, Amouri H et al (2017) Downregulation of miR-451 in Tunisian chronic myeloid leukemia patients: potential implication in imatinib resistance. Hematology 22(4):201–207PubMedCrossRef Soltani I, Douzi K, Gharbi H, Benhassine I, Teber M, Amouri H et al (2017) Downregulation of miR-451 in Tunisian chronic myeloid leukemia patients: potential implication in imatinib resistance. Hematology 22(4):201–207PubMedCrossRef
129.
Zurück zum Zitat Li YL, Tang JM, Chen XY, Luo B, Liang GH, Qu Q et al (2020) MicroRNA-153-3p enhances the sensitivity of chronic myeloid leukemia cells to imatinib by inhibiting B-cell lymphoma-2-mediated autophagy. Hum Cell 33(3):610–618PubMedCrossRef Li YL, Tang JM, Chen XY, Luo B, Liang GH, Qu Q et al (2020) MicroRNA-153-3p enhances the sensitivity of chronic myeloid leukemia cells to imatinib by inhibiting B-cell lymphoma-2-mediated autophagy. Hum Cell 33(3):610–618PubMedCrossRef
130.
Zurück zum Zitat Chen P-H, Liu A-J, Ho K-H, Chiu Y-T, Anne Lin Z-H, Lee Y-T et al (2018) microRNA-199a/b-5p enhance imatinib efficacy via repressing WNT2 signaling-mediated protective autophagy in imatinib-resistant chronic myeloid leukemia cells. Chem Biol Interact 291:144–151PubMedCrossRef Chen P-H, Liu A-J, Ho K-H, Chiu Y-T, Anne Lin Z-H, Lee Y-T et al (2018) microRNA-199a/b-5p enhance imatinib efficacy via repressing WNT2 signaling-mediated protective autophagy in imatinib-resistant chronic myeloid leukemia cells. Chem Biol Interact 291:144–151PubMedCrossRef
131.
Zurück zum Zitat Jiang X, Cheng Y, Hu C, Zhang A, Ren Y, Xu X (2019) MicroRNA-221 sensitizes chronic myeloid leukemia cells to imatinib by targeting STAT5. Leuk Lymphoma 60(7):1709–1720PubMedCrossRef Jiang X, Cheng Y, Hu C, Zhang A, Ren Y, Xu X (2019) MicroRNA-221 sensitizes chronic myeloid leukemia cells to imatinib by targeting STAT5. Leuk Lymphoma 60(7):1709–1720PubMedCrossRef
132.
Zurück zum Zitat Sun H, Li Y, Wang X, Zhou X, Rong S, Liang D et al (2022) TRIB2 regulates the expression of miR-33a-5p through the ERK/c-Fos pathway to affect the imatinib resistance of chronic myeloid leukemia cells. Int J Oncol 60(5):49PubMedPubMedCentralCrossRef Sun H, Li Y, Wang X, Zhou X, Rong S, Liang D et al (2022) TRIB2 regulates the expression of miR-33a-5p through the ERK/c-Fos pathway to affect the imatinib resistance of chronic myeloid leukemia cells. Int J Oncol 60(5):49PubMedPubMedCentralCrossRef
133.
Zurück zum Zitat Deng Y, Li X, Feng J, Zhang X (2018) Overexpression of miR-202 resensitizes imatinib resistant chronic myeloid leukemia cells through targetting Hexokinase 2. Biosci Rep 38(3):BSR20171383 Deng Y, Li X, Feng J, Zhang X (2018) Overexpression of miR-202 resensitizes imatinib resistant chronic myeloid leukemia cells through targetting Hexokinase 2. Biosci Rep 38(3):BSR20171383
134.
Zurück zum Zitat Farhadi E, Zaker F, Safa M, Rezvani MR (2016) miR-101 sensitizes K562 cell line to imatinib through Jak2 downregulation and inhibition of NF-κB target genes. Tumour Biol 37(10):14117–14128PubMedCrossRef Farhadi E, Zaker F, Safa M, Rezvani MR (2016) miR-101 sensitizes K562 cell line to imatinib through Jak2 downregulation and inhibition of NF-κB target genes. Tumour Biol 37(10):14117–14128PubMedCrossRef
135.
Zurück zum Zitat Zhu X, Zhang J, Sun Y, Wang Y, Liu Q, Li P et al (2022) Restoration of miR-23a expression by chidamide sensitizes CML cells to imatinib treatment with concomitant downregulation of CRYAB. Bioengineered 13(4):8881–8892PubMedPubMedCentralCrossRef Zhu X, Zhang J, Sun Y, Wang Y, Liu Q, Li P et al (2022) Restoration of miR-23a expression by chidamide sensitizes CML cells to imatinib treatment with concomitant downregulation of CRYAB. Bioengineered 13(4):8881–8892PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Ramachandran SS, Muiwo P, Ahmad HM, Pandey RM, Singh S, Bakhshi S et al (2017) miR-505-5p and miR-193b-3p: potential biomarkers of imatinib response in patients with chronic myeloid leukemia. Leuk Lymphoma 58(8):1981–1984PubMedCrossRef Ramachandran SS, Muiwo P, Ahmad HM, Pandey RM, Singh S, Bakhshi S et al (2017) miR-505-5p and miR-193b-3p: potential biomarkers of imatinib response in patients with chronic myeloid leukemia. Leuk Lymphoma 58(8):1981–1984PubMedCrossRef
137.
Zurück zum Zitat Lin H, Rothe K, Chen M, Wu A, Babaian A, Yen R et al (2020) The miR-185/PAK6 axis predicts therapy response and regulates survival of drug-resistant leukemic stem cells in CML. Blood 136(5):596–609PubMedPubMedCentralCrossRef Lin H, Rothe K, Chen M, Wu A, Babaian A, Yen R et al (2020) The miR-185/PAK6 axis predicts therapy response and regulates survival of drug-resistant leukemic stem cells in CML. Blood 136(5):596–609PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Li Y, Luo S, Dong W, Song X, Zhou H, Zhao L et al (2016) Alpha-2, 3-sialyltransferases regulate the multidrug resistance of chronic myeloid leukemia through miR-4701-5p targeting ST3GAL1. Lab Invest 96(7):731–740PubMedCrossRef Li Y, Luo S, Dong W, Song X, Zhou H, Zhao L et al (2016) Alpha-2, 3-sialyltransferases regulate the multidrug resistance of chronic myeloid leukemia through miR-4701-5p targeting ST3GAL1. Lab Invest 96(7):731–740PubMedCrossRef
139.
Zurück zum Zitat Zhou H, Li Y, Liu B, Shan Y, Li Y, Zhao L et al (2017) Downregulation of miR-224 and let-7i contribute to cell survival and chemoresistance in chronic myeloid leukemia cells by regulating ST3GAL IV expression. Gene 626:106–118PubMedCrossRef Zhou H, Li Y, Liu B, Shan Y, Li Y, Zhao L et al (2017) Downregulation of miR-224 and let-7i contribute to cell survival and chemoresistance in chronic myeloid leukemia cells by regulating ST3GAL IV expression. Gene 626:106–118PubMedCrossRef
140.
Zurück zum Zitat Ma J, Wu D, Yi J, Yi Y, Zhu X, Qiu H et al (2019) MiR-378 promoted cell proliferation and inhibited apoptosis by enhanced stem cell properties in chronic myeloid leukemia K562 cells. Biomed Pharmacother 112:108623PubMedCrossRef Ma J, Wu D, Yi J, Yi Y, Zhu X, Qiu H et al (2019) MiR-378 promoted cell proliferation and inhibited apoptosis by enhanced stem cell properties in chronic myeloid leukemia K562 cells. Biomed Pharmacother 112:108623PubMedCrossRef
141.
Zurück zum Zitat Nie ZY, Yao M, Yang Z, Yang L, Liu XJ, Yu J et al (2020) De-regulated STAT5A/miR-202-5p/USP15/Caspase-6 regulatory axis suppresses CML cell apoptosis and contributes to Imatinib resistance. J Exp Clin Cancer Res 39(1):17PubMedPubMedCentralCrossRef Nie ZY, Yao M, Yang Z, Yang L, Liu XJ, Yu J et al (2020) De-regulated STAT5A/miR-202-5p/USP15/Caspase-6 regulatory axis suppresses CML cell apoptosis and contributes to Imatinib resistance. J Exp Clin Cancer Res 39(1):17PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Min QH, Wang XZ, Zhang J, Chen QG, Li SQ, Liu XQ et al (2018) Exosomes derived from imatinib-resistant chronic myeloid leukemia cells mediate a horizontal transfer of drug-resistant trait by delivering miR-365. Exp Cell Res 362(2):386–393PubMedCrossRef Min QH, Wang XZ, Zhang J, Chen QG, Li SQ, Liu XQ et al (2018) Exosomes derived from imatinib-resistant chronic myeloid leukemia cells mediate a horizontal transfer of drug-resistant trait by delivering miR-365. Exp Cell Res 362(2):386–393PubMedCrossRef
143.
Zurück zum Zitat Lv M, Zhang X, Jia H, Li D, Zhang B, Zhang H et al (2012) An oncogenic role of miR-142-3p in human T-cell acute lymphoblastic leukemia (T-ALL) by targeting glucocorticoid receptor-α and cAMP/PKA pathways. Leukemia 26(4):769–777PubMedCrossRef Lv M, Zhang X, Jia H, Li D, Zhang B, Zhang H et al (2012) An oncogenic role of miR-142-3p in human T-cell acute lymphoblastic leukemia (T-ALL) by targeting glucocorticoid receptor-α and cAMP/PKA pathways. Leukemia 26(4):769–777PubMedCrossRef
144.
Zurück zum Zitat Piatopoulou D, Avgeris M, Marmarinos A, Xagorari M, Baka M, Doganis D et al (2017) miR-125b predicts childhood acute lymphoblastic leukaemia poor response to BFM chemotherapy treatment. Br J Cancer 117(6):801–812PubMedPubMedCentralCrossRef Piatopoulou D, Avgeris M, Marmarinos A, Xagorari M, Baka M, Doganis D et al (2017) miR-125b predicts childhood acute lymphoblastic leukaemia poor response to BFM chemotherapy treatment. Br J Cancer 117(6):801–812PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat Sheybani Z, Rahgozar S, Ghodousi ES (2019) The Hedgehog signal transducer smoothened and microRNA-326: pathogenesis and regulation of drug resistance in pediatric B-cell acute lymphoblastic leukemia. Cancer Manag Res 11:7621–7630PubMedPubMedCentralCrossRef Sheybani Z, Rahgozar S, Ghodousi ES (2019) The Hedgehog signal transducer smoothened and microRNA-326: pathogenesis and regulation of drug resistance in pediatric B-cell acute lymphoblastic leukemia. Cancer Manag Res 11:7621–7630PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Zamani A, Fattahi Dolatabadi N, Houshmand M, Nabavizadeh N (2021) miR-324-3p and miR-508-5p expression levels could serve as potential diagnostic and multidrug-resistant biomarkers in childhood acute lymphoblastic leukemia. Leuk Res 109:106643PubMedCrossRef Zamani A, Fattahi Dolatabadi N, Houshmand M, Nabavizadeh N (2021) miR-324-3p and miR-508-5p expression levels could serve as potential diagnostic and multidrug-resistant biomarkers in childhood acute lymphoblastic leukemia. Leuk Res 109:106643PubMedCrossRef
147.
Zurück zum Zitat Qian L, Zhang W, Lei B, He A, Ye L, Li X et al (2016) MicroRNA-101 regulates T-cell acute lymphoblastic leukemia progression and chemotherapeutic sensitivity by targeting Notch1. Oncol Rep 36(5):2511–2516PubMedPubMedCentralCrossRef Qian L, Zhang W, Lei B, He A, Ye L, Li X et al (2016) MicroRNA-101 regulates T-cell acute lymphoblastic leukemia progression and chemotherapeutic sensitivity by targeting Notch1. Oncol Rep 36(5):2511–2516PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Saleh LM, Wang W, Herman SE, Saba NS, Anastas V, Barber E et al (2017) Ibrutinib downregulates a subset of miRNA leading to upregulation of tumor suppressors and inhibition of cell proliferation in chronic lymphocytic leukemia. Leukemia 31(2):340–349PubMedCrossRef Saleh LM, Wang W, Herman SE, Saba NS, Anastas V, Barber E et al (2017) Ibrutinib downregulates a subset of miRNA leading to upregulation of tumor suppressors and inhibition of cell proliferation in chronic lymphocytic leukemia. Leukemia 31(2):340–349PubMedCrossRef
149.
Zurück zum Zitat Zhu D-X, Zhu W, Fang C, Fan L, Zou Z-J, Wang Y-H et al (2012) miR-181a/b significantly enhances drug sensitivity in chronic lymphocytic leukemia cells via targeting multiple anti-apoptosis genes. Carcinogenesis 33(7):1294–1301PubMedCrossRef Zhu D-X, Zhu W, Fang C, Fan L, Zou Z-J, Wang Y-H et al (2012) miR-181a/b significantly enhances drug sensitivity in chronic lymphocytic leukemia cells via targeting multiple anti-apoptosis genes. Carcinogenesis 33(7):1294–1301PubMedCrossRef
150.
Zurück zum Zitat Pfeffer CM, Singh ATK (2018) Apoptosis: a target for anticancer therapy. Int J Mol Sci 19(2):448 Pfeffer CM, Singh ATK (2018) Apoptosis: a target for anticancer therapy. Int J Mol Sci 19(2):448
151.
Zurück zum Zitat Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B et al (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 45(6):487–498PubMedPubMedCentralCrossRef Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B et al (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 45(6):487–498PubMedPubMedCentralCrossRef
152.
Zurück zum Zitat Ghavami S, Zamani M, Ahmadi M, Erfani M, Dastghaib S, Darbandi M et al (2022) Epigenetic regulation of autophagy in gastrointestinal cancers. Biochim Biophys Acta (BBA) - Mol Basis Dis 1868(11):166512 Ghavami S, Zamani M, Ahmadi M, Erfani M, Dastghaib S, Darbandi M et al (2022) Epigenetic regulation of autophagy in gastrointestinal cancers. Biochim Biophys Acta (BBA) - Mol Basis Dis 1868(11):166512
153.
Zurück zum Zitat Khan KH, Blanco-Codesido M, Molife LR (2014) Cancer therapeutics: targeting the apoptotic pathway. Crit Rev Oncol Hematol 90(3):200–219PubMedCrossRef Khan KH, Blanco-Codesido M, Molife LR (2014) Cancer therapeutics: targeting the apoptotic pathway. Crit Rev Oncol Hematol 90(3):200–219PubMedCrossRef
154.
Zurück zum Zitat Singh R, Letai A, Sarosiek K (2019) Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 20(3):175–193PubMedPubMedCentralCrossRef Singh R, Letai A, Sarosiek K (2019) Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 20(3):175–193PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Wei Y, Cao Y, Sun R, Cheng L, Xiong X, Jin X et al (2020) Targeting Bcl-2 proteins in acute myeloid leukemia. Front Oncol 10:584974 Wei Y, Cao Y, Sun R, Cheng L, Xiong X, Jin X et al (2020) Targeting Bcl-2 proteins in acute myeloid leukemia. Front Oncol 10:584974
156.
Zurück zum Zitat Trivedi R, Mishra DP (2015) Trailing TRAIL resistance: novel targets for TRAIL sensitization in cancer cells. Front Oncol 5:69 Trivedi R, Mishra DP (2015) Trailing TRAIL resistance: novel targets for TRAIL sensitization in cancer cells. Front Oncol 5:69
158.
Zurück zum Zitat Daver N, Wei AH, Pollyea DA, Fathi AT, Vyas P, DiNardo CD (2020) New directions for emerging therapies in acute myeloid leukemia: the next chapter. Blood Cancer J 10(10):107PubMedPubMedCentralCrossRef Daver N, Wei AH, Pollyea DA, Fathi AT, Vyas P, DiNardo CD (2020) New directions for emerging therapies in acute myeloid leukemia: the next chapter. Blood Cancer J 10(10):107PubMedPubMedCentralCrossRef
159.
Zurück zum Zitat Murphy T, Yee KWL (2017) Cytarabine and daunorubicin for the treatment of acute myeloid leukemia. Expert Opin Pharmacother 18(16):1765–1780PubMedCrossRef Murphy T, Yee KWL (2017) Cytarabine and daunorubicin for the treatment of acute myeloid leukemia. Expert Opin Pharmacother 18(16):1765–1780PubMedCrossRef
161.
Zurück zum Zitat Low CG, Luk IS, Lin D, Fazli L, Yang K, Xu Y et al (2013) BIRC6 protein, an inhibitor of apoptosis: role in survival of human prostate cancer cells. PLoS One 8(2):e55837PubMedPubMedCentralCrossRef Low CG, Luk IS, Lin D, Fazli L, Yang K, Xu Y et al (2013) BIRC6 protein, an inhibitor of apoptosis: role in survival of human prostate cancer cells. PLoS One 8(2):e55837PubMedPubMedCentralCrossRef
164.
Zurück zum Zitat Zheng Y, Ma L, Sun Q (2021) Clinically-relevant ABC transporter for anti-cancer drug resistance. Front Pharmacol 12:648407 Zheng Y, Ma L, Sun Q (2021) Clinically-relevant ABC transporter for anti-cancer drug resistance. Front Pharmacol 12:648407
165.
Zurück zum Zitat Wang F, Wang XS, Yang GH, Zhai PF, Xiao Z, Xia LY et al (2012) miR-29a and miR-142-3p downregulation and diagnostic implication in human acute myeloid leukemia. Mol Biol Rep 39(3):2713–2722PubMedCrossRef Wang F, Wang XS, Yang GH, Zhai PF, Xiao Z, Xia LY et al (2012) miR-29a and miR-142-3p downregulation and diagnostic implication in human acute myeloid leukemia. Mol Biol Rep 39(3):2713–2722PubMedCrossRef
167.
Zurück zum Zitat Okabe S, Tauchi T, Katagiri S, Tanaka Y, Ohyashiki K (2014) Combination of the ABL kinase inhibitor imatinib with the Janus kinase 2 inhibitor TG101348 for targeting residual BCR-ABL-positive cells. J Hematol Oncol 7(1):37PubMedPubMedCentralCrossRef Okabe S, Tauchi T, Katagiri S, Tanaka Y, Ohyashiki K (2014) Combination of the ABL kinase inhibitor imatinib with the Janus kinase 2 inhibitor TG101348 for targeting residual BCR-ABL-positive cells. J Hematol Oncol 7(1):37PubMedPubMedCentralCrossRef
168.
Zurück zum Zitat Poudel G, Tolland MG, Hughes TP, Pagani IS (2022) Mechanisms of resistance and implications for treatment strategies in chronic myeloid leukaemia. Cancers 14(14):3300PubMedPubMedCentralCrossRef Poudel G, Tolland MG, Hughes TP, Pagani IS (2022) Mechanisms of resistance and implications for treatment strategies in chronic myeloid leukaemia. Cancers 14(14):3300PubMedPubMedCentralCrossRef
169.
Zurück zum Zitat Patel AB, O'Hare T, Deininger MW (2017) Mechanisms of resistance to ABL kinase inhibition in chronic myeloid leukemia and the development of next generation ABL kinase inhibitors. Hematol Oncol Clin North Am 31(4):589–612PubMedPubMedCentralCrossRef Patel AB, O'Hare T, Deininger MW (2017) Mechanisms of resistance to ABL kinase inhibition in chronic myeloid leukemia and the development of next generation ABL kinase inhibitors. Hematol Oncol Clin North Am 31(4):589–612PubMedPubMedCentralCrossRef
170.
Zurück zum Zitat Bellodi C, Lidonnici MR, Hamilton A, Helgason GV, Soliera AR, Ronchetti M et al (2009) Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest 119(5):1109–1123PubMedPubMedCentralCrossRef Bellodi C, Lidonnici MR, Hamilton A, Helgason GV, Soliera AR, Ronchetti M et al (2009) Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest 119(5):1109–1123PubMedPubMedCentralCrossRef
171.
Zurück zum Zitat Alves R, Gonçalves AC, Rutella S, Almeida AM, De Las RJ, Trougakos IP et al (2021) Resistance to tyrosine kinase inhibitors in chronic myeloid leukemia-from molecular mechanisms to clinical relevance. Cancers (Basel) 13(19):4820 Alves R, Gonçalves AC, Rutella S, Almeida AM, De Las RJ, Trougakos IP et al (2021) Resistance to tyrosine kinase inhibitors in chronic myeloid leukemia-from molecular mechanisms to clinical relevance. Cancers (Basel) 13(19):4820
172.
Zurück zum Zitat Ye D, Wolff N, Li L, Zhang S, Ilaria RL Jr (2006) STAT5 signaling is required for the efficient induction and maintenance of CML in mice. Blood 107(12):4917–4925PubMedPubMedCentralCrossRef Ye D, Wolff N, Li L, Zhang S, Ilaria RL Jr (2006) STAT5 signaling is required for the efficient induction and maintenance of CML in mice. Blood 107(12):4917–4925PubMedPubMedCentralCrossRef
173.
174.
175.
Zurück zum Zitat Ghodousi ES, Rahgozar S (2018) MicroRNA-326 and microRNA-200c: Two novel biomarkers for diagnosis and prognosis of pediatric acute lymphoblastic leukemia. J Cell Biochem 119(7):6024–6032PubMedCrossRef Ghodousi ES, Rahgozar S (2018) MicroRNA-326 and microRNA-200c: Two novel biomarkers for diagnosis and prognosis of pediatric acute lymphoblastic leukemia. J Cell Biochem 119(7):6024–6032PubMedCrossRef
176.
Zurück zum Zitat Zhang H, Sun Z, Liu Z, Song C (2018) Overcoming the emerging drug resistance of smoothened: an overview of small-molecule SMO antagonists with antiresistance activity. Future Med Chem 10(24):2855–2875PubMedCrossRef Zhang H, Sun Z, Liu Z, Song C (2018) Overcoming the emerging drug resistance of smoothened: an overview of small-molecule SMO antagonists with antiresistance activity. Future Med Chem 10(24):2855–2875PubMedCrossRef
177.
Zurück zum Zitat Wang A, Chen Y, Shi L, Li M, Li L, Wang S et al (2022) Tumor-suppressive MEG3 induces microRNA-493-5p expression to reduce arabinocytosine chemoresistance of acute myeloid leukemia cells by downregulating the METTL3/MYC axis. J Transl Med 20(1):288PubMedPubMedCentralCrossRef Wang A, Chen Y, Shi L, Li M, Li L, Wang S et al (2022) Tumor-suppressive MEG3 induces microRNA-493-5p expression to reduce arabinocytosine chemoresistance of acute myeloid leukemia cells by downregulating the METTL3/MYC axis. J Transl Med 20(1):288PubMedPubMedCentralCrossRef
178.
Zurück zum Zitat Yan J, Yao L, Li P, Wu G, Lv X (2022) Long non-coding RNA MIR17HG sponges microRNA-21 to upregulate PTEN and regulate homoharringtonine-based chemoresistance of acute myeloid leukemia cells. Oncol Lett 23(1):24PubMedCrossRef Yan J, Yao L, Li P, Wu G, Lv X (2022) Long non-coding RNA MIR17HG sponges microRNA-21 to upregulate PTEN and regulate homoharringtonine-based chemoresistance of acute myeloid leukemia cells. Oncol Lett 23(1):24PubMedCrossRef
179.
Zurück zum Zitat Dong X, Fang Z, Yu M, Zhang L, Xiao R, Li X et al (2018) Knockdown of long noncoding RNA HOXA-AS2 suppresses chemoresistance of acute myeloid leukemia via the miR-520c-3p/S100A4 Axis. Cell Physiol Biochem 51(2):886–896PubMedCrossRef Dong X, Fang Z, Yu M, Zhang L, Xiao R, Li X et al (2018) Knockdown of long noncoding RNA HOXA-AS2 suppresses chemoresistance of acute myeloid leukemia via the miR-520c-3p/S100A4 Axis. Cell Physiol Biochem 51(2):886–896PubMedCrossRef
180.
Zurück zum Zitat Sun H, Sun Y, Chen Q, Xu Z (2020) LncRNA KCNQ1OT1 contributes to the progression and chemoresistance in acute myeloid leukemia by modulating Tspan3 through suppressing miR-193a-3p. Life Sci 241:117161PubMedCrossRef Sun H, Sun Y, Chen Q, Xu Z (2020) LncRNA KCNQ1OT1 contributes to the progression and chemoresistance in acute myeloid leukemia by modulating Tspan3 through suppressing miR-193a-3p. Life Sci 241:117161PubMedCrossRef
181.
Zurück zum Zitat Kang Y, Zhang S, Cao W, Wan D, Sun L (2020) Knockdown of LncRNA CRNDE suppresses proliferation and P-glycoprotein-mediated multidrug resistance in acute myelocytic leukemia through the Wnt/β-catenin pathway. Biosci Rep 40:6CrossRef Kang Y, Zhang S, Cao W, Wan D, Sun L (2020) Knockdown of LncRNA CRNDE suppresses proliferation and P-glycoprotein-mediated multidrug resistance in acute myelocytic leukemia through the Wnt/β-catenin pathway. Biosci Rep 40:6CrossRef
182.
Zurück zum Zitat Chen L, Zhao H, Wang C, Hu N (2019) TUG1 knockdown enhances adriamycin cytotoxicity by inhibiting glycolysis in adriamycin-resistant acute myeloid leukemia HL60/ADR cells. RSC Adv. 9(19):10897–10904PubMedPubMedCentralCrossRef Chen L, Zhao H, Wang C, Hu N (2019) TUG1 knockdown enhances adriamycin cytotoxicity by inhibiting glycolysis in adriamycin-resistant acute myeloid leukemia HL60/ADR cells. RSC Adv. 9(19):10897–10904PubMedPubMedCentralCrossRef
183.
Zurück zum Zitat Zhang B, Sun YF, Zhang XM, Jiang N, Chen Q (2020) TUG1 weakens the sensitivity of acute myeloid leukemia cells to cytarabine by regulating miR-655-3p/CCND1 axis. Eur Rev Med Pharmacol Sci 24(9):4940–4953PubMed Zhang B, Sun YF, Zhang XM, Jiang N, Chen Q (2020) TUG1 weakens the sensitivity of acute myeloid leukemia cells to cytarabine by regulating miR-655-3p/CCND1 axis. Eur Rev Med Pharmacol Sci 24(9):4940–4953PubMed
184.
Zurück zum Zitat Li J, Wang M, Chen X (2020) Long non-coding RNA UCA1 modulates cell proliferation and apoptosis by regulating miR-296-3p/Myc axis in acute myeloid leukemia. Cell Cycle 19(12):1454–1465PubMedPubMedCentralCrossRef Li J, Wang M, Chen X (2020) Long non-coding RNA UCA1 modulates cell proliferation and apoptosis by regulating miR-296-3p/Myc axis in acute myeloid leukemia. Cell Cycle 19(12):1454–1465PubMedPubMedCentralCrossRef
185.
Zurück zum Zitat Chen L, Hu N, Wang C, Zhao H (2020) HOTAIRM1 knockdown enhances cytarabine-induced cytotoxicity by suppression of glycolysis through the Wnt/β-catenin/PFKP pathway in acute myeloid leukemia cells. Arch Biochem Biophys 680:108244PubMedCrossRef Chen L, Hu N, Wang C, Zhao H (2020) HOTAIRM1 knockdown enhances cytarabine-induced cytotoxicity by suppression of glycolysis through the Wnt/β-catenin/PFKP pathway in acute myeloid leukemia cells. Arch Biochem Biophys 680:108244PubMedCrossRef
186.
Zurück zum Zitat Liang L, Gu W, Li M, Gao R, Zhang X, Guo C et al (2021) The long noncoding RNA HOTAIRM1 controlled by AML1 enhances glucocorticoid resistance by activating RHOA/ROCK1 pathway through suppressing ARHGAP18. Cell Death Dis 12(7):702PubMedPubMedCentralCrossRef Liang L, Gu W, Li M, Gao R, Zhang X, Guo C et al (2021) The long noncoding RNA HOTAIRM1 controlled by AML1 enhances glucocorticoid resistance by activating RHOA/ROCK1 pathway through suppressing ARHGAP18. Cell Death Dis 12(7):702PubMedPubMedCentralCrossRef
187.
Zurück zum Zitat Liu JM, Li M, Luo W, Sun HB (2021) Curcumin attenuates adriamycin-resistance of acute myeloid leukemia by inhibiting the lncRNA HOTAIR/miR-20a-5p/WT1 axis. Lab Invest 101(10):1308–1317PubMedCrossRef Liu JM, Li M, Luo W, Sun HB (2021) Curcumin attenuates adriamycin-resistance of acute myeloid leukemia by inhibiting the lncRNA HOTAIR/miR-20a-5p/WT1 axis. Lab Invest 101(10):1308–1317PubMedCrossRef
188.
Zurück zum Zitat Zhang H, Zhao Y, Liu X, Liu Y, Wang X, Fu Y et al (2021) A novel upregulated LncRNA-AC026150.8 promotes chemo-resistance and predicts poor prognosis in acute myeloid leukemia. Cancer Med 10(23):8614–8629PubMedPubMedCentralCrossRef Zhang H, Zhao Y, Liu X, Liu Y, Wang X, Fu Y et al (2021) A novel upregulated LncRNA-AC026150.8 promotes chemo-resistance and predicts poor prognosis in acute myeloid leukemia. Cancer Med 10(23):8614–8629PubMedPubMedCentralCrossRef
189.
Zurück zum Zitat Cui C, Wang Y, Gong W, He H, Zhang H, Shi W et al (2021) Long non-coding RNA LINC00152 regulates self-renewal of leukemia stem cells and induces chemo-resistance in acute myeloid leukemia. Front Oncol 11:694021PubMedPubMedCentralCrossRef Cui C, Wang Y, Gong W, He H, Zhang H, Shi W et al (2021) Long non-coding RNA LINC00152 regulates self-renewal of leukemia stem cells and induces chemo-resistance in acute myeloid leukemia. Front Oncol 11:694021PubMedPubMedCentralCrossRef
190.
Zurück zum Zitat Zhou H, Jia X, Yang F, Shi P (2021) Long noncoding RNA SATB1-AS1 contributes to the chemotherapy resistance through the microRNA-580/ 2′-5′-oligoadenylate synthetase 2 axis in acute myeloid leukemia. Bioengineered 12(1):6403–6417PubMedPubMedCentralCrossRef Zhou H, Jia X, Yang F, Shi P (2021) Long noncoding RNA SATB1-AS1 contributes to the chemotherapy resistance through the microRNA-580/ 2′-5′-oligoadenylate synthetase 2 axis in acute myeloid leukemia. Bioengineered 12(1):6403–6417PubMedPubMedCentralCrossRef
191.
Zurück zum Zitat Zhang H, Liu L, Chen L, Liu H, Ren S, Tao Y (2021) Long noncoding RNA DANCR confers cytarabine resistance in acute myeloid leukemia by activating autophagy via the miR-874-3P/ATG16L1 axis. Mol Oncol 15(4):1203–1216PubMedPubMedCentralCrossRef Zhang H, Liu L, Chen L, Liu H, Ren S, Tao Y (2021) Long noncoding RNA DANCR confers cytarabine resistance in acute myeloid leukemia by activating autophagy via the miR-874-3P/ATG16L1 axis. Mol Oncol 15(4):1203–1216PubMedPubMedCentralCrossRef
192.
Zurück zum Zitat Yang Y, Dai W, Sun Y, Zhao Z (2019) Long non-coding RNA linc00239 promotes malignant behaviors and chemoresistance against doxorubicin partially via activation of the PI3K/Akt/mTOR pathway in acute myeloid leukaemia cells. Oncol Rep 41(4):2311–2320PubMed Yang Y, Dai W, Sun Y, Zhao Z (2019) Long non-coding RNA linc00239 promotes malignant behaviors and chemoresistance against doxorubicin partially via activation of the PI3K/Akt/mTOR pathway in acute myeloid leukaemia cells. Oncol Rep 41(4):2311–2320PubMed
193.
Zurück zum Zitat Wang C, Li L, Li M, Wang W, Liu Y, Wang S (2020) Silencing long non-coding RNA XIST suppresses drug resistance in acute myeloid leukemia through down-regulation of MYC by elevating microRNA-29a expression. Mol Med 26(1):114PubMedPubMedCentralCrossRef Wang C, Li L, Li M, Wang W, Liu Y, Wang S (2020) Silencing long non-coding RNA XIST suppresses drug resistance in acute myeloid leukemia through down-regulation of MYC by elevating microRNA-29a expression. Mol Med 26(1):114PubMedPubMedCentralCrossRef
194.
Zurück zum Zitat Hu N, Chen L, Wang C, Zhao H (2019) MALAT1 knockdown inhibits proliferation and enhances cytarabine chemosensitivity by upregulating miR-96 in acute myeloid leukemia cells. Biomed Pharmacother 112:108720PubMedCrossRef Hu N, Chen L, Wang C, Zhao H (2019) MALAT1 knockdown inhibits proliferation and enhances cytarabine chemosensitivity by upregulating miR-96 in acute myeloid leukemia cells. Biomed Pharmacother 112:108720PubMedCrossRef
195.
Zurück zum Zitat Xue L, Li C, Ren J, Wang Y (2021) KDM4C contributes to cytarabine resistance in acute myeloid leukemia via regulating the miR-328-3p/CCND2 axis through MALAT1. Ther Adv Chronic Dis 12:2040622321997259PubMedPubMedCentralCrossRef Xue L, Li C, Ren J, Wang Y (2021) KDM4C contributes to cytarabine resistance in acute myeloid leukemia via regulating the miR-328-3p/CCND2 axis through MALAT1. Ther Adv Chronic Dis 12:2040622321997259PubMedPubMedCentralCrossRef
196.
Zurück zum Zitat Li Q, Wang J (2019) Long noncoding RNA ZFAS1 enhances adriamycin resistance in pediatric acute myeloid leukemia through the miR-195/Myb axis. RSC Adv 9(48):28126–28134PubMedPubMedCentralCrossRef Li Q, Wang J (2019) Long noncoding RNA ZFAS1 enhances adriamycin resistance in pediatric acute myeloid leukemia through the miR-195/Myb axis. RSC Adv 9(48):28126–28134PubMedPubMedCentralCrossRef
197.
Zurück zum Zitat Wang D, Zeng T, Lin Z, Yan L, Wang F, Tang L et al (2020) Long non-coding RNA SNHG5 regulates chemotherapy resistance through the miR-32/DNAJB9 axis in acute myeloid leukemia. Biomed Pharmacother 123:109802PubMedCrossRef Wang D, Zeng T, Lin Z, Yan L, Wang F, Tang L et al (2020) Long non-coding RNA SNHG5 regulates chemotherapy resistance through the miR-32/DNAJB9 axis in acute myeloid leukemia. Biomed Pharmacother 123:109802PubMedCrossRef
198.
Zurück zum Zitat Luo J, Gao Y, Lin X, Guan X (2021) Systematic analysis reveals a lncRNA-miRNA-mRNA network associated with dasatinib resistance in chronic myeloid leukemia. Ann Palliat Med 10(2):1727–1738PubMedCrossRef Luo J, Gao Y, Lin X, Guan X (2021) Systematic analysis reveals a lncRNA-miRNA-mRNA network associated with dasatinib resistance in chronic myeloid leukemia. Ann Palliat Med 10(2):1727–1738PubMedCrossRef
199.
Zurück zum Zitat Wen F, Cao YX, Luo ZY, Liao P, Lu ZW (2018) LncRNA MALAT1 promotes cell proliferation and imatinib resistance by sponging miR-328 in chronic myelogenous leukemia. Biochem Biophys Res Commun 507(1-4):1–8PubMedCrossRef Wen F, Cao YX, Luo ZY, Liao P, Lu ZW (2018) LncRNA MALAT1 promotes cell proliferation and imatinib resistance by sponging miR-328 in chronic myelogenous leukemia. Biochem Biophys Res Commun 507(1-4):1–8PubMedCrossRef
200.
Zurück zum Zitat Han Y, Ma Z (2021) LncRNA highly upregulated in liver cancer regulates imatinib resistance in chronic myeloid leukemia via the miR-150-5p/MCL1 axis. Anticancer Drugs 32(4):427–436PubMedCrossRef Han Y, Ma Z (2021) LncRNA highly upregulated in liver cancer regulates imatinib resistance in chronic myeloid leukemia via the miR-150-5p/MCL1 axis. Anticancer Drugs 32(4):427–436PubMedCrossRef
201.
Zurück zum Zitat Shehata AMF, Gohar SF, Muharram NM, Eldin SMK (2022) LncRNA CCAT2 expression at diagnosis predicts imatinib response in chronic phase chronic myeloid leukemia patients. Leuk Res 116:106838PubMedCrossRef Shehata AMF, Gohar SF, Muharram NM, Eldin SMK (2022) LncRNA CCAT2 expression at diagnosis predicts imatinib response in chronic phase chronic myeloid leukemia patients. Leuk Res 116:106838PubMedCrossRef
202.
Zurück zum Zitat Liu J, Yang L, Liu X, Liu L, Liu M, Feng X et al (2022) lncRNA HOTTIP Recruits EZH2 to inhibit PTEN expression and participates in IM resistance in chronic myeloid leukemia. Stem Cells Int 2022:9993393PubMedPubMedCentralCrossRef Liu J, Yang L, Liu X, Liu L, Liu M, Feng X et al (2022) lncRNA HOTTIP Recruits EZH2 to inhibit PTEN expression and participates in IM resistance in chronic myeloid leukemia. Stem Cells Int 2022:9993393PubMedPubMedCentralCrossRef
203.
Zurück zum Zitat Dai H, Wang J, Huang Z, Zhang H, Wang X, Li Q et al (2021) LncRNA OIP5-AS1 promotes the autophagy-related imatinib resistance in chronic myeloid leukemia cells by regulating miR-30e-5p/ATG12 Axis. Technol Cancer Res Treat 20:15330338211052150PubMedPubMedCentralCrossRef Dai H, Wang J, Huang Z, Zhang H, Wang X, Li Q et al (2021) LncRNA OIP5-AS1 promotes the autophagy-related imatinib resistance in chronic myeloid leukemia cells by regulating miR-30e-5p/ATG12 Axis. Technol Cancer Res Treat 20:15330338211052150PubMedPubMedCentralCrossRef
204.
Zurück zum Zitat Liu Y, Li H, Zhao Y, Li D, Zhang Q, Fu J et al (2022) Knockdown of ADORA2A antisense RNA 1 inhibits cell proliferation and enhances imatinib sensitivity in chronic myeloid leukemia. Bioengineered 13(2):2296–2307PubMedPubMedCentralCrossRef Liu Y, Li H, Zhao Y, Li D, Zhang Q, Fu J et al (2022) Knockdown of ADORA2A antisense RNA 1 inhibits cell proliferation and enhances imatinib sensitivity in chronic myeloid leukemia. Bioengineered 13(2):2296–2307PubMedPubMedCentralCrossRef
205.
Zurück zum Zitat Xiao Y, Jiao C, Lin Y, Chen M, Zhang J, Wang J et al (2017) lncRNA UCA1 contributes to imatinib resistance by acting as a ceRNA against miR-16 in chronic myeloid leukemia cells. DNA Cell Biol 36(1):18–25PubMedCrossRef Xiao Y, Jiao C, Lin Y, Chen M, Zhang J, Wang J et al (2017) lncRNA UCA1 contributes to imatinib resistance by acting as a ceRNA against miR-16 in chronic myeloid leukemia cells. DNA Cell Biol 36(1):18–25PubMedCrossRef
206.
Zurück zum Zitat He B, Bai Y, Kang W, Zhang X, Jiang X (2017) LncRNA SNHG5 regulates imatinib resistance in chronic myeloid leukemia via acting as a CeRNA against MiR-205-5p. Am J Cancer Res 7(8):1704–1713PubMedPubMedCentral He B, Bai Y, Kang W, Zhang X, Jiang X (2017) LncRNA SNHG5 regulates imatinib resistance in chronic myeloid leukemia via acting as a CeRNA against MiR-205-5p. Am J Cancer Res 7(8):1704–1713PubMedPubMedCentral
207.
Zurück zum Zitat Zhou X, Yuan P, Liu Q, Liu Z (2017) LncRNA MEG3 regulates imatinib resistance in chronic myeloid leukemia via suppressing microRNA-21. Biomol Ther (Seoul) 25(5):490–496PubMedCrossRef Zhou X, Yuan P, Liu Q, Liu Z (2017) LncRNA MEG3 regulates imatinib resistance in chronic myeloid leukemia via suppressing microRNA-21. Biomol Ther (Seoul) 25(5):490–496PubMedCrossRef
208.
Zurück zum Zitat Zhang F, Ni H, Li X, Liu H, Xi T, Zheng L (2019) LncRNA FENDRR attenuates adriamycin resistance via suppressing MDR1 expression through sponging HuR and miR-184 in chronic myelogenous leukaemia cells. FEBS Lett 593(15):1993–2007PubMedCrossRef Zhang F, Ni H, Li X, Liu H, Xi T, Zheng L (2019) LncRNA FENDRR attenuates adriamycin resistance via suppressing MDR1 expression through sponging HuR and miR-184 in chronic myelogenous leukaemia cells. FEBS Lett 593(15):1993–2007PubMedCrossRef
209.
Zurück zum Zitat Ouimet M, Drouin S, Lajoie M, Caron M, St-Onge P, Gioia R et al (2016) A childhood acute lymphoblastic leukemia-specific lncRNA implicated in prednisolone resistance, cell proliferation, and migration. Oncotarget 8(5):7477–7488PubMedCentralCrossRef Ouimet M, Drouin S, Lajoie M, Caron M, St-Onge P, Gioia R et al (2016) A childhood acute lymphoblastic leukemia-specific lncRNA implicated in prednisolone resistance, cell proliferation, and migration. Oncotarget 8(5):7477–7488PubMedCentralCrossRef
210.
Zurück zum Zitat Zhao Q, Zhao S, Li J, Zhang H, Qian C, Wang H et al (2019) TCF7L2 activated HOXA-AS2 decreased the glucocorticoid sensitivity in acute lymphoblastic leukemia through regulating HOXA3/EGFR/Ras/Raf/MEK/ERK pathway. Biomed Pharmacother 109:1640–1649PubMedCrossRef Zhao Q, Zhao S, Li J, Zhang H, Qian C, Wang H et al (2019) TCF7L2 activated HOXA-AS2 decreased the glucocorticoid sensitivity in acute lymphoblastic leukemia through regulating HOXA3/EGFR/Ras/Raf/MEK/ERK pathway. Biomed Pharmacother 109:1640–1649PubMedCrossRef
211.
Zurück zum Zitat Miller CR, Ruppert AS, Fobare S, Chen TL, Liu C, Lehman A et al (2017) The long noncoding RNA, treRNA, decreases DNA damage and is associated with poor response to chemotherapy in chronic lymphocytic leukemia. Oncotarget 8(16):25942–25954PubMedPubMedCentralCrossRef Miller CR, Ruppert AS, Fobare S, Chen TL, Liu C, Lehman A et al (2017) The long noncoding RNA, treRNA, decreases DNA damage and is associated with poor response to chemotherapy in chronic lymphocytic leukemia. Oncotarget 8(16):25942–25954PubMedPubMedCentralCrossRef
212.
Zurück zum Zitat Martelli AM, Nyåkern M, Tabellini G, Bortul R, Tazzari PL, Evangelisti C et al (2006) Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia 20(6):911–928PubMedCrossRef Martelli AM, Nyåkern M, Tabellini G, Bortul R, Tazzari PL, Evangelisti C et al (2006) Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia 20(6):911–928PubMedCrossRef
213.
Zurück zum Zitat Li S, Yao W, Liu R, Gao L, Lu Y, Zhang H et al (2022) Long non-coding RNA LINC00152 in cancer: roles, mechanisms, and chemotherapy and radiotherapy resistance. Front Oncol 12:960193PubMedPubMedCentralCrossRef Li S, Yao W, Liu R, Gao L, Lu Y, Zhang H et al (2022) Long non-coding RNA LINC00152 in cancer: roles, mechanisms, and chemotherapy and radiotherapy resistance. Front Oncol 12:960193PubMedPubMedCentralCrossRef
214.
Zurück zum Zitat Ding J, Zhang X, Xue J, Fang L, Ban C, Song B et al (2021) CircNPM1 strengthens adriamycin resistance in acute myeloid leukemia by mediating the miR-345-5p/FZD5 pathway. Cent Eur J Immunol 46(2):162–182PubMedPubMedCentralCrossRef Ding J, Zhang X, Xue J, Fang L, Ban C, Song B et al (2021) CircNPM1 strengthens adriamycin resistance in acute myeloid leukemia by mediating the miR-345-5p/FZD5 pathway. Cent Eur J Immunol 46(2):162–182PubMedPubMedCentralCrossRef
215.
Zurück zum Zitat Shang J, Chen WM, Wang ZH, Wei TN, Chen ZZ, Wu WB (2019) CircPAN3 mediates drug resistance in acute myeloid leukemia through the miR-153-5p/miR-183-5p-XIAP axis. Exp Hematol 70:42–54.e3PubMedCrossRef Shang J, Chen WM, Wang ZH, Wei TN, Chen ZZ, Wu WB (2019) CircPAN3 mediates drug resistance in acute myeloid leukemia through the miR-153-5p/miR-183-5p-XIAP axis. Exp Hematol 70:42–54.e3PubMedCrossRef
216.
Zurück zum Zitat Shang J, Chen WM, Liu S, Wang ZH, Wei TN, Chen ZZ et al (2019) CircPAN3 contributes to drug resistance in acute myeloid leukemia through regulation of autophagy. Leuk Res 85:106198PubMedCrossRef Shang J, Chen WM, Liu S, Wang ZH, Wei TN, Chen ZZ et al (2019) CircPAN3 contributes to drug resistance in acute myeloid leukemia through regulation of autophagy. Leuk Res 85:106198PubMedCrossRef
217.
Zurück zum Zitat Wang J, Liang Y, Qin Y, Jiang G, Peng Y, Feng W (2022) circCRKL, a circRNA derived from CRKL, regulates BCR-ABL via sponging miR-877-5p to promote chronic myeloid leukemia cell proliferation. J Transl Med 20(1):395PubMedPubMedCentralCrossRef Wang J, Liang Y, Qin Y, Jiang G, Peng Y, Feng W (2022) circCRKL, a circRNA derived from CRKL, regulates BCR-ABL via sponging miR-877-5p to promote chronic myeloid leukemia cell proliferation. J Transl Med 20(1):395PubMedPubMedCentralCrossRef
218.
Zurück zum Zitat Lu YH, Huang ZY (2021) Global identification of circular RNAs in imatinib (IM) resistance of chronic myeloid leukemia (CML) by modulating signaling pathways of circ_0080145/miR-203/ABL1 and circ 0051886/miR-637/ABL1. Mol Med 27(1):148PubMedPubMedCentralCrossRef Lu YH, Huang ZY (2021) Global identification of circular RNAs in imatinib (IM) resistance of chronic myeloid leukemia (CML) by modulating signaling pathways of circ_0080145/miR-203/ABL1 and circ 0051886/miR-637/ABL1. Mol Med 27(1):148PubMedPubMedCentralCrossRef
219.
Zurück zum Zitat Zhong AN, Yin Y, Tang BJ, Chen L, Shen HW, Tan ZP et al (2021) CircRNA microarray profiling reveals hsa_circ_0058493 as a novel biomarker for imatinib-resistant CML. Front Pharmacol 12:728916PubMedPubMedCentralCrossRef Zhong AN, Yin Y, Tang BJ, Chen L, Shen HW, Tan ZP et al (2021) CircRNA microarray profiling reveals hsa_circ_0058493 as a novel biomarker for imatinib-resistant CML. Front Pharmacol 12:728916PubMedPubMedCentralCrossRef
223.
Zurück zum Zitat Naidu S, Magee P, Garofalo M (2015) MiRNA-based therapeutic intervention of cancer. J Hematol Oncol 8:1–8CrossRef Naidu S, Magee P, Garofalo M (2015) MiRNA-based therapeutic intervention of cancer. J Hematol Oncol 8:1–8CrossRef
224.
Zurück zum Zitat Rabaan AA, AlSaihati H, Bukhamsin R, Bakhrebah MA, Nassar MS, Alsaleh AA et al (2023) Application of CRISPR/Cas9 technology in cancer treatment: a future direction. Curr Oncol 30(2):1954–1976PubMedPubMedCentralCrossRef Rabaan AA, AlSaihati H, Bukhamsin R, Bakhrebah MA, Nassar MS, Alsaleh AA et al (2023) Application of CRISPR/Cas9 technology in cancer treatment: a future direction. Curr Oncol 30(2):1954–1976PubMedPubMedCentralCrossRef
225.
Zurück zum Zitat Zhang H, Qin C, An C, Zheng X, Wen S, Chen W et al (2021) Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol Cancer 20:1–22CrossRef Zhang H, Qin C, An C, Zheng X, Wen S, Chen W et al (2021) Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Mol Cancer 20:1–22CrossRef
226.
Zurück zum Zitat Chen M, Mao A, Xu M, Weng Q, Mao J, Ji J (2019) CRISPR-Cas9 for cancer therapy: Opportunities and challenges. Cancer Lett 447:48–55PubMedCrossRef Chen M, Mao A, Xu M, Weng Q, Mao J, Ji J (2019) CRISPR-Cas9 for cancer therapy: Opportunities and challenges. Cancer Lett 447:48–55PubMedCrossRef
227.
Zurück zum Zitat Khan MI, Hossain MI, Hossain MK, Rubel M, Hossain K, Mahfuz A et al (2022) Recent progress in nanostructured smart drug delivery systems for cancer therapy: a review. ACS Appl Bio Mater 5(3):971–1012PubMedCrossRef Khan MI, Hossain MI, Hossain MK, Rubel M, Hossain K, Mahfuz A et al (2022) Recent progress in nanostructured smart drug delivery systems for cancer therapy: a review. ACS Appl Bio Mater 5(3):971–1012PubMedCrossRef
Metadaten
Titel
Non-coding RNAs in leukemia drug resistance: new perspectives on molecular mechanisms and signaling pathways
verfasst von
Atefe Rahmati
Alireza Mafi
Omid Vakili
Firooze Soleymani
Zahra Alishahi
Sheida Yahyazadeh
Yasaman Gholinezhad
Malihe Rezaee
Thomas P. Johnston
Amirhossein Sahebkar
Publikationsdatum
01.08.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Annals of Hematology / Ausgabe 5/2024
Print ISSN: 0939-5555
Elektronische ISSN: 1432-0584
DOI
https://doi.org/10.1007/s00277-023-05383-3

Weitere Artikel der Ausgabe 5/2024

Annals of Hematology 5/2024 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hodgkin Lymphom: BrECADD-Regime übertrifft die Erwartungen

05.06.2024 ASCO 2024 Kongressbericht

Das Kombinationsregime BrECADD mit Brentuximab vedotin ermöglichte in der Studie HD21 beim fortgeschrittenen klassischen Hodgkin-Lymphom eine unerwartet hohe progressionsfreie Überlebensrate von 94,3% nach vier Jahren. Gleichzeitig war das Regime besser tolerabel als der bisherige Standard eBEACOPP.

Antikörper-Drug-Konjugat verdoppelt PFS bei Multiplem Myelom

05.06.2024 ASCO 2024 Nachrichten

Zwei Phase-3-Studien deuten auf erhebliche Vorteile des Antikörper-Wirkstoff-Konjugats Belantamab-Mafodotin bei vorbehandelten Personen mit Multiplem Myelom: Im Vergleich mit einer Standard-Tripeltherapie wurde das progressionsfreie Überleben teilweise mehr als verdoppelt.

Neuer TKI gegen CML: Höhere Wirksamkeit, seltener Nebenwirkungen

05.06.2024 Chronische myeloische Leukämie Nachrichten

Der Tyrosinkinasehemmer (TKI) Asciminib ist älteren Vertretern dieser Gruppe bei CML offenbar überlegen: Personen mit frisch diagnostizierter CML entwickelten damit in einer Phase-3-Studie häufiger eine gut molekulare Response, aber seltener ernste Nebenwirkungen.

Hereditäres Angioödem: Tablette könnte Akuttherapie erleichtern

05.06.2024 Hereditäres Angioödem Nachrichten

Medikamente zur Bedarfstherapie bei hereditärem Angioödem sind bisher nur als Injektionen und Infusionen verfügbar. Der Arzneistoff Sebetralstat kann oral verabreicht werden und liefert vielversprechende Daten.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.