Skip to main content
Erschienen in: Journal of Clinical Immunology 1/2024

01.01.2024 | CME Review

Recent Insights in Pyrin Inflammasome Activation: Identifying Potential Novel Therapeutic Approaches in Pyrin-Associated Autoinflammatory Syndromes

verfasst von: Flore Wouters, Jeroen Bogie, Andy Wullaert, Jeroen van der Hilst

Erschienen in: Journal of Clinical Immunology | Ausgabe 1/2024

Einloggen, um Zugang zu erhalten

Abstract

Pyrin is a cytosolic protein encoded by the MEFV gene, predominantly expressed in innate immune cells. Upon activation, it forms an inflammasome, a multimolecular complex that enables the activation and secretion of IL-1β and IL-18. In addition, the Pyrin inflammasome activates Gasdermin D leading to pyroptosis, a highly pro-inflammatory cell death. Four autoinflammatory syndromes are associated with Pyrin inflammasome dysregulation: familial Mediterranean fever, hyper IgD syndrome/mevalonate kinase deficiency, pyrin-associated autoinflammation with neutrophilic dermatosis, and pyogenic arthritis, pyoderma gangrenosum, and acne syndrome. In this review, we discuss recent advances in understanding the molecular mechanisms regulating the two-step model of Pyrin inflammasome activation. Based on these insights, we discuss current pharmacological options and identify a series of existing molecules with therapeutic potential for the treatment of pyrin-associated autoinflammatory syndromes.
Literatur
1.
Zurück zum Zitat Ross C, Chan AH, von Pein JB, Maddugoda MP, Boucher D, Schroder K. Inflammatory caspases: toward a unified model for caspase activation by inflammasomes. Annu Rev Immunol. 2022;40:249–69.PubMedCrossRef Ross C, Chan AH, von Pein JB, Maddugoda MP, Boucher D, Schroder K. Inflammatory caspases: toward a unified model for caspase activation by inflammasomes. Annu Rev Immunol. 2022;40:249–69.PubMedCrossRef
2.
Zurück zum Zitat Özen S, Batu ED, Demir S. Familial Mediterranean fever: recent developments in pathogenesis and new recommendations for management. Front Immunol. 2017;8:253.PubMedPubMedCentralCrossRef Özen S, Batu ED, Demir S. Familial Mediterranean fever: recent developments in pathogenesis and new recommendations for management. Front Immunol. 2017;8:253.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Tartey S, Kanneganti TD. Inflammasomes in the pathophysiology of autoinflammatory syndromes. J Leukoc Biol. 2020;107:379–91.PubMedCrossRef Tartey S, Kanneganti TD. Inflammasomes in the pathophysiology of autoinflammatory syndromes. J Leukoc Biol. 2020;107:379–91.PubMedCrossRef
4.
Zurück zum Zitat Mistry A, Savic S, van der Hilst JCH. Interleukin-1 blockade: an update on emerging indications. BioDrugs. 2017;31:207–21.PubMedCrossRef Mistry A, Savic S, van der Hilst JCH. Interleukin-1 blockade: an update on emerging indications. BioDrugs. 2017;31:207–21.PubMedCrossRef
7.
Zurück zum Zitat Centola M, Wood G, Frucht DM, Galon J, Aringer M, Farrell C, et al. The gene for familial Mediterranean fever, MEFV, is expressed in early leukocyte development and is regulated in response to inflammatory mediators. Blood. 2000;95:3223–31.PubMedCrossRef Centola M, Wood G, Frucht DM, Galon J, Aringer M, Farrell C, et al. The gene for familial Mediterranean fever, MEFV, is expressed in early leukocyte development and is regulated in response to inflammatory mediators. Blood. 2000;95:3223–31.PubMedCrossRef
8.
Zurück zum Zitat Tidow N, Chen X, Müller C, Kawano S, Gombart AF, Fischel-Ghodsian N, et al. Hematopoietic-specific expression of MEFV, the gene mutated in familial Mediterranean fever, and subcellular localization of its corresponding protein, pyrin. Blood. 2000;95:1451–5.PubMedCrossRef Tidow N, Chen X, Müller C, Kawano S, Gombart AF, Fischel-Ghodsian N, et al. Hematopoietic-specific expression of MEFV, the gene mutated in familial Mediterranean fever, and subcellular localization of its corresponding protein, pyrin. Blood. 2000;95:1451–5.PubMedCrossRef
9.
Zurück zum Zitat Wise CA, Gillum JD, Seidman CE, Lindor NM, Veile R, Bashiardes S, et al. Mutations in CD2BP1 disrupt binding to PTP PEST and are responsible for PAPA syndrome, an autoinflammatory disorder. Hum Mol Genet. 2002;11:961–9.PubMedCrossRef Wise CA, Gillum JD, Seidman CE, Lindor NM, Veile R, Bashiardes S, et al. Mutations in CD2BP1 disrupt binding to PTP PEST and are responsible for PAPA syndrome, an autoinflammatory disorder. Hum Mol Genet. 2002;11:961–9.PubMedCrossRef
11.
Zurück zum Zitat Chae JJ, Wood G, Richard K, Jaffe H, Colburn NT, Masters SL, et al. The familial Mediterranean fever protein, pyrin, is cleaved by caspase-1 and activates NF-kappaB through its N-terminal fragment. Blood. 2008;112:1794–803.PubMedPubMedCentralCrossRef Chae JJ, Wood G, Richard K, Jaffe H, Colburn NT, Masters SL, et al. The familial Mediterranean fever protein, pyrin, is cleaved by caspase-1 and activates NF-kappaB through its N-terminal fragment. Blood. 2008;112:1794–803.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Weinert C, Morger D, Djekic A, Grütter MG, Mittl PRE. Crystal structure of TRIM20 C-terminal coiled-coil/B30.2 fragment: implications for the recognition of higher order oligomers. Sci Rep. 2015;5:10819.PubMedPubMedCentralCrossRef Weinert C, Morger D, Djekic A, Grütter MG, Mittl PRE. Crystal structure of TRIM20 C-terminal coiled-coil/B30.2 fragment: implications for the recognition of higher order oligomers. Sci Rep. 2015;5:10819.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Yu JW, Wu J, Zhang Z, Datta P, Ibrahimi I, Taniguchi S, et al. Cryopyrin and Pyrin activate caspase-1, but not NF-kappaB, via ASC oligomerization. Cell Death Differ. 2006;13:236–49.PubMedCrossRef Yu JW, Wu J, Zhang Z, Datta P, Ibrahimi I, Taniguchi S, et al. Cryopyrin and Pyrin activate caspase-1, but not NF-kappaB, via ASC oligomerization. Cell Death Differ. 2006;13:236–49.PubMedCrossRef
14.
Zurück zum Zitat Mangan MSJ, Gorki F, Krause K, Heinz A, Pankow A, Ebert T, et al. Transcriptional licensing is required for Pyrin inflammasome activation in human macrophages and bypassed by mutations causing familial Mediterranean fever. PLoS Biol. 2022;20:e3001351.PubMedPubMedCentralCrossRef Mangan MSJ, Gorki F, Krause K, Heinz A, Pankow A, Ebert T, et al. Transcriptional licensing is required for Pyrin inflammasome activation in human macrophages and bypassed by mutations causing familial Mediterranean fever. PLoS Biol. 2022;20:e3001351.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Van Gorp H, Saavedra PH, de Vasconcelos NM, Van Opdenbosch N, Vande Walle L, Matusiak M, et al. Familial Mediterranean fever mutations lift the obligatory requirement for microtubules in Pyrin inflammasome activation. Proceedings of the National Academy of Sciences. 2016;113:14384–9.CrossRef Van Gorp H, Saavedra PH, de Vasconcelos NM, Van Opdenbosch N, Vande Walle L, Matusiak M, et al. Familial Mediterranean fever mutations lift the obligatory requirement for microtubules in Pyrin inflammasome activation. Proceedings of the National Academy of Sciences. 2016;113:14384–9.CrossRef
16.
Zurück zum Zitat Magnotti F, Lefeuvre L, Benezech S, Malsot T, Waeckel L, Martin A, Kerever S, Chirita D, Desjonqueres M, Duquesne A, Gerfaud-Valentin M, Laurent A, Sève P, Popoff MR, Walzer T, Belot A, Jamilloux Y, Henry T. Pyrin dephosphorylation is sufficient to trigger inflammasome activation in familial Mediterranean fever patients. EMBO Mol Med. 2019;11(11):e10547. https://doi.org/10.15252/emmm.201910547CrossRefPubMedPubMedCentral Magnotti F, Lefeuvre L, Benezech S, Malsot T, Waeckel L, Martin A, Kerever S, Chirita D, Desjonqueres M, Duquesne A, Gerfaud-Valentin M, Laurent A, Sève P, Popoff MR, Walzer T, Belot A, Jamilloux Y, Henry T. Pyrin dephosphorylation is sufficient to trigger inflammasome activation in familial Mediterranean fever patients. EMBO Mol Med. 2019;11(11):e10547. https://​doi.​org/​10.​15252/​emmm.​201910547CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Xu H, Yang J, Gao W, Li L, Li P, Zhang L, et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature. 2014;513:237–41.PubMedCrossRef Xu H, Yang J, Gao W, Li L, Li P, Zhang L, et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature. 2014;513:237–41.PubMedCrossRef
18.
Zurück zum Zitat Yu OM, Brown JH. G protein-coupled receptor and RhoA-stimulated transcriptional responses: links to inflammation, differentiation, and cell proliferation. Mol Pharmacol. 2015;88:171–80.PubMedPubMedCentralCrossRef Yu OM, Brown JH. G protein-coupled receptor and RhoA-stimulated transcriptional responses: links to inflammation, differentiation, and cell proliferation. Mol Pharmacol. 2015;88:171–80.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Aktories K. Bacterial protein toxins that modify host regulatory GTPases. Nat Rev Microbiol. 2011;9:487–98.PubMedCrossRef Aktories K. Bacterial protein toxins that modify host regulatory GTPases. Nat Rev Microbiol. 2011;9:487–98.PubMedCrossRef
21.
Zurück zum Zitat Park YH, Wood G, Kastner DL, Chae JJ. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat Immunol. 2016;17:914–21.PubMedPubMedCentralCrossRef Park YH, Wood G, Kastner DL, Chae JJ. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat Immunol. 2016;17:914–21.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Zverina EA, Lamphear CL, Wright EN, Fierke CA. Recent advances in protein prenyltransferases: substrate identification, regulation, and disease interventions. Curr Opin Chem Biol. 2012;16:544–52.PubMedPubMedCentralCrossRef Zverina EA, Lamphear CL, Wright EN, Fierke CA. Recent advances in protein prenyltransferases: substrate identification, regulation, and disease interventions. Curr Opin Chem Biol. 2012;16:544–52.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Gao W, Yang J, Liu W, Wang Y, Shao F. Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation. Proc Natl Acad Sci U S A. 2016;113:E4857–66.PubMedPubMedCentralCrossRef Gao W, Yang J, Liu W, Wang Y, Shao F. Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation. Proc Natl Acad Sci U S A. 2016;113:E4857–66.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Obsil T, Obsilova V. Structural basis of 14-3-3 protein functions. Semin Cell Dev Biol. 2011;22:663–72.PubMedCrossRef Obsil T, Obsilova V. Structural basis of 14-3-3 protein functions. Semin Cell Dev Biol. 2011;22:663–72.PubMedCrossRef
25.
Zurück zum Zitat Jéru I, Papin S, L'Hoste S, Duquesnoy P, Cazeneuve C, Camonis J, et al. Interaction of Pyrin with 14.3.3 in an isoform-specific and phosphorylation-dependent manner regulates its translocation to the nucleus. Arthritis Rheum. 2005;52:1848–57.PubMedCrossRef Jéru I, Papin S, L'Hoste S, Duquesnoy P, Cazeneuve C, Camonis J, et al. Interaction of Pyrin with 14.3.3 in an isoform-specific and phosphorylation-dependent manner regulates its translocation to the nucleus. Arthritis Rheum. 2005;52:1848–57.PubMedCrossRef
26.
Zurück zum Zitat Masters SL, Lagou V, Jéru I, Baker PJ, Van Eyck L, Parry DA, et al. Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of Pyrin activation. Sci Transl Med. 2016;8:332ra45.PubMedCrossRef Masters SL, Lagou V, Jéru I, Baker PJ, Van Eyck L, Parry DA, et al. Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of Pyrin activation. Sci Transl Med. 2016;8:332ra45.PubMedCrossRef
27.
Zurück zum Zitat Malik HS, Magnotti F, Loeven NA, Delgado JM, Kettenbach AN, Henry T, et al. Phosphoprotein phosphatase activity positively regulates oligomeric Pyrin to trigger inflammasome assembly in phagocytes. bioRxiv. 2022;23:485108. Malik HS, Magnotti F, Loeven NA, Delgado JM, Kettenbach AN, Henry T, et al. Phosphoprotein phosphatase activity positively regulates oligomeric Pyrin to trigger inflammasome assembly in phagocytes. bioRxiv. 2022;23:485108.
28.
Zurück zum Zitat Jamilloux Y, Lefeuvre L, Magnotti F, Martin A, Benezech S, Allatif O, et al. Familial Mediterranean fever mutations are hypermorphic mutations that specifically decrease the activation threshold of the Pyrin inflammasome. Rheumatology (Oxford). 2018;57:100–11.PubMedCrossRef Jamilloux Y, Lefeuvre L, Magnotti F, Martin A, Benezech S, Allatif O, et al. Familial Mediterranean fever mutations are hypermorphic mutations that specifically decrease the activation threshold of the Pyrin inflammasome. Rheumatology (Oxford). 2018;57:100–11.PubMedCrossRef
29.
Zurück zum Zitat Magnotti F, Chirita D, Dalmon S, Martin A, Bronnec P, Sousa J, et al. Steroid hormone catabolites activate the Pyrin inflammasome through a non-canonical mechanism. Cell Rep. 2022;41:111472.PubMedPubMedCentralCrossRef Magnotti F, Chirita D, Dalmon S, Martin A, Bronnec P, Sousa J, et al. Steroid hormone catabolites activate the Pyrin inflammasome through a non-canonical mechanism. Cell Rep. 2022;41:111472.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Richards N, Schaner P, Diaz A, Stuckey J, Shelden E, Wadhwa A, et al. Interaction between Pyrin and the apoptotic speck protein (ASC) modulates ASC-induced apoptosis. J Biol Chem. 2001;276:39320–9.PubMedCrossRef Richards N, Schaner P, Diaz A, Stuckey J, Shelden E, Wadhwa A, et al. Interaction between Pyrin and the apoptotic speck protein (ASC) modulates ASC-induced apoptosis. J Biol Chem. 2001;276:39320–9.PubMedCrossRef
31.
Zurück zum Zitat Papa R, Penco F, Volpi S, Gattorno M. Actin remodeling defects leading to autoinflammation and immune dysregulation. Front Immunol. 2020;11:604206.PubMedCrossRef Papa R, Penco F, Volpi S, Gattorno M. Actin remodeling defects leading to autoinflammation and immune dysregulation. Front Immunol. 2020;11:604206.PubMedCrossRef
33.
Zurück zum Zitat Waite AL, Schaner P, Richards N, Balci-Peynircioglu B, Masters SL, Brydges SD, et al. Pyrin modulates the intracellular distribution of PSTPIP1. PLoS ONE. 2009;4:e6147.PubMedPubMedCentralCrossRef Waite AL, Schaner P, Richards N, Balci-Peynircioglu B, Masters SL, Brydges SD, et al. Pyrin modulates the intracellular distribution of PSTPIP1. PLoS ONE. 2009;4:e6147.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Mansfield E, Chae JJ, Komarow HD, Brotz TM, Frucht DM, Aksentijevich I, et al. The familial Mediterranean fever protein, pyrin, associates with microtubules and colocalizes with actin filaments. Blood. 2001;98:851–9.PubMedCrossRef Mansfield E, Chae JJ, Komarow HD, Brotz TM, Frucht DM, Aksentijevich I, et al. The familial Mediterranean fever protein, pyrin, associates with microtubules and colocalizes with actin filaments. Blood. 2001;98:851–9.PubMedCrossRef
35.
Zurück zum Zitat Yu JW, Fernandes-Alnemri T, Datta P, Wu J, Juliana C, Solorzano L, et al. Pyrin activates the ASC pyroptosome in response to engagement by autoinflammatory PSTPIP1 mutants. Mol Cell. 2007;28:214–27.PubMedPubMedCentralCrossRef Yu JW, Fernandes-Alnemri T, Datta P, Wu J, Juliana C, Solorzano L, et al. Pyrin activates the ASC pyroptosome in response to engagement by autoinflammatory PSTPIP1 mutants. Mol Cell. 2007;28:214–27.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Shoham NG, Centola M, Mansfield E, Hull KM, Wood G, Wise CA, et al. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc Natl Acad Sci U S A. 2003;100:13501–6.PubMedPubMedCentralCrossRef Shoham NG, Centola M, Mansfield E, Hull KM, Wood G, Wise CA, et al. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc Natl Acad Sci U S A. 2003;100:13501–6.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Fayez AG, Eldeen GN, Zarouk WA, Hamed K, Ramadan A, Foda BM, et al. Dynamic disequilibrium-based pathogenicity model in mutated pyrin’s B30.2 domain-Casp1/p20 complex. J Genet Eng Biotechnol. 2022;20:31.PubMedPubMedCentralCrossRef Fayez AG, Eldeen GN, Zarouk WA, Hamed K, Ramadan A, Foda BM, et al. Dynamic disequilibrium-based pathogenicity model in mutated pyrin’s B30.2 domain-Casp1/p20 complex. J Genet Eng Biotechnol. 2022;20:31.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Chae JJ, Wood G, Masters SL, Richard K, Park G, Smith BJ, et al. The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1β production. Proc Nat Acad Sci. 2006;103:9982–7.PubMedPubMedCentralCrossRef Chae JJ, Wood G, Masters SL, Richard K, Park G, Smith BJ, et al. The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1β production. Proc Nat Acad Sci. 2006;103:9982–7.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Masters SL, Simon A, Aksentijevich I, Kastner DL. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease (*). Annu Rev Immunol. 2009;27:621–68.PubMedPubMedCentralCrossRef Masters SL, Simon A, Aksentijevich I, Kastner DL. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease (*). Annu Rev Immunol. 2009;27:621–68.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Samukawa S, Yoshimi R, Kirino Y, Nakajima H. The PRY/SPRY domain of pyrin/TRIM20 interacts with β(2)-microglobulin to promote inflammasome formation. Sci Rep. 2021;11:23613.PubMedPubMedCentralCrossRef Samukawa S, Yoshimi R, Kirino Y, Nakajima H. The PRY/SPRY domain of pyrin/TRIM20 interacts with β(2)-microglobulin to promote inflammasome formation. Sci Rep. 2021;11:23613.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Stehlik C, Lee SH, Dorfleutner A, Stassinopoulos A, Sagara J, Reed JC. Apoptosis-associated speck-like protein containing a caspase recruitment domain is a regulator of procaspase-1 activation. J Immunol. 2003;171:6154–63.PubMedCrossRef Stehlik C, Lee SH, Dorfleutner A, Stassinopoulos A, Sagara J, Reed JC. Apoptosis-associated speck-like protein containing a caspase recruitment domain is a regulator of procaspase-1 activation. J Immunol. 2003;171:6154–63.PubMedCrossRef
42.
Zurück zum Zitat Boucher D, Monteleone M, Coll RC, Chen KW, Ross CM, Teo JL, et al. Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. J Exp Med. 2018;215:827–40.PubMedPubMedCentralCrossRef Boucher D, Monteleone M, Coll RC, Chen KW, Ross CM, Teo JL, et al. Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. J Exp Med. 2018;215:827–40.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Ozen S, Bilginer Y. A clinical guide to autoinflammatory diseases: familial Mediterranean fever and next-of-kin. Nat Rev Rheumatol. 2014;10:135–47.PubMedCrossRef Ozen S, Bilginer Y. A clinical guide to autoinflammatory diseases: familial Mediterranean fever and next-of-kin. Nat Rev Rheumatol. 2014;10:135–47.PubMedCrossRef
44.
Zurück zum Zitat Özen S. Update on the epidemiology and disease outcome of familial Mediterranean fever. Best Pract Res Clin Rheumatol. 2018;32:254–60.PubMedCrossRef Özen S. Update on the epidemiology and disease outcome of familial Mediterranean fever. Best Pract Res Clin Rheumatol. 2018;32:254–60.PubMedCrossRef
45.
46.
Zurück zum Zitat Aydin O, Egeli BH, Ozdogan H, Ugurlu S. Late-onset familial Mediterranean fever: single-center experience and literature review. Intern Emerg Med. 2022;17:1301–6.PubMedCrossRef Aydin O, Egeli BH, Ozdogan H, Ugurlu S. Late-onset familial Mediterranean fever: single-center experience and literature review. Intern Emerg Med. 2022;17:1301–6.PubMedCrossRef
47.
Zurück zum Zitat Jéru I, Hentgen V, Cochet E, Duquesnoy P, Le Borgne G, Grimprel E, et al. The risk of familial Mediterranean fever in MEFV heterozygotes: a statistical approach. PLoS One. 2013;8:e68431.PubMedPubMedCentralCrossRef Jéru I, Hentgen V, Cochet E, Duquesnoy P, Le Borgne G, Grimprel E, et al. The risk of familial Mediterranean fever in MEFV heterozygotes: a statistical approach. PLoS One. 2013;8:e68431.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat van der Hilst JC, Simon A, Drenth JP. Hereditary periodic fever and reactive amyloidosis. Clin Exp Med. 2005;5:87–98.PubMedCrossRef van der Hilst JC, Simon A, Drenth JP. Hereditary periodic fever and reactive amyloidosis. Clin Exp Med. 2005;5:87–98.PubMedCrossRef
49.
Zurück zum Zitat Dodé C, Pêcheux C, Cazeneuve C, Cattan D, Dervichian M, Goossens M, et al. Mutations in the MEFV gene in a large series of patients with a clinical diagnosis of familial Mediterranean fever. Am J Med Genet. 2000;92:241–6.PubMedCrossRef Dodé C, Pêcheux C, Cazeneuve C, Cattan D, Dervichian M, Goossens M, et al. Mutations in the MEFV gene in a large series of patients with a clinical diagnosis of familial Mediterranean fever. Am J Med Genet. 2000;92:241–6.PubMedCrossRef
50.
Zurück zum Zitat Lachmann HJ, Sengül B, Yavuzşen TU, Booth DR, Booth SE, Bybee A, et al. Clinical and subclinical inflammation in patients with familial Mediterranean fever and in heterozygous carriers of MEFV mutations. Rheumatology (Oxford). 2006;45:746–50.PubMedCrossRef Lachmann HJ, Sengül B, Yavuzşen TU, Booth DR, Booth SE, Bybee A, et al. Clinical and subclinical inflammation in patients with familial Mediterranean fever and in heterozygous carriers of MEFV mutations. Rheumatology (Oxford). 2006;45:746–50.PubMedCrossRef
51.
Zurück zum Zitat O’Connor C, Kiely L, Heffron C, Ryan J, Bennett M. PAPA-like syndrome with heterozygous mutation in the MEFV gene. Clin Exp Dermatol. 2022;47:642–5.PubMedCrossRef O’Connor C, Kiely L, Heffron C, Ryan J, Bennett M. PAPA-like syndrome with heterozygous mutation in the MEFV gene. Clin Exp Dermatol. 2022;47:642–5.PubMedCrossRef
52.
Zurück zum Zitat Bader-Meunier B, Martins AL, Charbit-Henrion F, Meinzer U, Belot A, Cuisset L, et al. Mevalonate kinase deficiency: a cause of severe very-early-onset inflammatory bowel disease. Inflamm Bowel Dis. 2021;27:1853–7.PubMedCrossRef Bader-Meunier B, Martins AL, Charbit-Henrion F, Meinzer U, Belot A, Cuisset L, et al. Mevalonate kinase deficiency: a cause of severe very-early-onset inflammatory bowel disease. Inflamm Bowel Dis. 2021;27:1853–7.PubMedCrossRef
53.
Zurück zum Zitat Brennenstuhl H, Nashawi M, Schröter J, Baronio F, Beedgen L, Gleich F, et al. Phenotypic diversity, disease progression, and pathogenicity of MVK missense variants in mevalonic aciduria. J Inherit Metab Dis. 2021;44:1272–87.PubMedCrossRef Brennenstuhl H, Nashawi M, Schröter J, Baronio F, Beedgen L, Gleich F, et al. Phenotypic diversity, disease progression, and pathogenicity of MVK missense variants in mevalonic aciduria. J Inherit Metab Dis. 2021;44:1272–87.PubMedCrossRef
54.
Zurück zum Zitat Elhani I, Hentgen V, Grateau G, Georgin-Lavialle S. Neurological manifestations in mevalonate kinase deficiency: a systematic review. Mol Genet Metab. 2022;136:85–93.PubMedCrossRef Elhani I, Hentgen V, Grateau G, Georgin-Lavialle S. Neurological manifestations in mevalonate kinase deficiency: a systematic review. Mol Genet Metab. 2022;136:85–93.PubMedCrossRef
55.
Zurück zum Zitat van der Hilst JCH, Bodar EJ, Barron KS, Frenkel J, Drenth JPH, van der Meer JWM, et al. Long-term follow-up, clinical features, and quality of life in a series of 103 patients with hyperimmunoglobulinemia D syndrome. Medicine (Baltimore). 2008;87:301–10.PubMedCrossRef van der Hilst JCH, Bodar EJ, Barron KS, Frenkel J, Drenth JPH, van der Meer JWM, et al. Long-term follow-up, clinical features, and quality of life in a series of 103 patients with hyperimmunoglobulinemia D syndrome. Medicine (Baltimore). 2008;87:301–10.PubMedCrossRef
56.
Zurück zum Zitat van der Hilst JC, Frenkel J. Hyperimmunoglobulin D syndrome in childhood. Curr Rheumatol Rep. 2010;12:101–7.PubMedCrossRef van der Hilst JC, Frenkel J. Hyperimmunoglobulin D syndrome in childhood. Curr Rheumatol Rep. 2010;12:101–7.PubMedCrossRef
57.
Zurück zum Zitat Houten SM, Kuis W, Duran M, De Koning TJ, Van Royen-Kerkhof A, Romeijn GJ, et al. Mutations in MVK, encoding mevalonate kinase, cause hyperimmunoglobulinaemia D and periodic fever syndrome. Nat Gen. 1999;22:175–7.CrossRef Houten SM, Kuis W, Duran M, De Koning TJ, Van Royen-Kerkhof A, Romeijn GJ, et al. Mutations in MVK, encoding mevalonate kinase, cause hyperimmunoglobulinaemia D and periodic fever syndrome. Nat Gen. 1999;22:175–7.CrossRef
58.
Zurück zum Zitat Drenth JPH, Cuisset L, Grateau G, Vasseur C, Van De Velde-Visser SD, De Jong JGN, et al. Mutations in the gene encoding mevalonate kinase cause hyper-IgD and periodic fever syndrome. Nat Gen. 1999;22:178–81.CrossRef Drenth JPH, Cuisset L, Grateau G, Vasseur C, Van De Velde-Visser SD, De Jong JGN, et al. Mutations in the gene encoding mevalonate kinase cause hyper-IgD and periodic fever syndrome. Nat Gen. 1999;22:178–81.CrossRef
60.
Zurück zum Zitat Van Nieuwenhove E, De Langhe E, Dooley J, Van Den Oord J, Shahrooei M, Parvaneh N, et al. Phenotypic analysis of pyrin-associated autoinflammation with neutrophilic dermatosis patients during treatment. Rheumatology (Oxford). 2021;60:5436–46.PubMedCrossRef Van Nieuwenhove E, De Langhe E, Dooley J, Van Den Oord J, Shahrooei M, Parvaneh N, et al. Phenotypic analysis of pyrin-associated autoinflammation with neutrophilic dermatosis patients during treatment. Rheumatology (Oxford). 2021;60:5436–46.PubMedCrossRef
61.
Zurück zum Zitat Moghaddas F, Llamas R, De Nardo D, Martinez-Banaclocha H, Martinez-Garcia JJ, Mesa-Del-Castillo P, et al. A novel pyrin-associated autoinflammation with neutrophilic dermatosis mutation further defines 14-3-3 binding of Pyrin and distinction to Familial Mediterranean Fever. Ann Rheum Dis. 2017;76:2085–94.PubMedCrossRef Moghaddas F, Llamas R, De Nardo D, Martinez-Banaclocha H, Martinez-Garcia JJ, Mesa-Del-Castillo P, et al. A novel pyrin-associated autoinflammation with neutrophilic dermatosis mutation further defines 14-3-3 binding of Pyrin and distinction to Familial Mediterranean Fever. Ann Rheum Dis. 2017;76:2085–94.PubMedCrossRef
62.
Zurück zum Zitat Stone DL, Ombrello A, Arostegui JI, Schneider C, Dang V, de Jesus A, et al. Excess serum interleukin-18 distinguishes patients with pathogenic mutations in PSTPIP1. Arthritis Rheumatol. 2022;74:353–7.PubMedPubMedCentralCrossRef Stone DL, Ombrello A, Arostegui JI, Schneider C, Dang V, de Jesus A, et al. Excess serum interleukin-18 distinguishes patients with pathogenic mutations in PSTPIP1. Arthritis Rheumatol. 2022;74:353–7.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Holzinger D, Fassl SK, de Jager W, Lohse P, Röhrig UF, Gattorno M, et al. Single amino acid charge switch defines clinically distinct proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1)-associated inflammatory diseases. J Allergy Clin Immunol. 2015;136:1337–45.PubMedPubMedCentralCrossRef Holzinger D, Fassl SK, de Jager W, Lohse P, Röhrig UF, Gattorno M, et al. Single amino acid charge switch defines clinically distinct proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1)-associated inflammatory diseases. J Allergy Clin Immunol. 2015;136:1337–45.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Laberko A, Burlakov V, Maier S, Abinun M, Skinner R, Kozlova A, et al. HSCT is effective in patients with PSTPIP1-associated myeloid-related proteinemia inflammatory (PAMI) syndrome. J Allergy Clin Immunol. 2021;148:250–5.e1.PubMedCrossRef Laberko A, Burlakov V, Maier S, Abinun M, Skinner R, Kozlova A, et al. HSCT is effective in patients with PSTPIP1-associated myeloid-related proteinemia inflammatory (PAMI) syndrome. J Allergy Clin Immunol. 2021;148:250–5.e1.PubMedCrossRef
65.
Zurück zum Zitat Belelli E, Passarelli C, Pardeo M, Holzinger D, De Benedetti F, Insalaco A. Case report haematological involvement associated with a mild autoinflammatory phenotype, in two patients carrying the E250K mutation of PSTPIP1. Clin Exp Rheumatol. 2017;35:S113–S5. Belelli E, Passarelli C, Pardeo M, Holzinger D, De Benedetti F, Insalaco A. Case report haematological involvement associated with a mild autoinflammatory phenotype, in two patients carrying the E250K mutation of PSTPIP1. Clin Exp Rheumatol. 2017;35:S113–S5.
67.
Zurück zum Zitat Angelidis C, Kotsialou Z, Kossyvakis C, Vrettou AR, Zacharoulis A, Kolokathis F, et al. Colchicine pharmacokinetics and mechanism of action. Curr Pharm Des. 2018;24:659–63.PubMedCrossRef Angelidis C, Kotsialou Z, Kossyvakis C, Vrettou AR, Zacharoulis A, Kolokathis F, et al. Colchicine pharmacokinetics and mechanism of action. Curr Pharm Des. 2018;24:659–63.PubMedCrossRef
68.
Zurück zum Zitat Dasgeb B, Kornreich D, McGuinn K, Okon L, Brownell I, Sackett DL. Colchicine: an ancient drug with novel applications. Br J Dermatol. 2018;178:350–6.PubMedPubMedCentralCrossRef Dasgeb B, Kornreich D, McGuinn K, Okon L, Brownell I, Sackett DL. Colchicine: an ancient drug with novel applications. Br J Dermatol. 2018;178:350–6.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Zemer D, Revach M, Pras M, Modan B, Schor S, Sohar E, et al. A controlled trial of colchicine in preventing attacks of familial mediterranean fever. N Engl J Med. 1974;291:932–4.PubMedCrossRef Zemer D, Revach M, Pras M, Modan B, Schor S, Sohar E, et al. A controlled trial of colchicine in preventing attacks of familial mediterranean fever. N Engl J Med. 1974;291:932–4.PubMedCrossRef
70.
71.
Zurück zum Zitat Dinarello CA, Wolff SM, Goldfinger SE, Dale DC, Alling DW. Colchicine therapy for familial Mediterranean fever. A double-blind trial. N Engl J Med. 1974;291:934–7.PubMedCrossRef Dinarello CA, Wolff SM, Goldfinger SE, Dale DC, Alling DW. Colchicine therapy for familial Mediterranean fever. A double-blind trial. N Engl J Med. 1974;291:934–7.PubMedCrossRef
72.
Zurück zum Zitat Lidar M, Scherrmann JM, Shinar Y, Chetrit A, Niel E, Gershoni-Baruch R, et al. Colchicine nonresponsiveness in familial Mediterranean fever: clinical, genetic, pharmacokinetic, and socioeconomic characterization. Semin Arthritis Rheum. 2004;33:273–82.PubMedCrossRef Lidar M, Scherrmann JM, Shinar Y, Chetrit A, Niel E, Gershoni-Baruch R, et al. Colchicine nonresponsiveness in familial Mediterranean fever: clinical, genetic, pharmacokinetic, and socioeconomic characterization. Semin Arthritis Rheum. 2004;33:273–82.PubMedCrossRef
73.
Zurück zum Zitat Ozen S, Kone-Paut I, Gül A. Colchicine resistance and intolerance in familial Mediterranean fever: definition, causes, and alternative treatments. Semin Arthritis Rheum. 2017;47:115–20.PubMedCrossRef Ozen S, Kone-Paut I, Gül A. Colchicine resistance and intolerance in familial Mediterranean fever: definition, causes, and alternative treatments. Semin Arthritis Rheum. 2017;47:115–20.PubMedCrossRef
74.
Zurück zum Zitat Bhattacharyya B, Panda D, Gupta S, Banerjee M. Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med Res Rev. 2008;28:155–83.PubMedCrossRef Bhattacharyya B, Panda D, Gupta S, Banerjee M. Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med Res Rev. 2008;28:155–83.PubMedCrossRef
75.
Zurück zum Zitat Taskiran EZ, Cetinkaya A, Balci-Peynircioglu B, Akkaya YZ, Yilmaz E. The effect of colchicine on Pyrin and Pyrin interacting proteins. J Cell Biochem. 2012;113:3536–46.PubMedCrossRef Taskiran EZ, Cetinkaya A, Balci-Peynircioglu B, Akkaya YZ, Yilmaz E. The effect of colchicine on Pyrin and Pyrin interacting proteins. J Cell Biochem. 2012;113:3536–46.PubMedCrossRef
76.
Zurück zum Zitat Krendel M, Zenke FT, Bokoch GM. Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat Cell Biol. 2002;4:294–301.PubMedCrossRef Krendel M, Zenke FT, Bokoch GM. Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat Cell Biol. 2002;4:294–301.PubMedCrossRef
77.
Zurück zum Zitat Slobodnick A, Shah B, Krasnokutsky S, Pillinger MH. Update on colchicine, 2017. Rheumatology (Oxford). 2018;57:i4–i11.PubMedCrossRef Slobodnick A, Shah B, Krasnokutsky S, Pillinger MH. Update on colchicine, 2017. Rheumatology (Oxford). 2018;57:i4–i11.PubMedCrossRef
78.
Zurück zum Zitat van der Hilst J, Moutschen M, Messiaen PE, Lauwerys BR, Vanderschueren S. Efficacy of anti-IL-1 treatment in familial Mediterranean fever: a systematic review of the literature. Biologics. 2016;10:75–80.PubMedPubMedCentral van der Hilst J, Moutschen M, Messiaen PE, Lauwerys BR, Vanderschueren S. Efficacy of anti-IL-1 treatment in familial Mediterranean fever: a systematic review of the literature. Biologics. 2016;10:75–80.PubMedPubMedCentral
79.
Zurück zum Zitat Kacar M, Savic S, van der Hilst JCH. The efficacy, safety and tolerability of canakinumab in the treatment of familial mediterranean fever: a systematic review of the literature. J Inflamm Res. 2020;13:141–9.PubMedPubMedCentralCrossRef Kacar M, Savic S, van der Hilst JCH. The efficacy, safety and tolerability of canakinumab in the treatment of familial mediterranean fever: a systematic review of the literature. J Inflamm Res. 2020;13:141–9.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Bodar EJ, van der Hilst JC, Drenth JP, van der Meer JW, Simon A. Effect of etanercept and anakinra on inflammatory attacks in the hyper-IgD syndrome: introducing a vaccination provocation model. Neth J Med. 2005;63:260–4.PubMed Bodar EJ, van der Hilst JC, Drenth JP, van der Meer JW, Simon A. Effect of etanercept and anakinra on inflammatory attacks in the hyper-IgD syndrome: introducing a vaccination provocation model. Neth J Med. 2005;63:260–4.PubMed
81.
Zurück zum Zitat Brenner M, Ruzicka T, Plewig G, Thomas P, Herzer P. Targeted treatment of pyoderma gangrenosum in PAPA (pyogenic arthritis, pyoderma gangrenosum and acne) syndrome with the recombinant human interleukin-1 receptor antagonist anakinra. Br J Dermatol. 2009;161:1199–201.PubMedCrossRef Brenner M, Ruzicka T, Plewig G, Thomas P, Herzer P. Targeted treatment of pyoderma gangrenosum in PAPA (pyogenic arthritis, pyoderma gangrenosum and acne) syndrome with the recombinant human interleukin-1 receptor antagonist anakinra. Br J Dermatol. 2009;161:1199–201.PubMedCrossRef
82.
Zurück zum Zitat De Benedetti F, Gattorno M, Anton J, Ben-Chetrit E, Frenkel J, Hoffman HM, et al. Canakinumab for the treatment of autoinflammatory recurrent fever syndromes. N Engl J Med. 2018;378:1908–19.PubMedCrossRef De Benedetti F, Gattorno M, Anton J, Ben-Chetrit E, Frenkel J, Hoffman HM, et al. Canakinumab for the treatment of autoinflammatory recurrent fever syndromes. N Engl J Med. 2018;378:1908–19.PubMedCrossRef
83.
Zurück zum Zitat Ozen S, Demirkaya E, Erer B, Livneh A, Ben-Chetrit E, Giancane G, et al. EULAR recommendations for the management of familial Mediterranean fever. Ann Rheum Dis. 2016;75:644–51.PubMedCrossRef Ozen S, Demirkaya E, Erer B, Livneh A, Ben-Chetrit E, Giancane G, et al. EULAR recommendations for the management of familial Mediterranean fever. Ann Rheum Dis. 2016;75:644–51.PubMedCrossRef
84.
Zurück zum Zitat Adamson P, Paterson HF, Hall A. Intracellular localization of the P21rho proteins. J Cell Biol. 1992;119:617–27.PubMedCrossRef Adamson P, Paterson HF, Hall A. Intracellular localization of the P21rho proteins. J Cell Biol. 1992;119:617–27.PubMedCrossRef
85.
Zurück zum Zitat Miyawaki A, Rojasawasthien T, Hitomi S, Aoki Y, Urata M, Inoue A, et al. Oral administration of geranylgeraniol rescues denervation-induced muscle atrophy via suppression of atrogin-1. In Vivo. 2020;34:2345–51.PubMedPubMedCentralCrossRef Miyawaki A, Rojasawasthien T, Hitomi S, Aoki Y, Urata M, Inoue A, et al. Oral administration of geranylgeraniol rescues denervation-induced muscle atrophy via suppression of atrogin-1. In Vivo. 2020;34:2345–51.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Preece K, Glávits R, Foster JR, Murbach T, Endres JR, Hirka G, et al. A toxicological evaluation of geranylgeraniol. Regul Toxicol Pharmacol. 2021;124:104975.PubMedCrossRef Preece K, Glávits R, Foster JR, Murbach T, Endres JR, Hirka G, et al. A toxicological evaluation of geranylgeraniol. Regul Toxicol Pharmacol. 2021;124:104975.PubMedCrossRef
87.
Zurück zum Zitat Houten SM, Schneiders MS, Wanders RJ, Waterham HR. Regulation of isoprenoid/cholesterol biosynthesis in cells from mevalonate kinase-deficient patients. J Biol Chem. 2003;278:5736–43.PubMedCrossRef Houten SM, Schneiders MS, Wanders RJ, Waterham HR. Regulation of isoprenoid/cholesterol biosynthesis in cells from mevalonate kinase-deficient patients. J Biol Chem. 2003;278:5736–43.PubMedCrossRef
88.
Zurück zum Zitat Irwin JC, Fenning AS, Vella RK. Geranylgeraniol prevents statin-induced skeletal muscle fatigue without causing adverse effects in cardiac or vascular smooth muscle performance. Transl Res. 2020;215:17–30.PubMedCrossRef Irwin JC, Fenning AS, Vella RK. Geranylgeraniol prevents statin-induced skeletal muscle fatigue without causing adverse effects in cardiac or vascular smooth muscle performance. Transl Res. 2020;215:17–30.PubMedCrossRef
89.
Zurück zum Zitat Koneski F, Popovic-Monevska D, Gjorgoski I, Krajoska J, Popovska M, Muratovska I, et al. In vivo effects of geranylgeraniol on the development of bisphosphonate-related osteonecrosis of the jaws. J Craniomaxillofac Surg. 2018;46:230–6.PubMedCrossRef Koneski F, Popovic-Monevska D, Gjorgoski I, Krajoska J, Popovska M, Muratovska I, et al. In vivo effects of geranylgeraniol on the development of bisphosphonate-related osteonecrosis of the jaws. J Craniomaxillofac Surg. 2018;46:230–6.PubMedCrossRef
90.
Zurück zum Zitat Wu R, Chen H, Chang N, Xu Y, Jiao J, Zhang H. Unlocking the drug potential of the bryostatin family: recent advances in product synthesis and biomedical applications. Chemistry. 2020;26:1166–95.PubMedCrossRef Wu R, Chen H, Chang N, Xu Y, Jiao J, Zhang H. Unlocking the drug potential of the bryostatin family: recent advances in product synthesis and biomedical applications. Chemistry. 2020;26:1166–95.PubMedCrossRef
91.
Zurück zum Zitat Kollár P, Rajchard J, Balounová Z, Pazourek J. Marine natural products: bryostatins in preclinical and clinical studies. Pharm Biol. 2014;52:237–42.PubMedCrossRef Kollár P, Rajchard J, Balounová Z, Pazourek J. Marine natural products: bryostatins in preclinical and clinical studies. Pharm Biol. 2014;52:237–42.PubMedCrossRef
92.
Zurück zum Zitat Wannamaker W, Davies R, Namchuk M, Pollard J, Ford P, Ku G, et al. (S)-1-((S)-2-{[1-(4-amino-3-chloro-phenyl)-methanoyl]-amino}-3,3-dimethyl-butanoyl)-pyrrolidine-2-carboxylic acid ((2R,3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-1beta and IL-18. J Pharmacol Exp Ther. 2007;321:509–16.PubMedCrossRef Wannamaker W, Davies R, Namchuk M, Pollard J, Ford P, Ku G, et al. (S)-1-((S)-2-{[1-(4-amino-3-chloro-phenyl)-methanoyl]-amino}-3,3-dimethyl-butanoyl)-pyrrolidine-2-carboxylic acid ((2R,3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-1beta and IL-18. J Pharmacol Exp Ther. 2007;321:509–16.PubMedCrossRef
94.
Zurück zum Zitat Hu JJ, Liu X, Xia S, Zhang Z, Zhang Y, Zhao J, et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat Immunol. 2020;21:736–45.PubMedPubMedCentralCrossRef Hu JJ, Liu X, Xia S, Zhang Z, Zhang Y, Zhao J, et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat Immunol. 2020;21:736–45.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Guo W, Chen S, Li C, Xu J, Wang L. Application of disulfiram and its metabolites in treatment of inflammatory disorders. Front Pharmacol. 2022;12:795078.PubMedPubMedCentralCrossRef Guo W, Chen S, Li C, Xu J, Wang L. Application of disulfiram and its metabolites in treatment of inflammatory disorders. Front Pharmacol. 2022;12:795078.PubMedPubMedCentralCrossRef
96.
97.
Zurück zum Zitat Gabay C, Fautrel B, Rech J, Spertini F, Feist E, Kötter I, et al. Open-label, multicentre, dose-escalating phase II clinical trial on the safety and efficacy of tadekinig alfa (IL-18BP) in adult-onset Still’s disease. Annals Rheum Dis. 2018;77:840–7. Gabay C, Fautrel B, Rech J, Spertini F, Feist E, Kötter I, et al. Open-label, multicentre, dose-escalating phase II clinical trial on the safety and efficacy of tadekinig alfa (IL-18BP) in adult-onset Still’s disease. Annals Rheum Dis. 2018;77:840–7.
98.
Zurück zum Zitat Geerlinks AV, Dvorak AM, Jordan MB, Schiffrin EJ, Behrens EM, Marsh R, et al. A Case of XIAP deficiency successfully managed with tadekinig alfa (rhIL-18BP). J Clin Immunol. 2022;42:901–3.PubMedCrossRef Geerlinks AV, Dvorak AM, Jordan MB, Schiffrin EJ, Behrens EM, Marsh R, et al. A Case of XIAP deficiency successfully managed with tadekinig alfa (rhIL-18BP). J Clin Immunol. 2022;42:901–3.PubMedCrossRef
99.
Zurück zum Zitat Canna SW, Girard C, Malle L, de Jesus A, Romberg N, Kelsen J, et al. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J Allergy Clin Immunol. 2017;139:1698–701.PubMedCrossRef Canna SW, Girard C, Malle L, de Jesus A, Romberg N, Kelsen J, et al. Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition. J Allergy Clin Immunol. 2017;139:1698–701.PubMedCrossRef
100.
Zurück zum Zitat Siegmund B, Fantuzzi G, Rieder F, Gamboni-Robertson F, Lehr H-A, Hartmann G, et al. Neutralization of interleukin-18 reduces severity in murine colitis and intestinal IFN-γ and TNF-α production. Am J Physiol –Reg , Integr Comp Physiol. 2001;281:R1264–R73.CrossRef Siegmund B, Fantuzzi G, Rieder F, Gamboni-Robertson F, Lehr H-A, Hartmann G, et al. Neutralization of interleukin-18 reduces severity in murine colitis and intestinal IFN-γ and TNF-α production. Am J Physiol –Reg , Integr Comp Physiol. 2001;281:R1264–R73.CrossRef
102.
Zurück zum Zitat Chin KY, Ekeuku SO, Trias A. The role of geranylgeraniol in managing bisphosphonate-related osteonecrosis of the jaw. Front Pharmacol. 2022;13:878556.PubMedPubMedCentralCrossRef Chin KY, Ekeuku SO, Trias A. The role of geranylgeraniol in managing bisphosphonate-related osteonecrosis of the jaw. Front Pharmacol. 2022;13:878556.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Singh RK, Kumar S, Tomar MS, Verma PK, Kumar A, Kumar S, et al. Putative role of natural products as protein kinase C modulator in different disease conditions. Daru. 2021;29:397–414.PubMedPubMedCentralCrossRef Singh RK, Kumar S, Tomar MS, Verma PK, Kumar A, Kumar S, et al. Putative role of natural products as protein kinase C modulator in different disease conditions. Daru. 2021;29:397–414.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Kitagawa M, Mukai H, Shibata H, Ono Y. Purification and characterization of a fatty acid-activated protein kinase (PKN) from rat testis. Biochem J. 1995;310(Pt 2):657–64.PubMedPubMedCentralCrossRef Kitagawa M, Mukai H, Shibata H, Ono Y. Purification and characterization of a fatty acid-activated protein kinase (PKN) from rat testis. Biochem J. 1995;310(Pt 2):657–64.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Yoshinaga C, Mukai H, Toshimori M, Miyamoto M, Ono Y. Mutational analysis of the regulatory mechanism of PKN: the regulatory region of PKN contains an arachidonic acid-Sensitive autoinhibitory domain1. J Biochem. 1999;126:475–84.PubMedCrossRef Yoshinaga C, Mukai H, Toshimori M, Miyamoto M, Ono Y. Mutational analysis of the regulatory mechanism of PKN: the regulatory region of PKN contains an arachidonic acid-Sensitive autoinhibitory domain1. J Biochem. 1999;126:475–84.PubMedCrossRef
107.
Zurück zum Zitat Lim WG, Zhu Y, Wang C-H, Tan BJ, Armstrong JS, Dokland T, et al. The last five amino acid residues at the C-terminus of PRK1/PKN is essential for full lipid responsiveness. Cellular Sign. 2005;17:1084–97.CrossRef Lim WG, Zhu Y, Wang C-H, Tan BJ, Armstrong JS, Dokland T, et al. The last five amino acid residues at the C-terminus of PRK1/PKN is essential for full lipid responsiveness. Cellular Sign. 2005;17:1084–97.CrossRef
108.
109.
Zurück zum Zitat Cornelis S, Kersse K, Festjens N, Lamkanfi M, Vandenabeele P. Inflammatory caspases: targets for novel therapies. Curr Pharm Des. 2007;13:367–85.PubMedCrossRef Cornelis S, Kersse K, Festjens N, Lamkanfi M, Vandenabeele P. Inflammatory caspases: targets for novel therapies. Curr Pharm Des. 2007;13:367–85.PubMedCrossRef
110.
Zurück zum Zitat Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526:666–71.PubMedCrossRef Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526:666–71.PubMedCrossRef
111.
Zurück zum Zitat He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 2015;25:1285–98.PubMedPubMedCentralCrossRef He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 2015;25:1285–98.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526:660–5.PubMedCrossRef Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526:660–5.PubMedCrossRef
113.
Zurück zum Zitat Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10:417–26.PubMedCrossRef Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10:417–26.PubMedCrossRef
115.
Zurück zum Zitat Kanneganti A, Malireddi RKS, Saavedra PHV, Vande Walle L, Van Gorp H, Kambara H, et al. GSDMD is critical for autoinflammatory pathology in a mouse model of Familial Mediterranean Fever. J Exp Med. 2018;215:1519–29.PubMedPubMedCentralCrossRef Kanneganti A, Malireddi RKS, Saavedra PHV, Vande Walle L, Van Gorp H, Kambara H, et al. GSDMD is critical for autoinflammatory pathology in a mouse model of Familial Mediterranean Fever. J Exp Med. 2018;215:1519–29.PubMedPubMedCentralCrossRef
117.
118.
Zurück zum Zitat Cui W, Hull L, Zizzo A, Wang L, Lin B, Zhai M, et al. Pharmacokinetic study of rhIL-18BP and its effect on radiation-induced cytokine changes in mouse serum and intestine. Toxics. 2023;11:35.CrossRef Cui W, Hull L, Zizzo A, Wang L, Lin B, Zhai M, et al. Pharmacokinetic study of rhIL-18BP and its effect on radiation-induced cytokine changes in mouse serum and intestine. Toxics. 2023;11:35.CrossRef
119.
Zurück zum Zitat Doyle SL, Campbell M, Ozaki E, Salomon RG, Mori A, Kenna PF, et al. NLRP3 has a protective role in age-related macular degeneration through the induction of IL-18 by drusen components. Nat Med. 2012;18:791–8.PubMedPubMedCentralCrossRef Doyle SL, Campbell M, Ozaki E, Salomon RG, Mori A, Kenna PF, et al. NLRP3 has a protective role in age-related macular degeneration through the induction of IL-18 by drusen components. Nat Med. 2012;18:791–8.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Friedmann T, Roblin R. Gene therapy for human genetic disease? Proposals for genetic manipulation in humans raise difficult scientific and ethical problems. Science. 1972;175:949–55.PubMedCrossRef Friedmann T, Roblin R. Gene therapy for human genetic disease? Proposals for genetic manipulation in humans raise difficult scientific and ethical problems. Science. 1972;175:949–55.PubMedCrossRef
122.
Zurück zum Zitat Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. New England J Med. 2017;377:1713–22.CrossRef Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. New England J Med. 2017;377:1713–22.CrossRef
123.
Zurück zum Zitat Arbab M, Matuszek Z, Kray KM, Du A, Newby GA, Blatnik AJ, et al. Base editing rescue of spinal muscular atrophy in cells and in mice. Science. 2023;380:eadg6518.PubMedPubMedCentralCrossRef Arbab M, Matuszek Z, Kray KM, Du A, Newby GA, Blatnik AJ, et al. Base editing rescue of spinal muscular atrophy in cells and in mice. Science. 2023;380:eadg6518.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.PubMedCrossRef Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806–11.PubMedCrossRef
125.
Zurück zum Zitat Hu B, Zhong L, Weng Y, Peng L, Huang Y, Zhao Y, et al. Therapeutic siRNA: state of the art. Sign Trans Target Ther. 2020;5:101.CrossRef Hu B, Zhong L, Weng Y, Peng L, Huang Y, Zhao Y, et al. Therapeutic siRNA: state of the art. Sign Trans Target Ther. 2020;5:101.CrossRef
126.
Zurück zum Zitat Weng Y, Xiao H, Zhang J, Liang X-J, Huang Y. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol Adv. 2019;37:801–25.PubMedCrossRef Weng Y, Xiao H, Zhang J, Liang X-J, Huang Y. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol Adv. 2019;37:801–25.PubMedCrossRef
127.
Zurück zum Zitat Chae JJ, Cho YH, Lee GS, Cheng J, Liu PP, Feigenbaum L, et al. Gain-of-function Pyrin mutations induce NLRP3 protein-independent interleukin-1β activation and severe autoinflammation in mice. Immunity. 2011;34:755–68.PubMedPubMedCentralCrossRef Chae JJ, Cho YH, Lee GS, Cheng J, Liu PP, Feigenbaum L, et al. Gain-of-function Pyrin mutations induce NLRP3 protein-independent interleukin-1β activation and severe autoinflammation in mice. Immunity. 2011;34:755–68.PubMedPubMedCentralCrossRef
Metadaten
Titel
Recent Insights in Pyrin Inflammasome Activation: Identifying Potential Novel Therapeutic Approaches in Pyrin-Associated Autoinflammatory Syndromes
verfasst von
Flore Wouters
Jeroen Bogie
Andy Wullaert
Jeroen van der Hilst
Publikationsdatum
01.01.2024
Verlag
Springer US
Erschienen in
Journal of Clinical Immunology / Ausgabe 1/2024
Print ISSN: 0271-9142
Elektronische ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-023-01621-5

Weitere Artikel der Ausgabe 1/2024

Journal of Clinical Immunology 1/2024 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hodgkin Lymphom: BrECADD-Regime übertrifft die Erwartungen

05.06.2024 ASCO 2024 Kongressbericht

Das Kombinationsregime BrECADD mit Brentuximab vedotin ermöglichte in der Studie HD21 beim fortgeschrittenen klassischen Hodgkin-Lymphom eine unerwartet hohe progressionsfreie Überlebensrate von 94,3% nach vier Jahren. Gleichzeitig war das Regime besser tolerabel als der bisherige Standard eBEACOPP.

Antikörper-Drug-Konjugat verdoppelt PFS bei Multiplem Myelom

05.06.2024 ASCO 2024 Nachrichten

Zwei Phase-3-Studien deuten auf erhebliche Vorteile des Antikörper-Wirkstoff-Konjugats Belantamab-Mafodotin bei vorbehandelten Personen mit Multiplem Myelom: Im Vergleich mit einer Standard-Tripeltherapie wurde das progressionsfreie Überleben teilweise mehr als verdoppelt.

Neuer TKI gegen CML: Höhere Wirksamkeit, seltener Nebenwirkungen

05.06.2024 Chronische myeloische Leukämie Nachrichten

Der Tyrosinkinasehemmer (TKI) Asciminib ist älteren Vertretern dieser Gruppe bei CML offenbar überlegen: Personen mit frisch diagnostizierter CML entwickelten damit in einer Phase-3-Studie häufiger eine gut molekulare Response, aber seltener ernste Nebenwirkungen.

Hereditäres Angioödem: Tablette könnte Akuttherapie erleichtern

05.06.2024 Hereditäres Angioödem Nachrichten

Medikamente zur Bedarfstherapie bei hereditärem Angioödem sind bisher nur als Injektionen und Infusionen verfügbar. Der Arzneistoff Sebetralstat kann oral verabreicht werden und liefert vielversprechende Daten.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.