Skip to main content
Erschienen in: BMC Pediatrics 1/2021

Open Access 01.12.2021 | Research

Programmed cell death protein-1 (PD-1) protects liver damage by suppressing IFN-γ expression in T cells in infants and neonatal mice

verfasst von: Xuangjie Guo, Yiping Xu, Wei Luo, Rongli Fang, Li Cai, Ping Wang, Yuxia Zhang, Zhe Wen, Yanhui Xu

Erschienen in: BMC Pediatrics | Ausgabe 1/2021

Abstract

Background

Biliary atresia (BA) is a severe cholangiopathy possibly resulting from virus-induced and immune-mediated injury of the biliary system. IFN-γ, secreted from CD4+ Th1 cells and CD8+ cytotoxic T cells, is a major mediator of liver pathology. Programmed death protein-1 (PD-1) signaling suppresses T cell function. However, how PD-1 modify T cell function in BA remains incompletely understood.

Methods

Frequencies of PD-1 expressing CD4+ and CD8+ T cells were analyzed in the liver and blood from BA and control subjects. Associations of PD-1+CD4+/CD8+T cell abundances with liver function indices were measured. Function of PD-1 was measured by administration of an anti-PD-1 antibody in a Rhesus Rotavirus (RRV)-induced BA model. Survival, histology, direct bilirubin, liver immune cell subsets and cytokine production were analyzed.

Results

PD-1 was significantly upregulated in CD4+ and CD8+ T cells in patients with BA compared with control subjects. PD-1 expression in T cells was negatively associated with IFN-γ concentration in liver (PD-1+CD4+T cells in liver vs. IFN-γ concentration, r = − 0.25, p = 0.05; PD-1+CD8+T cells in liver vs. IFN-γ concentration, r = − 0.39, p = 0.004). Blockade of PD-1 increased IFN-γ expression in CD4+ T and CD8+ T cells (RRV vs. anti-PD-1 treated RRV mice: 11.59 ± 3.43% vs. 21.26 ± 5.32% IFN-γ+ in hepatic CD4+T cells, p = 0.0003; 9.33 ± 4.03% vs. 22.55 ± 7.47% IFN-γ+ in hepatic CD8+T cells, p = 0.0001), suppressed bilirubin production (RRV vs. anti-PD-1 treated RRV mice: 285.4 ± 47.93 vs. 229.8 ± 45.86 μmol/L total bilirubin, p = 0.01) and exacerbated liver immunopathology.

Conclusions

PD-1 plays a protective role in infants with BA by suppressing IFN-γ production in T cells. Increasing PD-1 signaling may serve as a therapeutic strategy for BA.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12887-021-02794-x.
Xuangjie Guo, Yiping Xu and Wei Luo contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
BA
Biliary atresia
PD-1
Programmed death 1
RRV
Rhesus-rotavirus
T1D
Type 1 diabetes
SPF
Specific Pathogen Free
AST
Aspartate aminotransferase
GGT
γ-glutamyl transpeptidase
AKP
Alkaline phosphatase
ALT
Alanine aminotransferase
PBMC
Peripheral blood mononuclear cells

Background

Biliary atresia (BA) is a disease of the biliary system presenting in infancy with poor prognosis and high mortality [1, 2]. If uncorrected, BA results in death within first 2 years of life. Although the symptoms could be partially improved by Kasai surgery, ~ 50% patients continue develop into liver failure and BA remains the major cause for childhood liver transplantation [3, 4]. A current hypothesis of BA pathogenesis is that a primary perinatal cholangiovirus infection initiates an autoimmune response against the bile duct epithelium, while a secondary chronic inflammation mediates bile duct injury and fibrosis [5]. Studies using patients’ biopsies and rotavirus-induced BA mouse models provide strong evidence for virus-induced autoimmune pathways [6, 7]. We [8] and others [9, 10] have shown that IFN-γ, secreted from CD4+ T helper 1 (Th1) cells, ex-CD4+ T helper 17 (Th17) T cells and CD8+ T cells, are involved in the pathogenesis of BA. IFN-γ+ cells are present within the portal tracts in the livers of infant with biliary atresia. Blockade of IFN-γ is sufficient to prevent liver damage in rhesus rotavirus (RRV)-induced BA models in neonatal mice [11]. These findings support the notion that Th1 cell–mediated inflammation plays an important role in BA pathogenesis.
Programmed cell death protein 1 (PD-1) is a critical inhibitory molecule that suppresses IFN-γ production by T cells and maintains peripheral tolerance [12]. When PD-1 or PD-L1 was deficient in NOD mice, onset and prevalence of type 1 diabetes (T1D) were accelerated, associating with an enhanced Th1 infiltration into the islets of pancreas [13]. In mouse model of autoimmune encephalomyelitis, blocking PD-1 or PD-L1/2 increased disease severity by promoting lymphocytes entry to the central nervous system [14]. Therefore, PD-1/PD-L1 appear to be involved in the development of autoimmune diseases in murine models. However, the role of PD-1 signaling in BA remains to be clarified.
Here, we examined PD-1 expression in patients with BA and in RRV-induced BA mice. We found that PD-1 was highly elevated in T cells in BA and its blockade augmented IFN-γ production and liver pathology.

Materials and methods

BA cohort

We recruited a cohort of children from the Department of Pediatric Surgery at Guangzhou Women and Children’s Medical Center between January 2020 and January 2021. BA was diagnosed according to intraoperative cholangiography when the intrahepatic biliary tree and/or extrahepatic bile duct could not be observed. All BA patients involved were full-term infants. Two groups of patients were included for controls: children with normal liver function but requiring surgery for choledochal cyst (CC) and age matched infants with neonatal hepatis syndrome (NHS).

Flow cytometry

Liver biopsies obtained from patients during laparoscopy or Kasai’s operation were processed according to published procedures by Wang. et al. [9]. Peripheral blood mononuclear cells or hepatic lymphocytes were incubated for 45 min at 4 °C with saturating concentrations of fluorescently labeled antibodies and analyzed on a FACSAria SORP flow cytometer (BD Science). Lymphocyte gating was performed based on the forward and side scatter pattern, followed by dead cell exclusion using propidium iodide (PI) in all surface staining samples.

RRV-induced mouse model of BA and anti-PD-1 treatment

All experimental wild-type BALB/c mice were SPF rated and placed in a room with a 12-h dark/light cycle. Mice were injected intraperitoneally (i.p.) at 12–18 h of birth with 30 μl (1.5 × 10^6 PFU/ml) rhesus rotavirus (RRV) or 0.9% saline (Control mice). RRV-infected mice that died within the first 2 days were excluded from the study. The clinical symptoms of BA development include yellowing of the skin and sclera, acholic stool, and growth retardation. RRV-infected mice were randomized into BA-RRV group or anti-PD-1 group. A total of four doses of anti-PD-1 antibody (50 mg/kg) were given by i.p. injection every 3 days, starting on day 1 of life. Mice were sacrificed at 12 days after RRV, saline, RRV + anti-PD-1 treatment.

Liver function indices

Blood was collected by heart puncture and centrifuged at 13,000 r.p.m. 4 °C for 5 min. Serum was collected for liver function measurement. ALT, AST, DB, TB were measured with liver function Assay (an automated clinical chemistry analyzer (Beckman Coulter AU5811, USA)).

Histopathology

The fresh liver tissues were fixed with 4% paraformaldehyde and embedded in paraffin, then sectioned (2 mm in thickness) and stained with hematoxylin and eosin (H&E) for morphological evaluation and Masson’s trichrome staining for fibrosis.

Intracellular cytokine staining

Lymphocytes isolated from liver biopsies of patients or mice models were cultured on V-bottom 96-well plates in RPMI 1640 (Gibco) medium (R10) containing 10% heat-inactivated FBS (Gibco), 100 U/ml penicillin/streptomycin (Gibco) and 100 μM nonessential amino acids (Gibco) at 37 °C in 5% CO2. 100 ng/ml Phorbol 12-myristate 13-acetate (PMA, Sigma-Aldrich, St Louis, MO), 2 μM/ml Ionomycin (Sigma-Aldrich) and 2 μM/ml monensin (Sigma-Aldrich) were used to stimulate the lymphocytes for 4–6 h [9]. Intracellular staining was performed using eBioscience™ Intracellular Fixation & Permeabilization Buffer Set (Invitrogen) following the manufacturer’s protocol. Briefly, stimulated cells were surface stained prior to fixation on ice for 20–30 min. Then cells were stained for intracellular cytokines at 4°Cfor 1 h and resuspended in FACS buffer (PBS + 2%FBS) before analysis by flow cytometry.

Statistical analysis

Prism 7.0 (GraphPad Software) was used for statistical analysis. Unpaired t test was used for two group analysis and one-way ANOVA for three or more group analysis. Non-parametric data were analyzed by Mann-Whitney U test or Kruskal-Wallis test. For all analyses, 2-tailed p values were calculated. P values for multiple comparisons were adjusted by the Benjamini- Hochberg method (Benjamini and Hochberg, 1995). All data points are shown with central lines indicating medians unless stated otherwise.

Results

PD-1 is highly expressed in T cells in the blood and liver of infants with BA

Table 1 displays characteristics of BA cohort and control groups. The population for this study consisted of 68 BA patients, 26 CC patients and 7 neonatal hepatis syndrome (NHS) who were recruited from the Department of Pediatric Surgery at Guangzhou Women and Children’s Medical Center between January 2020 and January 2021. The age (days) variables derived from the date of birth for an individual at the date of surgery. To get rid of its impact on immune phenotypes, we included age-matched NHS patients and divided CC patients into two groups: under 4-month-old (n = 9) as age-matched controls for BA, and older than 4-month-old (n = 17). Except for GGT, liver enzymes test showed no significant differences between BA and NHS patients included in this study. GGT, the most sensitive liver enzyme test for detecting bile duct injury, was significantly increased in BA patients. Patients with CC demonstrated normal liver function.
Table 1
Demographics of the BA and control patients enrolled in this study
Variables
BA (n = 68)
CC (≤4 months, n = 9)
CC (> 4 months, n = 17)
NHS (n = 7)
Age at surgery, mean (SD), days
70.62 ± 21.5
100 ± 25.98
1134 ± 553.3
58.29 ± 14.16
Sex, M/F
26/42
3/6
4/13
6/1
ALT, mean (SD), U/L
206.1 ± 143.7
66.11 ± 68.78***
58.38 ± 77.74****
211.2 ± 108.6n.s
AST, mean (SD), U/L
292.6 ± 183.3
88.67 ± 95.78****
59.00 ± 61.68****
223.4 ± 114.0n.s
GGT, mean (SD), U/L
658.5 ± 541.3
188.3 ± 294.5***
150.7 ± 241.5****
293.2 ± 331.3*
DBIL, mean (SD), μmol/L
175.2 ± 278.8
28.26 ± 50.41****
20.45 ± 28.67****
127 ± 35.17n.s
TBIL, mean (SD), μmol/L
163 ± 43.29
40.09 ± 69.41****
24.27 ± 34.19****
162.5 ± 54.19n.s
BA biliary atresia, CC choledochal cyst, NHS neonatal hepatis syndrome, SD standard deviation. Significance was determined by Mann-Whitney U test. n.s: not significant. ****p < 0.0001,***p < 0.001,**p < 0.01, *p < 0.05.
To reveal relevance of PD-1 expression and disease process of BA, we first examined PD-1 expression on CD4+ T and CD8+ T cells from peripheral blood mononuclear cells (PBMC) and liver biopsies. Representative gating strategies were shown in Figure S1. We found that the percentages of PD-1 were significantly increased in hepatic CD4+ T cells (Fig. 1A) as well as blood and hepatic CD8+ T cells in infants with BA compared with control subjects (Fig. 1B).

PD-1 expression is negatively associated with IFN-γ concentration in the liver of infants with BA

To demonstrate the function of PD-1, we measured its expression with liver IFN-γ concentrations. We found that IFN-γ concentration in liver homogenates was negatively correlated with the frequencies of PD-1+CD4+ T and CD8+ T cells (Fig. 2A). Of liver function indices, we found that PD-1 expression was positively associated serum bilirubin concentrations (Fig. 2B). Furthermore, Heme oxygenase-1 (HMOX1), the rate-limiting enzyme that catalyzes generation of biliverdin (converted to bilirubin) [15], was found to be increased in liver of BA (Fig. 2C). Mildly increase of bilirubin has been shown as a potent anti-oxidant [16] and immune-suppressive agent of T cell activation [17]. Thus, we speculate that PD-1 upregulation may suppress IFN-γ expression in T cells and reduce oxidative damage via bilirubin. In addition, percentages of PD-1 expressing T cells were not associated with other liver enzymatic indices (ALT, AST, GGT, AKP) or time of native liver survival (Figure S2A-E).

Blockade of PD-1 aggravates liver pathology in RRV-induced model of biliary atresia

To validate these findings in vivo, we investigated an RRV-induced BA mouse model in neonatal BALB/c mice. We confirmed that PD-1 expression was significantly increased in CD4+ and CD8+ T cells in the liver of BA mice (Fig. 3A). We then administered an anti-PD-1 blocking antibody in RRV-infected mice (Fig. 3B). We found that blocking PD-1 tended to shift jaundice to an earlier time (Fig. 3C) and decrease overall survival rate compared with untreated RRV mice (Fig. 3D). Histologic analysis of livers also revealed necrosis foci and lymphocytes accumulation around the portal tracks in liver of both untreated and anti-PD-1 treated RRV mice (Fig. 3E). Furthermore, ALT and AST were significantly elevated (Fig. 3F) in anti-PD-1 treated RRV mice. Similar to findings in BA patients, we observed significant down-regulation of total and direct bilirubin concentrations in anti-PD-1 treated RRV-mice (Fig. 3G). These data evidenced that PD-1 expression play a protective role in limiting RRV-induced liver damage.

Blockade of PD-1 augments IFN-γ expression in RRV-induced BA mice

To confirm that PD-1 protects liver damage via suppressing IFN-γ expression in T cells, we next examined T cell function in RRV-induced BA model. We found that anti-PD-1 treatment promoted IFN-γ expression in both CD4+ and CD8+ T cells (Fig. 4A-B). T-bet, the master transcription factor of Th1, was also highly elevated in the liver of anti-PD-1 treated RRV mice (Fig. 4C). Consistently, plasma levels of IFN-γ and IL-12P70 were elevated by PD-1 blockade (Fig. 4D). Notably, anti-PD-1 treatment did not alter Foxp3+ Treg cells in RRV-induced BA model (Fig. 4E). Taken together, these data strengthen that PD-1 may have a protective role in alleviating BA liver damage by suppressing IFN-γ expression in T cells.

Discussion

In the present study, we showed that PD-1 was highly elevated in CD4+ and CD8+ T cells in liver biopsies of infants with BA. High PD-1 expression was associated with low IFN-γ but higher bilirubin concentrations. Using RRV-induced BA model, we demonstrated that PD-1 directly suppressed IFN-γ but promoted bilirubin production.
PD-L1 is expressed on sinusoidal endothelial cells (LSEC), Kupffer cells, hepatocytes and stellate cells [18]. Interactions between PD-1+CD4+/CD8+T cells and PD-L1 expressing cells in liver of BA play a protective role in limiting BA pathogenesis. IFN-γ production was negatively correlated with the frequencies of PD-1+CD4+ and CD8+ T cells. PD-1 blockade in RRV induced BA mice contributed to an earlier onset of jaundice, enhanced Th1 response, and aggravated pathological injury of the liver. Unexpectedly, we found positive correlation between PD-1 expression and bilirubin concentration. When PD-1 was blocked, reduced bilirubin level was associated with abnormal increase of other liver function markers (ALT and AST). As a hormone, mildly elevated bilirubin levels have been newly established to be protective. Under inflammatory settings, bilirubin administration reduces TNF-α production by inhibiting iNOS but promoting prostaglandin E2 production [19].

Conclusions

In summary, we found increased frequencies of PD-1 expressing CD4+ and CD8+T cells in the livers of infant with BA. We propose PD-1 elevation may limit liver damage by simultaneously suppressing IFN-γ production and oxidative damage. These findings may facilitate development of BA treatment strategies by harnessing the protective role of PD-1 signaling.

Acknowledgements

This work was performed with funds from National Natural Science Foundation of China (92042303).

Declarations

The Medical Ethics Committee of Guangzhou Women and Children’s Medical Center approved the study procedures (ID:2019–21000). The implementations were in concordance with the International Ethical Guidelines for Research Involving Human Subjects as stated in the Helsinki Declaration. The legal guardians of all participants signed the informed contents. All animal experiments were approved by the Institutional Animal Care and Use Committee of Guangzhou Medical University, Guangzhou, China. The study was carried out in compliance with the ARRIVE guidelines (http://​www.​nc3rs.​org.​uk/​page.​asp?​id=​1357).
Written parental consents for the publication have been obtained.

Competing interests

The authors have no financial and non-financial conflicts of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge
Literatur
1.
Zurück zum Zitat Asai A, Miethke A, Bezerra JA. Pathogenesis of biliary atresia: defining biology to understand clinical phenotypes. Nat Rev Gastroenterol Hepatol. 2015;12(6):342–52.CrossRef Asai A, Miethke A, Bezerra JA. Pathogenesis of biliary atresia: defining biology to understand clinical phenotypes. Nat Rev Gastroenterol Hepatol. 2015;12(6):342–52.CrossRef
2.
Zurück zum Zitat Hartley JL, Davenport M, Kelly DA. Biliary atresia. Lancet. 2009;374(9702):1704–13.CrossRef Hartley JL, Davenport M, Kelly DA. Biliary atresia. Lancet. 2009;374(9702):1704–13.CrossRef
3.
Zurück zum Zitat Gallo A, Esquivel CO. Current options for management of biliary atresia. Pediatr Transplant. 2013;17(2):95–8.CrossRef Gallo A, Esquivel CO. Current options for management of biliary atresia. Pediatr Transplant. 2013;17(2):95–8.CrossRef
4.
Zurück zum Zitat Bucuvalas JC, Ryckman FC, Atherton H, Alonso MP, Balistreri WF, Kotagal U. Predictors of cost of liver transplantation in children: a single center study. J Pediatr. 2001;139(1):66–74.CrossRef Bucuvalas JC, Ryckman FC, Atherton H, Alonso MP, Balistreri WF, Kotagal U. Predictors of cost of liver transplantation in children: a single center study. J Pediatr. 2001;139(1):66–74.CrossRef
5.
Zurück zum Zitat Mack CL. The pathogenesis of biliary atresia: evidence for a virus-induced autoimmune disease. Semin Liver Dis. 2007;27(3):233–42.CrossRef Mack CL. The pathogenesis of biliary atresia: evidence for a virus-induced autoimmune disease. Semin Liver Dis. 2007;27(3):233–42.CrossRef
6.
Zurück zum Zitat Glaser JH, Balistreri WF, Morecki R. Role of reovirus type 3 in persistent infantile cholestasis. J Pediatr. 1984;105(6):912–5.CrossRef Glaser JH, Balistreri WF, Morecki R. Role of reovirus type 3 in persistent infantile cholestasis. J Pediatr. 1984;105(6):912–5.CrossRef
7.
Zurück zum Zitat Fjaer RB, Bruu AL, Nordbo SA. Extrahepatic bile duct atresia and viral involvement. Pediatr Transplant. 2005;9(1):68–73.CrossRef Fjaer RB, Bruu AL, Nordbo SA. Extrahepatic bile duct atresia and viral involvement. Pediatr Transplant. 2005;9(1):68–73.CrossRef
8.
Zurück zum Zitat Wang J, Xu Y, Chen Z, Liang J, Lin Z, Liang H, et al. Liver immune profiling reveals pathogenesis and therapeutics for biliary atresia. Cell. 2020;183:1867.CrossRef Wang J, Xu Y, Chen Z, Liang J, Lin Z, Liang H, et al. Liver immune profiling reveals pathogenesis and therapeutics for biliary atresia. Cell. 2020;183:1867.CrossRef
9.
Zurück zum Zitat Mack CL, Tucker RM, Sokol RJ, Karrer FM, Kotzin BL, Whitington PF, et al. Biliary atresia is associated with CD4+ Th1 cell-mediated portal tract inflammation. Pediatr Res. 2004;56(1):79–87.CrossRef Mack CL, Tucker RM, Sokol RJ, Karrer FM, Kotzin BL, Whitington PF, et al. Biliary atresia is associated with CD4+ Th1 cell-mediated portal tract inflammation. Pediatr Res. 2004;56(1):79–87.CrossRef
10.
Zurück zum Zitat Yang Y, Liu YJ, Tang ST, Yang L, Yang J, Cao GQ, et al. Elevated Th17 cells accompanied by decreased regulatory T cells and cytokine environment in infants with biliary atresia. Pediatr Surg Int. 2013;29(12):1249–60.CrossRef Yang Y, Liu YJ, Tang ST, Yang L, Yang J, Cao GQ, et al. Elevated Th17 cells accompanied by decreased regulatory T cells and cytokine environment in infants with biliary atresia. Pediatr Surg Int. 2013;29(12):1249–60.CrossRef
11.
Zurück zum Zitat Shivakumar P, Campbell KM, Sabla GE, Miethke A, Tiao G, McNeal MM, et al. Obstruction of extrahepatic bile ducts by lymphocytes is regulated by IFN-gamma in experimental biliary atresia. J Clin Invest. 2004;114(3):322–9.CrossRef Shivakumar P, Campbell KM, Sabla GE, Miethke A, Tiao G, McNeal MM, et al. Obstruction of extrahepatic bile ducts by lymphocytes is regulated by IFN-gamma in experimental biliary atresia. J Clin Invest. 2004;114(3):322–9.CrossRef
12.
Zurück zum Zitat Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med. 2012;209(6):1201–17.CrossRef Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med. 2012;209(6):1201–17.CrossRef
13.
Zurück zum Zitat Wang J, Yoshida T, Nakaki F, Hiai H, Okazaki T, Honjo T. Establishment of NOD-Pdcd1−/− mice as an efficient animal model of type I diabetes. Proc Natl Acad Sci U S A. 2005;102(33):11823–8.CrossRef Wang J, Yoshida T, Nakaki F, Hiai H, Okazaki T, Honjo T. Establishment of NOD-Pdcd1−/− mice as an efficient animal model of type I diabetes. Proc Natl Acad Sci U S A. 2005;102(33):11823–8.CrossRef
14.
Zurück zum Zitat Zamani MR, Aslani S, Salmaninejad A, Javan MR, Rezaei N. PD-1/PD-L and autoimmunity: a growing relationship. Cell Immunol. 2016;310:27–41.CrossRef Zamani MR, Aslani S, Salmaninejad A, Javan MR, Rezaei N. PD-1/PD-L and autoimmunity: a growing relationship. Cell Immunol. 2016;310:27–41.CrossRef
15.
Zurück zum Zitat Nitti M, Furfaro AL, Mann GE. Heme oxygenase dependent bilirubin generation in vascular cells: a role in preventing endothelial dysfunction in local tissue microenvironment? Front Physiol. 2020;11:23.CrossRef Nitti M, Furfaro AL, Mann GE. Heme oxygenase dependent bilirubin generation in vascular cells: a role in preventing endothelial dysfunction in local tissue microenvironment? Front Physiol. 2020;11:23.CrossRef
16.
Zurück zum Zitat Vasavda C, Kothari R, Malla AP, Tokhunts R, Lin A, Ji M, et al. Bilirubin links Heme metabolism to neuroprotection by scavenging superoxide. Cell Chem Biol. 2019;26(10):1450–60 e7.CrossRef Vasavda C, Kothari R, Malla AP, Tokhunts R, Lin A, Ji M, et al. Bilirubin links Heme metabolism to neuroprotection by scavenging superoxide. Cell Chem Biol. 2019;26(10):1450–60 e7.CrossRef
17.
Zurück zum Zitat Tran DT, Jeong YY, Kim JM, Bae HB, Son SK, Kwak SH. The anti-inflammatory role of bilirubin on “two-hit” sepsis animal model. Int J Mol Sci. 2020;21(22):8650.CrossRef Tran DT, Jeong YY, Kim JM, Bae HB, Son SK, Kwak SH. The anti-inflammatory role of bilirubin on “two-hit” sepsis animal model. Int J Mol Sci. 2020;21(22):8650.CrossRef
18.
Zurück zum Zitat Oikawa T, Takahashi H, Ishikawa T, Hokari A, Otsuki N, Azuma M, et al. Intrahepatic expression of the co-stimulatory molecules programmed death-1, and its ligands in autoimmune liver disease. Pathol Int. 2007;57(8):485–92.CrossRef Oikawa T, Takahashi H, Ishikawa T, Hokari A, Otsuki N, Azuma M, et al. Intrahepatic expression of the co-stimulatory molecules programmed death-1, and its ligands in autoimmune liver disease. Pathol Int. 2007;57(8):485–92.CrossRef
19.
Zurück zum Zitat Wang WW, Smith DL, Zucker SD. Bilirubin inhibits iNOS expression and NO production in response to endotoxin in rats. Hepatology. 2004;40(2):424–33.CrossRef Wang WW, Smith DL, Zucker SD. Bilirubin inhibits iNOS expression and NO production in response to endotoxin in rats. Hepatology. 2004;40(2):424–33.CrossRef
Metadaten
Titel
Programmed cell death protein-1 (PD-1) protects liver damage by suppressing IFN-γ expression in T cells in infants and neonatal mice
verfasst von
Xuangjie Guo
Yiping Xu
Wei Luo
Rongli Fang
Li Cai
Ping Wang
Yuxia Zhang
Zhe Wen
Yanhui Xu
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
BMC Pediatrics / Ausgabe 1/2021
Elektronische ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-021-02794-x

Weitere Artikel der Ausgabe 1/2021

BMC Pediatrics 1/2021 Zur Ausgabe

Neuer Typ-1-Diabetes bei Kindern am Wochenende eher übersehen

23.04.2024 Typ-1-Diabetes Nachrichten

Wenn Kinder an Werktagen zum Arzt gehen, werden neu auftretender Typ-1-Diabetes und diabetische Ketoazidosen häufiger erkannt als bei Arztbesuchen an Wochenenden oder Feiertagen.

Neue Studienergebnisse zur Myopiekontrolle mit Atropin

22.04.2024 Fehlsichtigkeit Nachrichten

Augentropfen mit niedrig dosiertem Atropin können helfen, das Fortschreiten einer Kurzsichtigkeit bei Kindern zumindest zu verlangsamen, wie die Ergebnisse einer aktuellen Studie mit verschiedenen Dosierungen zeigen.

Spinale Muskelatrophie: Neugeborenen-Screening lohnt sich

18.04.2024 Spinale Muskelatrophien Nachrichten

Seit 2021 ist die Untersuchung auf spinale Muskelatrophie Teil des Neugeborenen-Screenings in Deutschland. Eine Studie liefert weitere Evidenz für den Nutzen der Maßnahme.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.