Skip to main content
Erschienen in: BMC Nephrology 1/2022

Open Access 01.12.2022 | Research

Plasma C4 level was associated with mortality, cardiovascular and cerebrovascular complications in hemodialysis patients

verfasst von: Zheyu Xing, Yaqin Wang, Kunjing Gong, Yuqing Chen

Erschienen in: BMC Nephrology | Ausgabe 1/2022

Abstract

Background

Patients on maintenance hemodialysis (HD) exhibit a high risk of death, cardiovascular and cerebrovascular diseases (CCDs). Previous studies indicated complement activation associated with the increased risk of cardiovascular diseases in HD patients. This study aimed to explore whether the critical complement factors were associated with the adverse outcomes in HD patients.

Methods

A total of 108 HD patients were included and followed up for 52 months. The baseline clinical characteristics and plasma C3c, C1q, CFH, CFB, C4, MAC, C5a, C3a and MBL were measured. The three endpoints were death, cardiovascular and cerebrovascular events (CCEs) and the composition of them. Univariate and multivariate Cox regression identified factors associated with the three endpoints respectively. X-tile analyses determined the optimal cut-off values for high risks. Restricted cubic spline plots illustrated the dose–response relationships. Correlations between the complement factors and risk factors for CCDs were analyzed.

Results

Baseline plasma C4 was finally selected by univariate and multivariate Cox regression analyses for three endpoints, including all-cause mortality, CCEs and the composition of them. When baseline plasma C4 exceeded 0.47 (P = 0.001) or 0.44 (P = 0.018) g/L respectively, the risks for death or achieving the composite endpoint enhanced significantly. The relationships of C4 and HR for the three endpoints showed a positive linear trend. Plasma C4 had prominent correlations with blood TG (r = 0.62, P < 0.001) and HDL (r = -0.38, P < 0.001).

Conclusions

A higher baseline plasma C4 level was significantly associated with the future incidence of decease, CCEs and either of them. Plasma C4 level correlated with blood TG and HDL.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12882-022-02829-0.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
HD
Hemodialysis
CCDs
Cardiovascular and cerebrovascular diseases
C3c
Complement factor 3c
C1q
Complement factor 1q
CFH
Complement factor H
CFB
Complement factor B
C4
Complement factor 4
MAC
Membrane attack complex
C5a
Complement factor 5a
C3a
Complement factor 3a
MBL
Mannose-binding lectin
CCEs
Cardiovascular and cerebrovascular events
ESRD
End-stage renal disease
CKD
Chronic kidney disease
CR1
Complement receptor 1
Hs-CRP
Hypersensitive C-reactive protein
mCCI
Modified Charlson comorbidity index
CABG
Coronary artery bypass grafting
PCI
Percutaneous coronary intervention
TIA
Transient ischemic attack
VIF
Variance inflation factor
FDR
False discovery rate
CIs
Confidence intervals
HR
Hazard ratio
eGFR
Estimated glomerular filtration rate
SBP
Systolic blood pressure
DBP
Diastolic blood pressure
MAP
Mean arterial blood pressure
PP
Pulse pressure
WBC
White blood cell
PLT
Blood platelet
SF
Serum ferritin
PTH
Parathyroid hormone
TG
Triglyceride
TC
Total cholesterol
LDL
Low-density lipoprotein cholesterol
HDL
High-density lipoprotein cholesterol
MetS
Metabolic syndrome
C4BP
C4 binding protein
PAR1
Protease-activated receptor I
MASP2
Mannan-binding lectin-associated serine protease 2

Introduction

Hemodialysis (HD) has dominated the renal replacement therapy for decades among more than 2,000,000 patients afflicted with end-stage renal disease (ESRD) [1, 2]. Despite tremendous progress in HD techniques, the mortality and morbidity of complications (cardiovascular, cerebrovascular and infection diseases especially) remain extremely high [3]. Chronic kidney disease (CKD) is proved as an independent risk factor for all-cause mortality as well as cardiovascular and cerebrovascular diseases (CCDs) [4, 5]. Although maintenance HD contributes to extending the patients’ life against kidney failure, it also poses vascular injury on the already compromised cardio-cerebrovascular system [6, 7].
Recent decades have witnessed a series of studies about risk factors for mortality and complications in HD patients [8]. Apart from traditional risk factors (such as aging, comorbidities, obesity and dyslipidemia), more emerging risk factors (such as oxidative stress, endothelial dysfunction and chronic inflammation) [9] are identified to be substantially significant. Since the first report about the influence of HD on complement system [10], complement activation during HD has been thoroughly investigated [1114]. Previously, our cross-sectional study also observed complement activation among 108 HD patients, representing a decreased level of plasma C3c and complement factor B (CFB), and an elevated level of plasma mannose-binding lectin (MBL), C3a and C5a, compared with normal controls [15]. Further, diverse complement proteins, including MBL [1618], C3 [19], C1q-adiponectin [2], membrane attack complex (MAC) [19], complement factor H (CFH) [20] and complement receptor 1 (CR1) [21] were confirmed as significant predictors for the incidence of cardiovascular events or death for HD patients. Besides, a body of large studies targeting normal population also revealed plasma C3, C4 [22] and MBL [23, 24] level were risk factors for cardiovascular diseases.
In the present study, we took advantage of a prospective cohort to identify the pivotal components of complement system associated with the outcomes of HD patients. Other risk factors were also taken into consideration to control confounding variables. Determination of the optimal cut-off points for the identified factors is of considerable reference value for the prediction of the adverse events.

Materials and methods

Patients

A prospective study of 52 months (from October 2016 to February 2021) was conducted in a cohort of 108 patients on maintenance HD, recruited from a single center of Peking University First Hospital. All experiments were performed in accordance with relevant guidelines and regulations. The protocol has been described previously [15]. In brief, all patients were on a three times weekly dialysis schedule and spKt/V >  = 1.2. Patients with a significant inflammatory illness were excluded, defined as hypersensitive C-reactive protein (hs-CRP) > 50 mg/L.

Data collection and follow-up

The severity of baseline comorbidities was assessed by the modified Charlson comorbidity index (mCCI), which was reported as a strong predictor for mortality in HD patients [25]. The mCCI is based on 19 certain comorbidities and excludes the subject’s age (Table S1) and can serve as a prediction tool for 10-year survival [25, 26].
During the study period, data on death and cardiovascular or cerebrovascular events (CCEs), considered as two endpoints respectively, were collected prospectively according to the medical records. Cardiovascular events were defined as the occurrence of ischemic heart disease [unstable angina pectoris, myocardial infarction, coronary artery bypass grafting (CABG) and/ or percutaneous coronary intervention (PCI)], sudden cardiac death and congestive heart failure (diagnosed according to the Modified Framingham clinical criteria) [17, 27]. Cerebrovascular events were defined as stroke (confirmed by neuroimaging), transient ischemic attack (TIA) (according to the AHA/ASA scientific statement of TIA in 2009) [28], or newly diagnosed > 70% stenosis of the extracranial carotid artery [17]. The composite endpoint, “decease or CCEs”, was also assessed. Besides, censoring events were considered as renal transplantation, transfers to other HD centers or achieving the end of the study, and the date was recorded as the final follow-up date.

Clinical and laboratory measurements

Baseline clinical characteristics of the cohort have been published previously, as well as other laboratory measurements [15]. In summary, baseline demographic information was acquired from medical records, and baseline blood samples were obtained before the start of a regular 4-h HD session for regular laboratory tests and the quantification of complement components. Plasma C3a, C5a, MBL and MAC (sC5b-9) levels were detected by commercial ELISA kits from Quidel Corporation (San Diego, CA) [15]. We applied immunity transmission turbidity kits (Shanghai Beijia Biochemistry Reagents Co., Ltd) to quantify plasma C3c, CFB, CFH, C1q and C4 levels [15]. All the experiments were performed in accordance with the manufacturer’s instructions.

Sample size

We calculated the sample size based on the previous reports stating the mortality rate of HD patients as around 0.15 [16, 29]. PASS software 15 (NCSS LLC., Kaysville, U.T., USA) was used for sample size calculation. Based on the statistical experience, a standard deviation as 1.50 of the log hazard ratio on a covariate was determined in the Cox regression. To achieve 80% power at a 0.05 significance level with two sides, a sample of 97 observations was recommended with a regression coefficient equal to 0.55. The sample size was adjusted since a multiple regression of the variable of interest on the other covariates in the Cox regression was expected to have an R-Squared of 0.20. Considering a 10% loss of follow-up rate, 108 observations were included in the study.

Statistical analyses

Statistical evaluation was conducted with SPSS 25.0 (SPSS Inc., Chicago, IL, USA) and GraphPad Prism v.8 (La Jolla, CA, USA). Continuous parameters were presented as mean ± standard deviation or median (interquartile range), while categorical variables as proportions. In between-group comparisons were done using chi-square tests, t-test or Mann–Whitney U test. Survival analyses were performed by using the univariate and multivariate Cox regression for three endpoints respectively. Considering the event number [30], two confounders (with the lowest p value and reported important [31]) were applied to adjust in the multivariate Cox regression. We calculated the variance inflation factor (VIF) values and tolerance to evaluate collinearity between variables, with VIF > 10 and tolerance < 0.1 considered indicative of collinearity. False discovery rate (FDR) was applied to do multiple testing by using an FDR calculator (at http://​www.​rowett.​ac.​uk/​Bgwh/​fdr.​html4). X-tile 3.6.1 software (Yale University, New Haven, CT, USA) [32] was exploited to determine the optimal cut-off value for plasma C4 level in our HD cohort. R 4.1.0 (The R Foundation, Vienna, Austria) was applied to visualize restricted cubic spline models (with 4 knots at 5th, 35th, 65th, 95th percentiles of C4 by RMS package) and correlation map (with Spearman’s correlation coefficients by corrplot package). P < 0.05 and FDR < 0.1 were considered statistically significant. All confidence intervals (CIs) were stated at a 95% confidence level.

Results

Patient characteristics and outcomes

A total of 108 patients with maintenance HD were enrolled according to the inclusion and exclusion criteria. The characteristics of the patient population have been reported previously [15]. In brief, there were 62 males and 46 females aged 56 ± 12, undergoing HD therapy for 60 (29,122) months at baseline. Other general characteristics probably correlated with prognosis and plasma complement factors (C3c, C1q, CFH, CFB, C4, MAC, C5a, C3a and MBL) are shown in Table 1, stratified by death or alive.
Table 1
Baseline characteristics of the HD cohort stratified by outcome
 
All patients (N = 108)
Died (N = 17)
Alive a(N = 91)
P
Clinical characteristics
 Age(years)
56(46,65)
64(52,77)
54(44,64)
0.010*
 Gender(male/female)
62(57.4%) / 46(42.6%)
9(52.9%) / 8(47.1%)
53(58.2%) / 38(41.8%)
0.685
 HD duration(months)
60(29,122)
74(34,155)
58(27,113)
0.299
 Follow-up time(months)
52(39,52)
37(16,41)
52(52,52)
 < 0.001*
 mCCI
3(2,4)
5(2,5)
3(2,4)
0.060
 SBP(mm Hg)
152 ± 22
142 ± 26
154 ± 20
0.037*
 DBP(mm Hg)
77 ± 15
72 ± 18
79 ± 14
0.080
 MAP(mm Hg)
101 ± 18
95 ± 19
104 ± 13
0.097
 PP(mm Hg)
74 ± 21
70 ± 18
75 ± 21
0.367
 Hemoglobin(g/L)
112.80(105.35,118.00)
107.39(102.55,119.95)
113.00(106.67,117.6)
0.236
 WBC(× 10^9/L)
6.16(5.18,7.74)
6.87(4.33,8.18)
6.12(5.22,7.58)
0.565
 PLT(× 10^9/L)
164.38 ± 53.48
131.77 ± 50.35
169.62 ± 52.36
0.013*
 Glucose(mmol/L)
6.12(5.22,7.92)
6.87(4.33,8.18)
6.03(5.20,7.41)
0.176
 Albumin(g/L)
40.75(38.35,42.45)
37.76 ± 3.86
40.683.52
0.003*
 Hs-CRP(mg/L)
1.89(0.57,4.82)
4.42(2.28,10.40)
1.72(0.47,4.38)
0.045*
 SF(ug/L)
296.99 ± 165.25
299.37 ± 140.31
296.59 ± 169.85
0.956
 eGFR(ml/min⋅1.73m2)
15.26(12.61,18.31)
15.78(14.03,20.50)
15.16(12.57,17.80)
0.788
 spKt/V
1.53 ± 0.29
1.43 ± 0.35
1.54 ± 0.28
0.168
 Phosphate(mmol/L)
1.67(1.40,2.13)
1.71(1.55,2.01)
1.66(1.40,2.14)
0.745
 Calcium(mmol/L)
2.33 ± 0.28
2.26 ± 0.23
2.35 ± 0.28
0.258
 PTH(pg/ml)
328.89(169.80,487.40)
287.43(121.31,419.14)
348.46(172.24,525.92)
0.216
Complement factors
 C3c(g/L)
0.92 ± 0.17
0.98 ± 0.21
0.91 ± 0.16
0.154
 C1q(mg/L)
201.84 ± 41.43
209.34 ± 39.79
200.44 ± 41.79
0.419
 CFH(ug/mL)
361.77 ± 57.63
388.64 ± 75.32
361.21 ± 57.06
0.169
 CFB(mg/L)
346.15(299.93,388.20)
355.5(288.55,430.70)
346.10(302.40,387.20)
0.358
 C4(g/L)
0.31(0.25,0.38)
0.33(0.28,0.49)
0.31(0.24,0.38)
0.205
 MAC (ng/mL)
482.26(307.59,783.75)
401.80(325.65,981.94)
484.32(294.83,758.05)
0.440
 C5a(ng/mL)
31.03 ± 10.80
28.13 ± 9.70
31.57 ± 10.97
0.230
 C3a(ng/mL)
238.72(190.12,318.95)
280.29(224.61,346.60)
229.03(182.10,294.49)
0.339
 MBL(ng/mL)
4346.38(1415.73,8979.95)
4096.73(923.94,8756.41)
4807.28(1466.52,9043.82)
0.471
 Primary cause of ESRD
   
0.415
 Primary glomerulopathy
37(34.3%)
5(29.4%)
32(35.2%)
 
 Diabetes
14(13.0%)
2(11.8%)
12(13.2%)
 
 Hypertension
14(13.0%)
4(23.5%)
10(11.0%)
 
 ADTKD
10(9.3%)
0
10(11.0%)
 
 Tubulointerstitial nephropathy
17(15.7%)
2(11.8%)
15(16.5%)
 
 Other or unknown
16(14.8%)
4(23.5%)
12(13.2%)
 
Comorbidity
    
 CCDs
39(36.1%)
9(52.9%)
30(33.0%)
0.116
 Hypertension
77(71.3%)
8(47.1%)
69(75.8%)
0.034*
 Diabetes
12(11.1%)
2(11.8%)
10(11.0%)
1.000
Data are shown as mean ± SD or median (interquartile range) for continuous variables and proportions for categorical variables. P < 0.05 are marked with *
a The alive refers to patients who weren’t dead until the end of their censoring time (N = 91), including those undergoing maintenance hemodialysis (N = 75) and receiving renal transplantation or transferring to other hospitals (N = 16) during the follow-up
HD duration, hemodialysis duration; mCCI, modified Charlson comorbidity index, SBP systolic blood pressure, DBP diastolic blood pressure, MAP mean arterial blood pressure, PP pulse pressure, WBC white blood cell, PLT blood platelet, Hs-CRP high-sensitivity C-reactive protein, SF serum ferritin, eGFR estimated glomerular filtration rate, PTH parathyroid hormone, CFH complement factor H, CFB complement factor B, MAC membrane attack complex, complement C5b-9; MBL mannose-binding lectin
During 52 months follow-up period, 17 patients died. Sixteen survived patients received renal transplantation or were transferred to other dialysis centers, and the other 75 maintained HD in our center (Fig. 1). The primary cause of death of the 17 patients was cardiovascular (n = 7, 41.2%) and cerebrovascular (n = 2, 11.8%) events (CCEs). Infection (n = 5, 29.4%) took up the secondary place. Moreover, other six cases attacked by cardiovascular (n = 4) or cerebrovascular (n = 2) events, survived and maintained HD until the end of the study. In total, 23 patients achieved the composite endpoint (Fig. 2).

Clinical parameters and plasma complement factors associated with the prognosis by univariate Cox regression analysis

To identify the correlation between clinical parameters and the prognosis of HD patients, we collected multiple possible indexes reported previously [8] to conduct univariate Cox regression for three endpoints, including death, CCEs and the composite endpoint (Table 2). Seven factors have been identified to be significantly associated with all-cause mortality, one with the incidence of CCEs and four with the composite endpoint. Remarkably, a high level of plasma C4 was significantly associated with all of the three endpoints (HR, 5.039; 95%CI, 1.337–18.998; P = 0.017 for all-cause mortality, HR, 4.497; 95%CI, 1.117–18.104; P = 0.034 for CCEs, HR, 3.927; 95%CI, 1.120–13.769; P = 0.033 for the composite endpoint). Besides, only the FDR of C4 for the all-cause mortality was calculated < 0.1 (equal to 0.051) among 9 complement factors. To further visualize the distribution of plasma C4 levels, histograms were plotted (Figure S1). Aging was associated both with an increased all-cause mortality (HR, 1.059; 95%CI, 1.012–1.108; P = 0.013) and incidence of composite endpoint (HR, 1.054; 95%CI, 1.015–1.094; P = 0.006), and mCCI score showed a similar trend (HR, 1.295; 95%CI, 1.034–1.622; P = 0.024 for all-cause mortality, HR, 1.245; 95%CI, 1.025–1.512; P = 0.027 for the composite endpoint). An elevated blood platelet count was associated both with reduced risk of all-cause mortality (HR, 0.987; 95%CI, 0.978–0.997; P = 0.009) and incidence of the composite endpoint (HR, 0.991; 95%CI, 0.983–0.999; P = 0.032).
Table 2
Univariate Cox regression analyses for 3 endpoints
https://static-content.springer.com/image/art%3A10.1186%2Fs12882-022-02829-0/MediaObjects/12882_2022_2829_Tab2_HTML.png
P < 0.05 are marked with *. Forest plot of hazard ratios and 95% confidence interval are shown in the right panels, colored black for all-cause mortality, red for CCEs and grey for the composite endpoint. Only the FDR of C4 for the all-cause mortality was calculated < 0.1 (equal to 0.051) among 9 complement factors
HR hazard ratio, CI confidence interval, CCEs cardiovascular and cerebrovascular events, HD duration hemodialysis duration, mCCI modified Charlson comorbidity index, SBP systolic blood pressure, DBP diastolic blood pressure, MAP mean arterial blood pressure, PP pulse pressure, WBC white blood cell, PLT blood platelet, HsCRP high-sensitivity C-reactive protein, SF serum ferritin, PTH parathyroid hormone, CFH complement factor H, CFB complement factor B, MAC membrane attack complex, complement C5b-9, MBL mannose-binding lectin, FDR false discovery rate

Clinical parameters and plasma complement factors associated with the prognosis by multivariate Cox regression analysis

For further exploration, we then performed multivariate Cox regression analyses to control confounding variables (Table 3). Model I was constructed to adjust for age and PLT because of their low p values and clinical importance reported before [31]. Furthermore, there was no collinearity among the independent variables as their VIF < 10 and tolerance > 0.1 (Table S3).
Table 3
Multivariate Cox regression analyses for 3 endpoints
 
All-cause mortality
CCEs
Composite endpoint
Non-adjusted
Model I
Non-adjusted
Model I
Non-adjusted
Model I
 
P < 0.001
 
P = 0.008
 
P < 0.001
C4(g/L)
5.04 (1.34–19.00)
46.70 (6.80–320.67)
4.50 (1.12–18.10)
6.40 (1.49–27.44) 
3.93 (1.12–13.77)
14.66 (3.00–71.69)
P = 0.017
P < 0.001
P = 0.034
P = 0.013
P = 0.033
P = 0.001
Age(years)
1.06 (1.01–1.11)
1.09 (1.03–1.15)
1.03 (0.99–1.08)
1.05 (1.00–1.10)
1.05 (1.02–1.09)
1.07 (1.02–1.11)
P = 0.013
P = 0.003
P = 0.129
P = 0.048
P = 0.006
P = 0.003
PLT(× 10^9/L)
0.99 (0.98–0.99)
0.98 (0.97–0.99)
1.00 (0.99–1.00)
 
0.99 (0.98–0.99)
0.99 (0.98–0.99)
P = 0.009
P = 0.002
P = 0.282
P = 0.167
P = 0.032
P = 0.015
According to the model above, increased plasma C4 showed a significant association with the incidence of all three adverse endpoints, while blood platelet count showed the opposite effect. Specifically, a higher baseline plasma C4 was associated with a worse prognosis, including an increased risk of death (HR, 46.70; 95%CI, 6.80–320.67; P < 0.001 in model I), incidence of CCEs (HR, 6.40; 95%CI, 1.49–27.44; P = 0.013 in model I) or achieving the composite endpoint (HR, 14.66; 95%CI, 3.00–71.69; P = 0.001 in model I). The patients with higher blood platelet count seemed to have reduced risk of death (HR, 0.98; 95%CI, 0.97–0.99; P = 0.002 in model I) or achieving the composite endpoint (HR, 0.99; 95%CI, 0.98–0.99; P = 0.015 in model I).

Outcome-based cut-point optimization of complement factor 4 by X-tile analysis

Since the baseline plasma C4 level may predict the prognosis of the cohort, X-tile analyses were performed (Fig. 3). We tried to determine the optimal cut-off values for plasma C4 to identify patients with a high risk for adverse outcomes. X-tile plots of the HD cohort displayed the optimal cut-off values. Histogram analyses of plasma C4 level showed a continuous distribution and were separated by the values in two colors. These divisions were applied to chart Kaplan–Meier plots and calculate the corresponding Log Rank (Mantel-Cox) chi-square and P values. In total, X-tile analyses revealed that once plasma C4 was higher than 0.47 (X2 = 11.386, P = 0.001) or 0.44 (X2 = 5.616, P = 0.018) g/L respectively, the risk of death (Fig. 3a) or suffering either death or being attacked by CCEs (Fig. 3c) increased significantly. The optimal cut-off value for CCEs was 0.39 g/L (Fig. 3b), but with no statistical significance (X2 = 3.615, P = 0.057).

Dose-response analysis of plasma C4 level with prognosis by restricted cubic spline model

A restricted cubic spline model with 4 knots at 5th, 35th, 65th, 95th percentiles of C4 (Fig. 4) was employed to simulate the relationship between plasma C4 level and the risk for three endpoints. The model was adjusted with age and PLT. The relationships between plasma C4 level and HR for death (P for nonlinear trend = 0.9098, for linear trend = 0.0017, Fig. 4a), the incidence of CCEs (P for nonlinear trend = 0.5913, for linear trend = 0.0465, Fig. 4b) and the composite endpoint (P for nonlinear trend = 0.7162, for linear trend = 0.0131, Fig. 4c) were all observed as a linear tendency.

Correlations between complement factors and the traditional risk factors for CCDs at baseline

To further investigate possible mechanisms for the relationship between complement C4 and the prognosis, we assessed the correlations between complement factors and the traditional risk factors for CCDs at baseline. Apart from age, gender, blood pressure and diabetes mellitus or not, we detected the baseline blood lipids, containing triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL) and high-density lipoprotein cholesterol (HDL) among 78 of the 108 HD patients. No significant difference in baseline characteristics between the 78 patients and the whole (Table S2).
Spearman’s correlation analyses (Fig. 5) indicated the strong positive correlations between C4, CFB, CFH and C3c, especially between CFB and C4 (r = 0.82, P < 0.001), CFH (r = 0.86, P < 0.001) and C3c (r = 0.82, P < 0.001). Moreover, C4 exhibited a prominent correlation with blood lipids, primarily with TG (r = 0.62, P < 0.001) and HDL (r = -0.38, P < 0.001) (Figure S2). Conversely, in our HD cohort, no significant correlations were revealed between C4 and age (r = -0.05, P = 0.941), SBP (r = -0.08, P = 0.069), DBP (r = -0.01, P = 0.956) and diabetes mellitus (r = 0.11, P = 0.668).

Discussion

The present study showed an association between the baseline plasma C4 level and the adverse outcomes, including all-cause mortality and CCEs, among patients receiving maintenance HD. Both in the unadjusted and adjusted models, plasma C4 level substantially showed a predictive value. Patients whose baseline plasma C4 > 0.47 g/L or 0.44 g/L in our cohort exhibited higher all-cause mortality or incidence of CCEs. Meanwhile, the level of plasma C4 manifested a positive linear trend with HR for death, CCEs and either of them. In our cohort, baseline plasma C4 levels had correlations with blood lipids, which were widely acknowledged as risk factors for the development of cardiovascular diseases. These findings suggested that C4 may participate in the pathological processes in patients with maintenance HD and excess plasma C4 predicted a worse prognosis for HD patients.
A body of evidence indicated that multiple complement components related to outcomes of HD patients, covering MBL [1618], C3 [19], C1q-adiponectin [2], MAC [19], CFH [20] and CR1 [21]. A higher level of plasma C3 before an HD session, was reported to be associated with a higher probability of cardiovascular events [19]. Baseline sC5b-9 levels was predicted to be correlated with cardiovascular events and mortality. A lower level of serum C1q-adiponectin/C1q ratios were also identified as a prognostic marker of cardiovascular diseases [2]. Thus, a possible explanation would be that both an elevated complement activation and an intensified complement activity have been the risk factors for cardiovascular diseases. Additionally, Satomura et al. revealed that a lower MBL level could independently predict all-cause mortality in HD patients [16], which was also proposed to be linked with the morbidity of cardiovascular diseases in HD patients [17] and linked to accelerating arterial stiffness in HD patients [33].
Significantly, the diversity of the above conclusions mainly resulted from the heterogeneity of the patients. The patients’ characteristics varied among different HD centers, particularly such as, age, ethnicity, HD duration, the primary cause of ESRD and comorbidities. These differences profoundly influenced the distribution of the plasma complement levels among patients. Specifically, patients in Satomura’s study (9.054 ± 5.115 μg/ml) had a higher level of MBL than ours [4.346(1.415, 8.979)μg/ml] likely because of heterogeneity. Although a lower level of MBL wasn’t regarded as a significant risk factor in the current study, we indeed found a slight tendency likewise in our cohort. There was a considerable amount of the death whose MBL level was lower than 2.5 μg/ml [as 7 of 17 patients (41.2%)] (Figure S3). According to the above, conclusions in this field should be restricted to the certain population for higher accuracy. Furthermore, HD patients with any suspicious risk values should be carefully monitored and cared to decrease mortality and the incidence of CCEs.
Our previous cross-sectional study in the same cohort, found that the complement system was activated in patients on hemodialysis and a higher plasma C3a level prior a dialysis session was associated with severe abdominal aortic calcification [15]. Thus, we included all measured plasma complement factors to identify the critical components associated with the outcomes. As a consequence, an elevated level of plasma C4 was proposed to be the risk factor that significantly increased all-cause mortality and incidence of CCEs, independent of other risk factors reported previously [8]. Although plasma C4 level among hemodialysis patients (0.312 g/L (0.25 g/L,0.38 g/L)) wasn’t prominently higher (P = 0.10) than the normal (0.285 g/L (0.22 g/L,0.39 g/L)) [15], an increased level of plasma C4 could discriminate patients with adverse outcomes.
In the complement cascades, C4 contributes to the formation of C3 convertase in the classical and lectin pathway. Circulating C4 and C3 mainly derive from hepatocytes [34] and are also related to adipose tissue variables [35] and involved in the development of visceral adiposity [36]. In healthy individuals, the polymorphism of C4 genes, including the variation of the gene copy number, the gene size and the C4 isotypes (C4A and C4B), largely determines the plasma levels and functions of C4 [37]. An elevated level of plasma C4, as well as C3, are reported as strong inflammatory indicators of metabolic syndrome [38, 39], cardiovascular diseases [22], thrombotic diseases [40] and allergic diseases [41]. During the pathological process, C4 and C4a may play pivotal roles in chronic inflammation and tissue injury, rather than defending against pathogens and cleaning immune complex and cells [42]. The elevated systemic C4 and C3 levels were probably correlated with metabolic syndrome [38, 39, 42], which is proved to raise the risk of cardiovascular disease, diabetes and all-cause mortality among general population [43]. Although our study confirmed the critical impact of plasma C4, plasma C3 level wasn’t measured in the analyses. As we mentioned above, in those studies reported the correlation between C3 and prognosis, the plasma C4 levels were not measured. Further investigations are also needed to answer the relationship between C3 and C4, and their predictive value for prognosis in patients with maintenance HD.
Apart from the well-known conjunction in complement pathways, C4 may have distinct effects on metabolism and chronic inflammation [38]. Studies of human populations have shown that C3 and C4 are associated with the incidence of myocardial infarction and stroke [22], as well as with their risk factors, such as obesity, hypertension, hyperlipemia and diabetes [2831]. Analogous associations were sighted in our HD cohort between plasma C4 and the incidence of CCEs and hyperlipemia. Cytokines stimulating the hepatic production of C4 may also induce hyperlipemia and undermine insulin sensitivity. C4 binding protein (C4BP) inhibits the classical and lectin pathway by binding to C4b and is reported as a protective factor for desired blood pressure, fasting blood glucose and cell function [44, 45]. Furthermore, C4a, the product of C4 activation, may participate in cardiac remodeling and inflammation [46] by binding to protease-activated receptor I (PAR1) [47]. Other components participating in the C4 activation, for example, platelets and endothelial cells [38], are receiving increasing attention due to their crosstalk in inflammation and vascular injury [48, 49]. In our study, plasma C4 showed strong correlations with CFH, CFB, C1q and C3c. Thus, the impact of C4 on the prognosis in HD patients is likely to exert through the classic and alternative pathways.
Other baseline variables in our study, including demographic characteristics and laboratory measurements, were also included in the analyses as confounding factors. According to the univariate Cox regression, age, albumin, blood pressure, mCCI and comorbidity conditions were associated with prognosis, in consistent with previous studies [8, 25, 5055]. Besides, a low level of blood platelet count was identified as a risk factor in our study. However, previous studies revealed that those with a high platelet count (> 300 × 10^9/L) exhibited higher cardiovascular mortality [56]. Given the fact above, therapies targeting or affecting platelet need to be individualized and refined among HD patients. The dialyzer is considered to exert remarkable impacts on the count, morphology and function of platelet [57, 58], worsening the already undesired platelet dysfunction (thrombosis and bleeding diathesis) in patients with ESRD [56]. Considerable activation of platelet can occur during HD session, owing to the exposure to dialysis membrane [57]. Whether the platelet activation by dialyzer contributes to the elevated all-cause mortality and incidence of CCEs in HD patients remains inconclusive.
Nevertheless, there are some limitations in our study. The case volume of the prospective analyses was relatively low, so limited endpoint events were observed. These defects might weaken the power of tests, especially the multivariate Cox regression. Owing to the potential possibility of overfitting, the multivariate Cox regression models could only reveal the significance of plasma C4 levels rather than be applied as the predict tools for HD patients. Patients enrolled in our study were used as the training population to determine the hazard thresholds of plasma C4 level, thus a validation population is needed to further confirm the optimal value. C4 is cleaved by C1s [59] and mannan-binding lectin-associated serine protease 2(MASP2) [60] to release C4a and C4b to produce C3 convertase subsequently. Thus, whether the downstream fragments of C4 activation, such as C4a and C4d, have the correlations with the prognosis in HD patients is further to be excavated.
In conclusion, a high level of baseline plasma C4 was confirmed to be associated with all-cause mortality and the incidence of CCEs. Consequently, plasma C4 level is recommended as an innovative clinical predictor for HD patients, together with other risk-related variables, such as age, blood pressure, albumin, blood platelet count, etc. Further studies are required to thoroughly elucidate the significance and mechanisms of plasma C4 in HD patients.

Acknowledgements

We are very grateful to Professor Xue-ying Li for her assistance in medical statistics.

Declarations

This project was approved by the Ethics Committee of Peking University First Hospital (ethical approval number: 2015[1012]). All patients participating in this study were informed, signed informed consents and voluntarily participated.
Not applicable.

Competing interests

All the authors declared no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Agarwal AK, Haddad NJ, Vachharajani TJ, Asif A. Innovations in vascular access for hemodialysis. Kidney Int. 2019;95(5):1053–63.PubMedCrossRef Agarwal AK, Haddad NJ, Vachharajani TJ, Asif A. Innovations in vascular access for hemodialysis. Kidney Int. 2019;95(5):1053–63.PubMedCrossRef
2.
Zurück zum Zitat Kishida K, Kishida N, Arima M, Nakatsuji H, Kobayashi H, Funahashi T, et al. Serum C1q- binding adiponectin in maintenance hemodialysis patients. BMC Nephrol. 2013;14:50.PubMedPubMedCentralCrossRef Kishida K, Kishida N, Arima M, Nakatsuji H, Kobayashi H, Funahashi T, et al. Serum C1q- binding adiponectin in maintenance hemodialysis patients. BMC Nephrol. 2013;14:50.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Saran R, Robinson B, Abbott KC, Bragg-Gresham J, Chen X, Gipson D, et al. US Renal Data System 2019 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis. 2020;75(1 Suppl 1):A6-a7.PubMedCrossRef Saran R, Robinson B, Abbott KC, Bragg-Gresham J, Chen X, Gipson D, et al. US Renal Data System 2019 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis. 2020;75(1 Suppl 1):A6-a7.PubMedCrossRef
5.
Zurück zum Zitat Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296–305.PubMedCrossRef Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351(13):1296–305.PubMedCrossRef
6.
Zurück zum Zitat Cozzolino M, Mangano M, Stucchi A, Ciceri P, Conte F, Galassi A. Cardiovascular disease in dialysis patients. Nephrol Dial Transplant. 2018;33(suppl_3):iii28-iii34. Cozzolino M, Mangano M, Stucchi A, Ciceri P, Conte F, Galassi A. Cardiovascular disease in dialysis patients. Nephrol Dial Transplant. 2018;33(suppl_3):iii28-iii34.
8.
Zurück zum Zitat Ma L, Zhao S. Risk factors for mortality in patients undergoing hemodialysis: A systematic review and meta-analysis. Int J Cardiol. 2017;238:151–8.PubMedCrossRef Ma L, Zhao S. Risk factors for mortality in patients undergoing hemodialysis: A systematic review and meta-analysis. Int J Cardiol. 2017;238:151–8.PubMedCrossRef
9.
Zurück zum Zitat Ekdahl KN, Soveri I, Hilborn J, Fellstrom B, Nilsson B. Cardiovascular disease in haemodialysis: role of the intravascular innate immune system. Nat Rev Nephrol. 2017;13(5):285–96.PubMedCrossRef Ekdahl KN, Soveri I, Hilborn J, Fellstrom B, Nilsson B. Cardiovascular disease in haemodialysis: role of the intravascular innate immune system. Nat Rev Nephrol. 2017;13(5):285–96.PubMedCrossRef
10.
Zurück zum Zitat Craddock PR, Fehr J, Brigham KL, Kronenberg RS, Jacob HS. Complement and leukocyte-mediated pulmonary dysfunction in hemodialysis. N Engl J Med. 1977;296(14):769–74.PubMedCrossRef Craddock PR, Fehr J, Brigham KL, Kronenberg RS, Jacob HS. Complement and leukocyte-mediated pulmonary dysfunction in hemodialysis. N Engl J Med. 1977;296(14):769–74.PubMedCrossRef
11.
Zurück zum Zitat Chenoweth DE, Cheung AK, Henderson LW. Anaphylatoxin formation during hemodialysis: effects of different dialyzer membranes. Kidney Int. 1983;24(6):764–9.PubMedCrossRef Chenoweth DE, Cheung AK, Henderson LW. Anaphylatoxin formation during hemodialysis: effects of different dialyzer membranes. Kidney Int. 1983;24(6):764–9.PubMedCrossRef
12.
Zurück zum Zitat Szebeni J. Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals. Mol Immunol. 2014;61(2):163–73.PubMedCrossRef Szebeni J. Complement activation-related pseudoallergy: a stress reaction in blood triggered by nanomedicines and biologicals. Mol Immunol. 2014;61(2):163–73.PubMedCrossRef
13.
Zurück zum Zitat Hempel JC, Poppelaars F, da Costa MG, Franssen CFM, de Vlaam TPG, Daha MR, et al. Distinct in vitro Complement Activation by Various Intravenous Iron Preparations. Am J Nephrol. 2017;45(1):49–59.PubMedCrossRef Hempel JC, Poppelaars F, da Costa MG, Franssen CFM, de Vlaam TPG, Daha MR, et al. Distinct in vitro Complement Activation by Various Intravenous Iron Preparations. Am J Nephrol. 2017;45(1):49–59.PubMedCrossRef
14.
Zurück zum Zitat Lhotta K, Wurzner R, Kronenberg F, Oppermann M, Konig P. Rapid activation of the complement system by cuprophane depends on complement component C4. Kidney Int. 1998;53(4):1044–51.PubMedCrossRef Lhotta K, Wurzner R, Kronenberg F, Oppermann M, Konig P. Rapid activation of the complement system by cuprophane depends on complement component C4. Kidney Int. 1998;53(4):1044–51.PubMedCrossRef
15.
Zurück zum Zitat Wang Y, Miao Y, Gong K, Cheng X, Chen Y, Zhao MH. Plasma Complement Protein C3a Level Was Associated with Abdominal Aortic Calcification in Patients on Hemodialysis. J Cardiovasc Transl Res. 2019;12(5):496–505.PubMedCrossRef Wang Y, Miao Y, Gong K, Cheng X, Chen Y, Zhao MH. Plasma Complement Protein C3a Level Was Associated with Abdominal Aortic Calcification in Patients on Hemodialysis. J Cardiovasc Transl Res. 2019;12(5):496–505.PubMedCrossRef
16.
Zurück zum Zitat Satomura A, Endo M, Fujita T, Ohi H, Ohsawa I, Fuke Y, et al. Serum mannose-binding lectin levels in maintenance hemodialysis patients: impact on all-cause mortality. Nephron Clin Pract. 2006;102(3–4):c93–9.PubMed Satomura A, Endo M, Fujita T, Ohi H, Ohsawa I, Fuke Y, et al. Serum mannose-binding lectin levels in maintenance hemodialysis patients: impact on all-cause mortality. Nephron Clin Pract. 2006;102(3–4):c93–9.PubMed
17.
Zurück zum Zitat Poppelaars F, da Costa MG, Berger SP, Assa S, Meter-Arkema AH, Daha MR, et al. Strong predictive value of mannose-binding lectin levels for cardiovascular risk of hemodialysis patients. J Transl Med. 2016;14(1):236.PubMedPubMedCentralCrossRef Poppelaars F, da Costa MG, Berger SP, Assa S, Meter-Arkema AH, Daha MR, et al. Strong predictive value of mannose-binding lectin levels for cardiovascular risk of hemodialysis patients. J Transl Med. 2016;14(1):236.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Poppelaars F, Damman J, de Vrij EL, Burgerhof JGM, Saye J, Daha MR, et al. New insight into the effects of heparinoids on complement inhibition by C1-inhibitor. Clin Exp Immunol. 2016;184(3):378–88.PubMedPubMedCentralCrossRef Poppelaars F, Damman J, de Vrij EL, Burgerhof JGM, Saye J, Daha MR, et al. New insight into the effects of heparinoids on complement inhibition by C1-inhibitor. Clin Exp Immunol. 2016;184(3):378–88.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Lines SW, Richardson VR, Thomas B, Dunn EJ, Wright MJ, Carter AM. Complement and Cardiovascular Disease-The Missing Link in Haemodialysis Patients. Nephron. 2016;132(1):5–14.PubMedCrossRef Lines SW, Richardson VR, Thomas B, Dunn EJ, Wright MJ, Carter AM. Complement and Cardiovascular Disease-The Missing Link in Haemodialysis Patients. Nephron. 2016;132(1):5–14.PubMedCrossRef
20.
Zurück zum Zitat Buraczynska M, Ksiazek P, Zukowski P, Benedyk-Lorens E, Orlowska-Kowalik G. Complement factor H gene polymorphism and risk of cardiovascular disease in end-stage renal disease patients. Clin Immunol. 2009;132(2):285–90.PubMedCrossRef Buraczynska M, Ksiazek P, Zukowski P, Benedyk-Lorens E, Orlowska-Kowalik G. Complement factor H gene polymorphism and risk of cardiovascular disease in end-stage renal disease patients. Clin Immunol. 2009;132(2):285–90.PubMedCrossRef
21.
Zurück zum Zitat Buraczynska M, Ksiazek P, Wacinski P, Zukowski P, Dragan M, Bednarek-Skublewska A. Complement receptor 1 gene polymorphism and cardiovascular disease in dialyzed end-stage renal disease patients. Hum Immunol. 2010;71(9):878–82.PubMedCrossRef Buraczynska M, Ksiazek P, Wacinski P, Zukowski P, Dragan M, Bednarek-Skublewska A. Complement receptor 1 gene polymorphism and cardiovascular disease in dialyzed end-stage renal disease patients. Hum Immunol. 2010;71(9):878–82.PubMedCrossRef
22.
Zurück zum Zitat Engstrom G, Hedblad B, Janzon L, Lindgarde F. Complement C3 and C4 in plasma and incidence of myocardial infarction and stroke: a population-based cohort study. Eur J Cardiovasc Prev Rehabil. 2007;14(3):392–7.PubMedCrossRef Engstrom G, Hedblad B, Janzon L, Lindgarde F. Complement C3 and C4 in plasma and incidence of myocardial infarction and stroke: a population-based cohort study. Eur J Cardiovasc Prev Rehabil. 2007;14(3):392–7.PubMedCrossRef
23.
Zurück zum Zitat Keller TT, van Leuven SI, Meuwese MC, Wareham NJ, Luben R, Stroes ES, et al. Serum levels of mannose-binding lectin and the risk of future coronary artery disease in apparently healthy men and women. Arterioscler Thromb Vasc Biol. 2006;26(10):2345–50.PubMedCrossRef Keller TT, van Leuven SI, Meuwese MC, Wareham NJ, Luben R, Stroes ES, et al. Serum levels of mannose-binding lectin and the risk of future coronary artery disease in apparently healthy men and women. Arterioscler Thromb Vasc Biol. 2006;26(10):2345–50.PubMedCrossRef
24.
Zurück zum Zitat Saevarsdottir S, Oskarsson OO, Aspelund T, Eiriksdottir G, Vikingsdottir T, Gudnason V, et al. Mannan binding lectin as an adjunct to risk assessment for myocardial infarction in individuals with enhanced risk. J Exp Med. 2005;201(1):117–25.PubMedPubMedCentralCrossRef Saevarsdottir S, Oskarsson OO, Aspelund T, Eiriksdottir G, Vikingsdottir T, Gudnason V, et al. Mannan binding lectin as an adjunct to risk assessment for myocardial infarction in individuals with enhanced risk. J Exp Med. 2005;201(1):117–25.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Rattanasompattikul M, Feroze U, Molnar MZ, Dukkipati R, Kovesdy CP, Nissenson AR, et al. Charlson comorbidity score is a strong predictor of mortality in hemodialysis patients. Int Urol Nephrol. 2012;44(6):1813–23.PubMedCrossRef Rattanasompattikul M, Feroze U, Molnar MZ, Dukkipati R, Kovesdy CP, Nissenson AR, et al. Charlson comorbidity score is a strong predictor of mortality in hemodialysis patients. Int Urol Nephrol. 2012;44(6):1813–23.PubMedCrossRef
26.
Zurück zum Zitat Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–83.PubMedCrossRef Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–83.PubMedCrossRef
27.
Zurück zum Zitat McKee PA, Castelli WP, McNamara PM, Kannel WB. The natural history of congestive heart failure: the Framingham study. N Engl J Med. 1971;285(26):1441–6.PubMedCrossRef McKee PA, Castelli WP, McNamara PM, Kannel WB. The natural history of congestive heart failure: the Framingham study. N Engl J Med. 1971;285(26):1441–6.PubMedCrossRef
28.
Zurück zum Zitat Easton JD, Saver JL, Albers GW, Alberts MJ, Chaturvedi S, Feldmann E, et al. Definition and evaluation of transient ischemic attack: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease. The American Academy of Neurology affirms the value of this statement as an educational tool for neurologists. Stroke. 2009;40(6):2276–93.PubMedCrossRef Easton JD, Saver JL, Albers GW, Alberts MJ, Chaturvedi S, Feldmann E, et al. Definition and evaluation of transient ischemic attack: a scientific statement for healthcare professionals from the American Heart Association/American Stroke Association Stroke Council; Council on Cardiovascular Surgery and Anesthesia; Council on Cardiovascular Radiology and Intervention; Council on Cardiovascular Nursing; and the Interdisciplinary Council on Peripheral Vascular Disease. The American Academy of Neurology affirms the value of this statement as an educational tool for neurologists. Stroke. 2009;40(6):2276–93.PubMedCrossRef
29.
Zurück zum Zitat Yu L, Li H, Wang SX. Serum Magnesium and Mortality in Maintenance Hemodialysis Patients. Blood Purif. 2017;43(1–3):31–6.PubMedCrossRef Yu L, Li H, Wang SX. Serum Magnesium and Mortality in Maintenance Hemodialysis Patients. Blood Purif. 2017;43(1–3):31–6.PubMedCrossRef
30.
Zurück zum Zitat Steyerberg EW. FRANK E. HARRELL, Jr., Regression Modeling Strategies: With Applications, to Linear Models, Logistic and Ordinal Regression, and Survival Analysis, 2nd ed. Heidelberg: Springer. Biometrics. 2016;72(3):1006–7. Steyerberg EW. FRANK E. HARRELL, Jr., Regression Modeling Strategies: With Applications, to Linear Models, Logistic and Ordinal Regression, and Survival Analysis, 2nd ed. Heidelberg: Springer. Biometrics. 2016;72(3):1006–7.
31.
Zurück zum Zitat Zhao X, Niu Q, Gan L, Hou FF, Liang X, Ni Z, et al. Thrombocytopenia predicts mortality in Chinese hemodialysis patients- an analysis of the China DOPPS. BMC Nephrol. 2022;23(1):11.PubMedPubMedCentralCrossRef Zhao X, Niu Q, Gan L, Hou FF, Liang X, Ni Z, et al. Thrombocytopenia predicts mortality in Chinese hemodialysis patients- an analysis of the China DOPPS. BMC Nephrol. 2022;23(1):11.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Camp RL, Dolled-Filhart M, Rimm DL. X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res. 2004;10(21):7252–9.PubMedCrossRef Camp RL, Dolled-Filhart M, Rimm DL. X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res. 2004;10(21):7252–9.PubMedCrossRef
33.
Zurück zum Zitat Hornum M, Bay JT, Clausen P, Melchior Hansen J, Mathiesen ER, Feldt-Rasmussen B, et al. High levels of mannose-binding lectin are associated with lower pulse wave velocity in uraemic patients. BMC Nephrol. 2014;15:162.PubMedPubMedCentralCrossRef Hornum M, Bay JT, Clausen P, Melchior Hansen J, Mathiesen ER, Feldt-Rasmussen B, et al. High levels of mannose-binding lectin are associated with lower pulse wave velocity in uraemic patients. BMC Nephrol. 2014;15:162.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Zarkadis IK, Mastellos D, Lambris JD. Phylogenetic aspects of the complement system. Dev Comp Immunol. 2001;25(8–9):745–62.PubMedCrossRef Zarkadis IK, Mastellos D, Lambris JD. Phylogenetic aspects of the complement system. Dev Comp Immunol. 2001;25(8–9):745–62.PubMedCrossRef
35.
Zurück zum Zitat Nilsson B, Hamad OA, Ahlstrom H, Kullberg J, Johansson L, Lindhagen L, et al. C3 and C4 are strongly related to adipose tissue variables and cardiovascular risk factors. Eur J Clin Invest. 2014;44(6):587–96.PubMedCrossRef Nilsson B, Hamad OA, Ahlstrom H, Kullberg J, Johansson L, Lindhagen L, et al. C3 and C4 are strongly related to adipose tissue variables and cardiovascular risk factors. Eur J Clin Invest. 2014;44(6):587–96.PubMedCrossRef
36.
Zurück zum Zitat Warnberg J, Marcos A. Low-grade inflammation and the metabolic syndrome in children and adolescents. Curr Opin Lipidol. 2008;19(1):11–5.PubMedCrossRef Warnberg J, Marcos A. Low-grade inflammation and the metabolic syndrome in children and adolescents. Curr Opin Lipidol. 2008;19(1):11–5.PubMedCrossRef
37.
Zurück zum Zitat Castley AS, Martinez OP. Molecular analysis of complement component C4 gene copy number. Methods Mol Biol. 2012;882:159–71.PubMedCrossRef Castley AS, Martinez OP. Molecular analysis of complement component C4 gene copy number. Methods Mol Biol. 2012;882:159–71.PubMedCrossRef
38.
Zurück zum Zitat Xin Y, Hertle E, van der Kallen CJH, Schalkwijk CG, Stehouwer CDA, van Greevenbroek MMJ. Complement C3 and C4, but not their regulators or activated products, are associated with incident metabolic syndrome: the CODAM study. Endocrine. 2018;62(3):617–27.PubMedPubMedCentralCrossRef Xin Y, Hertle E, van der Kallen CJH, Schalkwijk CG, Stehouwer CDA, van Greevenbroek MMJ. Complement C3 and C4, but not their regulators or activated products, are associated with incident metabolic syndrome: the CODAM study. Endocrine. 2018;62(3):617–27.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Liu Z, Tang Q, Wen J, Tang Y, Huang D, Huang Y, et al. Elevated serum complement factors 3 and 4 are strong inflammatory markers of the metabolic syndrome development: a longitudinal cohort study. Sci Rep. 2016;6:18713.PubMedPubMedCentralCrossRef Liu Z, Tang Q, Wen J, Tang Y, Huang D, Huang Y, et al. Elevated serum complement factors 3 and 4 are strong inflammatory markers of the metabolic syndrome development: a longitudinal cohort study. Sci Rep. 2016;6:18713.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Dahm AEA, Jacobsen EM, Wik HS, Jacobsen AF, Mollnes TE, Kanse SM, et al. Elevated Complement C3 and C4 Levels are Associated with Postnatal Pregnancy-Related Venous Thrombosis. Thromb Haemost. 2019;119(9):1481–8.PubMedCrossRef Dahm AEA, Jacobsen EM, Wik HS, Jacobsen AF, Mollnes TE, Kanse SM, et al. Elevated Complement C3 and C4 Levels are Associated with Postnatal Pregnancy-Related Venous Thrombosis. Thromb Haemost. 2019;119(9):1481–8.PubMedCrossRef
41.
Zurück zum Zitat Mosca T, Menezes MC, Dionigi PC, Stirbulov R, Forte WC. C3 and C4 complement system components as biomarkers in the intermittent atopic asthma diagnosis. J Pediatr (Rio J). 2011;87(6):512–6. Mosca T, Menezes MC, Dionigi PC, Stirbulov R, Forte WC. C3 and C4 complement system components as biomarkers in the intermittent atopic asthma diagnosis. J Pediatr (Rio J). 2011;87(6):512–6.
42.
Zurück zum Zitat Copenhaver M, Yu CY, Hoffman RP. Complement Components, C3 and C4, and the Metabolic Syndrome. Curr Diabetes Rev. 2019;15(1):44–8.PubMedCrossRef Copenhaver M, Yu CY, Hoffman RP. Complement Components, C3 and C4, and the Metabolic Syndrome. Curr Diabetes Rev. 2019;15(1):44–8.PubMedCrossRef
43.
Zurück zum Zitat Malik S, Wong ND, Franklin SS, Kamath TV, L’Italien GJ, Pio JR, et al. Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation. 2004;110(10):1245–50.PubMedCrossRef Malik S, Wong ND, Franklin SS, Kamath TV, L’Italien GJ, Pio JR, et al. Impact of the metabolic syndrome on mortality from coronary heart disease, cardiovascular disease, and all causes in United States adults. Circulation. 2004;110(10):1245–50.PubMedCrossRef
44.
Zurück zum Zitat Liu X, Jiang C, Yang P. Association of single nucleotide polymorphisms in the 5’ upstream region of the C4BPA gene with essential hypertension in a northeastern Han Chinese population. Mol Med Rep. 2017;16(2):1289–97.PubMedPubMedCentralCrossRef Liu X, Jiang C, Yang P. Association of single nucleotide polymorphisms in the 5’ upstream region of the C4BPA gene with essential hypertension in a northeastern Han Chinese population. Mol Med Rep. 2017;16(2):1289–97.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Sjolander J, Byman E, Kulak K, Nilsson SC, Zhang E, Krus U, et al. C4b-binding Protein Protects beta-Cells from Islet Amyloid Polypeptide-induced Cytotoxicity. J Biol Chem. 2016;291(41):21644–55.PubMedPubMedCentralCrossRef Sjolander J, Byman E, Kulak K, Nilsson SC, Zhang E, Krus U, et al. C4b-binding Protein Protects beta-Cells from Islet Amyloid Polypeptide-induced Cytotoxicity. J Biol Chem. 2016;291(41):21644–55.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Antoniak S, Cardenas JC, Buczek LJ, Church FC, Mackman N, Pawlinski R. Protease-Activated Receptor 1 Contributes to Angiotensin II-Induced Cardiovascular Remodeling and Inflammation. Cardiology. 2017;136(4):258–68.PubMedCrossRef Antoniak S, Cardenas JC, Buczek LJ, Church FC, Mackman N, Pawlinski R. Protease-Activated Receptor 1 Contributes to Angiotensin II-Induced Cardiovascular Remodeling and Inflammation. Cardiology. 2017;136(4):258–68.PubMedCrossRef
47.
Zurück zum Zitat Wang HB, Ricklin D, Lambris JD. Complement-activation fragment C4a mediates effector functions by binding as untethered agonist to protease-activated receptors 1 and 4. Proc Natl Acad Sci USA. 2017;114(41):10948–53.PubMedPubMedCentralCrossRef Wang HB, Ricklin D, Lambris JD. Complement-activation fragment C4a mediates effector functions by binding as untethered agonist to protease-activated receptors 1 and 4. Proc Natl Acad Sci USA. 2017;114(41):10948–53.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Peerschke EI, Yin W, Grigg SE, Ghebrehiwet B. Blood platelets activate the classical pathway of human complement. J Thromb Haemost. 2006;4(9):2035–42.PubMedCrossRef Peerschke EI, Yin W, Grigg SE, Ghebrehiwet B. Blood platelets activate the classical pathway of human complement. J Thromb Haemost. 2006;4(9):2035–42.PubMedCrossRef
49.
Zurück zum Zitat Nording H, Langer HF. Complement links platelets to innate immunity. Semin Immunol. 2018;37:43–52.PubMedCrossRef Nording H, Langer HF. Complement links platelets to innate immunity. Semin Immunol. 2018;37:43–52.PubMedCrossRef
50.
Zurück zum Zitat de Mutsert R, Grootendorst DC, Indemans F, Boeschoten EW, Krediet RT, Dekker FW. Association between serum albumin and mortality in dialysis patients is partly explained by inflammation, and not by malnutrition. J Ren Nutr. 2009;19(2):127–35.PubMedCrossRef de Mutsert R, Grootendorst DC, Indemans F, Boeschoten EW, Krediet RT, Dekker FW. Association between serum albumin and mortality in dialysis patients is partly explained by inflammation, and not by malnutrition. J Ren Nutr. 2009;19(2):127–35.PubMedCrossRef
51.
Zurück zum Zitat Turner JM, Peixoto AJ. Blood pressure targets for hemodialysis patients. Kidney Int. 2017;92(4):816–23.PubMedCrossRef Turner JM, Peixoto AJ. Blood pressure targets for hemodialysis patients. Kidney Int. 2017;92(4):816–23.PubMedCrossRef
52.
Zurück zum Zitat Lowrie EG, Huang WH, Lew NL. Death Risk Predictors among Peritoneal-Dialysis and Hemodialysis-Patients - a Preliminary Comparison. Am J Kidney Dis. 1995;26(1):220–8.PubMedCrossRef Lowrie EG, Huang WH, Lew NL. Death Risk Predictors among Peritoneal-Dialysis and Hemodialysis-Patients - a Preliminary Comparison. Am J Kidney Dis. 1995;26(1):220–8.PubMedCrossRef
53.
Zurück zum Zitat Combe C, Chauveau P, Laville M, Fouque D, Azar R, Cano N, et al. Influence of nutritional factors and hemodialysis adequacy on the survival of 1,610 French patients. Am J Kidney Dis. 2001;37(1 Suppl 2):S81–8.PubMedCrossRef Combe C, Chauveau P, Laville M, Fouque D, Azar R, Cano N, et al. Influence of nutritional factors and hemodialysis adequacy on the survival of 1,610 French patients. Am J Kidney Dis. 2001;37(1 Suppl 2):S81–8.PubMedCrossRef
54.
Zurück zum Zitat Ishii J, Takahashi H, Kitagawa F, Kuno A, Okuyama R, Kawai H, et al. Multimarker approach to risk stratification for long-term mortality in patients on chronic hemodialysis. Circ J. 2015;79(3):656–63.PubMedCrossRef Ishii J, Takahashi H, Kitagawa F, Kuno A, Okuyama R, Kawai H, et al. Multimarker approach to risk stratification for long-term mortality in patients on chronic hemodialysis. Circ J. 2015;79(3):656–63.PubMedCrossRef
55.
Zurück zum Zitat Owen WF, Lew NL, Liu Y, Lowrie EG, Lazarus JM. The Urea Reduction Ratio and Serum-Albumin Concentration as Predictors of Mortality in Patients Undergoing Hemodialysis. N Engl J Med. 1993;329(14):1001–6.PubMedCrossRef Owen WF, Lew NL, Liu Y, Lowrie EG, Lazarus JM. The Urea Reduction Ratio and Serum-Albumin Concentration as Predictors of Mortality in Patients Undergoing Hemodialysis. N Engl J Med. 1993;329(14):1001–6.PubMedCrossRef
56.
Zurück zum Zitat Molnar MZ, Streja E, Kovesdy CP, Budoff MJ, Nissenson AR, Krishnan M, et al. High platelet count as a link between renal cachexia and cardiovascular mortality in end-stage renal disease patients. Am J Clin Nutr. 2011;94(3):945–54.PubMedPubMedCentralCrossRef Molnar MZ, Streja E, Kovesdy CP, Budoff MJ, Nissenson AR, Krishnan M, et al. High platelet count as a link between renal cachexia and cardiovascular mortality in end-stage renal disease patients. Am J Clin Nutr. 2011;94(3):945–54.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Daugirdas JT, Bernardo AA. Hemodialysis effect on platelet count and function and hemodialysis-associated thrombocytopenia. Kidney Int. 2012;82(2):147–57.PubMedCrossRef Daugirdas JT, Bernardo AA. Hemodialysis effect on platelet count and function and hemodialysis-associated thrombocytopenia. Kidney Int. 2012;82(2):147–57.PubMedCrossRef
58.
Zurück zum Zitat Schoorl M, Schoorl M, Nubé MJ, Bartels PC. Coagulation activation, depletion of platelet granules and endothelial integrity in case of uraemia and haemodialysis treatment. BMC Nephrol. 2013;14:72.PubMedPubMedCentralCrossRef Schoorl M, Schoorl M, Nubé MJ, Bartels PC. Coagulation activation, depletion of platelet granules and endothelial integrity in case of uraemia and haemodialysis treatment. BMC Nephrol. 2013;14:72.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Cooper NR. The Classical Complement Pathway: Activation and Regulation of the First Complement Component. In: Dixon FJ, editor. Advances in Immunology Volume 37. Advances in Immunology. 37: Academic Press; 1985. p. 151–216. Cooper NR. The Classical Complement Pathway: Activation and Regulation of the First Complement Component. In: Dixon FJ, editor. Advances in Immunology Volume 37. Advances in Immunology. 37: Academic Press; 1985. p. 151–216.
60.
Zurück zum Zitat Rossi V, Cseh S, Bally I, Thielens NM, Jensenius JC, Arlaud GJ. Substrate specificities of recombinant mannan-binding lectin-associated serine proteases-1 and -2. J Biol Chem. 2001;276(44):40880–7.PubMedCrossRef Rossi V, Cseh S, Bally I, Thielens NM, Jensenius JC, Arlaud GJ. Substrate specificities of recombinant mannan-binding lectin-associated serine proteases-1 and -2. J Biol Chem. 2001;276(44):40880–7.PubMedCrossRef
Metadaten
Titel
Plasma C4 level was associated with mortality, cardiovascular and cerebrovascular complications in hemodialysis patients
verfasst von
Zheyu Xing
Yaqin Wang
Kunjing Gong
Yuqing Chen
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
BMC Nephrology / Ausgabe 1/2022
Elektronische ISSN: 1471-2369
DOI
https://doi.org/10.1186/s12882-022-02829-0

Weitere Artikel der Ausgabe 1/2022

BMC Nephrology 1/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.