Skip to main content
Erschienen in: BMC Musculoskeletal Disorders 1/2022

Open Access 01.12.2022 | Case report

Synchronous lung and multiple soft tissue metastases developed from osteosarcoma of tibia: a rare case report and genetic profile analysis

verfasst von: Chuanxi Zheng, Yitian Wang, Yi Luo, Zongguo Pang, Yong Zhou, Li Min, Chongqi Tu

Erschienen in: BMC Musculoskeletal Disorders | Ausgabe 1/2022

Abstract

Background

Osteosarcoma is the most common primary malignant bone tumor with a highly metastatic propensity in children and young adolescents. The majority of metastases develope in the lung, while metastases to the extrapulmonary locations have rarely been discussed, especially in skeletal muscle.

Case presentation

We reported a young patient with pathologically diagnosed osteosarcoma of the right tibia who was initially treated with standard chemotherapy and complete surgical resection. However, pulmonary metastases and multiple soft tissue masses in skeletal muscle developed four years after the index surgical resection. Subsequently, a targeted next-generation sequencing assay based on an 806 oncogenes and tumor suppressor genes panel was performed to analyze genetic alterations in this patient with rare metastatic pattern. The genetic analysis revealed canonical somatic mutations of RB1 and germline variants of ALK (c.862 T > C), BLM (c.1021C > T), PTCH1 (c.152_154del), MSH2 (c.14C > A), RAD51C (c.635G > A). Using silico prediction programs, the germline variants of the MSH2 and RAD51C were predicted as “Possibly Damaging” by Polymorphism Phenotyping v2 (PolyPhen-2) and “Tolerated” by Sorting Intolerant from Tolerant (SIFT); BLM was classified as “Tolerated”, while the germline variant of ALK was predicted to be pathogenic by both PolyPhen-2 and SIFT.

Conclusions

Osteosarcoma with extrapulmonary metastases is rare, especially located in the skeletal muscle, which predicts a worse clinical outcome compared with lung-only metastases. The several novel variants of ALK, BLM, PTCH1 in this patient might expand the mutational spectrums of the osteosarcoma. All the results may contribute to a better understanding of the clinical course and genetic characteristics of osteosarcoma patients with metastasis.
Hinweise
Chuanxi Zheng and Yitian Wang contributed equally to this work.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Background

Osteosarcoma is the most common primary malignant bone tumor with a highly metastatic propensity in children and young adolescents [1]. The advent of neoadjuvant chemotherapy has improved the 5-year overall survival rate of osteosarcoma from less than 20% to over 70% [2]. However, metastasis and relapse are the common adverse predictor factors for patients with osteosarcoma. At the time of diagnosis, approximately 15% to 20% of patients have clinically detectable metastases and the 5-year overall survival rate of those patients is usually less than 30% [37]. The majority of osteosarcoma metastases occurre in the lung, while metastases to the extrapulmonary locations have been rarely reported, such as breast, abdominal viscera, chest wall, heart, penis, brain, subcutaneous tissue, skeletal muscle [815]. Among these extrapulmonary involvement, skeletal muscle metastases are extremity rare which account for only 1.6% of patients with metastases from osteosarcoma and there are only several relevant case reports that have been published to date [16].
The clinical outcome of the patients with extrapulmonary metastases is much worse than that of the patients with lung-only metastases [16]. For patients with resectable lung metastases, the combination of aggressive chemotherapy with metastasectomy could effectively achieve disease control and improve the prognosis, whereas systematic chemotherapy seems invalid for patients who have developed extrapulmonary metastases [8, 16]. The dismal outcome of patients with extrapulmonary metastases emphasized the importance of understanding the underlying molecular mechanisms and specific genetic profile of this metastatic pattern, which so far remain unknown. To our knowledge, none of the published cases had investigated the genetic profile of the patient with skeletal muscle metastasis from osteosarcoma. Here, we reported a case of patient with osteosarcoma who developed skeletal metastases four years after the initial treatment. Synchronously, we investigated the molecular genetic profile of tumors sample in an effort to better understand the clinical course and genetic characteristics of osteosarcoma patients with soft tissue metastasis.

Case presentation

A 17-year-old young patient with a one-month history of dull pain and limited motion of the right knee was admitted to the orthopedic department of West China Hospital in July 2016. The patient reported no relevant oncological family history. Physical examination revealed tenderness in the medial metaphysis of the right tibia and limited mobility of the right knee. The anteroposterior and lateral radiograph showed an ill-defined osteolytic lesion with osteoid matrix involving the proximal metaphysis of the right tibia (Fig. 1A). Magnetic resonance imaging (MRI) revealed an intramedullary lesion of heterogeneously high signal intensity with cortical breaching and soft tissue extension in the proximal metaphysis of the right tibia (Fig. 1B). Computed tomography (CT) scan of the chest did not find the distant metastasis and bone scintigraphy only presented diffusely increased activity in the right proximal tibia (Fig. 1C). Subsequently, an incisional biopsy of lesion in the right tibia was performed. The pathological findings revealed severe cytological atypia and regions of the eosinophilic chondroid matrix with chondroblastoma-like neoplastic cells and osteoid formation, which confirmed the diagnosis of chondroblastoma-like osteosarcoma (Fig. 1D). After three courses of neoadjuvant chemotherapy consisting of doxorubicin (30 mg/m2 on days 1 to 2) and cisplatin (120 mg/m2 on day 1), the patient underwent segmental resection of the lesion with prosthetic reconstruction. While the histological response rate of the resected specimen was less than 50% of the entire lesion, indicating the patient might be refractory to the first-line neoadjuvant chemotherapy. Following surgery, the second-line adjuvant chemotherapy consisting of doxorubicin (30 mg/m2 on days 1 to 2), cisplatin (120 mg/m2 on day 1) and ifosfamide (3 g/m2 on days 1 to 4) were administrated. However, it was discontinued after two courses of treatment due to patient refusal and substituted by the anti-angiogenesis therapy with apatinib, an oral tyrosine kinase inhibitor. Initially, apatinib was administrated at an initial dose of 500 mg once daily with informed consent for off-label use. Due to the drug-related toxicity of the wound dehiscence and hair hypopigmentation, the patient discontinued apatinib treatment after two months by his own decision and then lost to the periodic clinical assessment in the subsequent follow-up.
Unfortunately, the patient presented to our orthopedic clinic again with a complaint of polypnea and multiple soft tissue masses in the right hand and left buttock in April 2020. Physical examination revealed multiple firm, palpable, tender masses in the right shoulder, forearm, left buttock, and the 2, 3, 4, 5 digits of the right hand, without any local recurrence around the right knee (Fig. 2A, D, H, L). The CT scan of whole body demonstrated multiple soft masses without bone destruction in the right deltoid muscle, right forearm, left gluteal maximus muscle, and the 2, 3, 4, 5 digits of the right hand (Fig. 2B, C, E, F, G, I, J). Single-photon emission computed tomography revealed multiple pulmonary metastatic lesions in the bilateral lung in which the largest nodule measuring 7.6 cm × 4.2 cm × 5.0 cm was located in the left upper lobe with internal calcification (Fig. 3A). Bone scintigraphy indicated increased activity lesions in the sites corresponding to the nodule in the left lung (Fig. 3B). An incisional biopsy of lesion in the left gluteal maximus muscle was conducted, the pathological findings showed atypical cell proliferation and osteoid formation consistent with the microscopic presence of osteosarcoma. Based on the medical history, radiological and pathological findings, the diagnosis of multiple metastases from osteosarcoma in the bilateral lung and skeletal muscles was established. Nevertheless, the subsequent Eastern Cooperative Oncology Group (ECOG) performance score of the patient was 3 indicating a poor tolerance for palliative chemotherapy and his family was also counseled on the poor prognosis of the disease. Eventually, the patient and his family were reluctant to undergo palliative chemotherapy and decided to pursue another further targeted treatment.

Genomic analysis

To further investigate genetic alterations of this rare case, somatic tumor testing on soft tissue metastasis was performed. Tumor DNA was extracted from the fresh biopsies of tumor cells (frozen in liquid nitrogen, and stored at -80℃) using DNA Extraction Reagent Kit (TIANGEN, Beijing, China). Meanwhile, genomic DNA was extracted from whole peripheral blood using standard phenol–chloroform extraction protocol to aid in determining germline variants. The cancer-specific mutation status was evaluated with the next-generation DNA sequencing for 806 oncogenes and tumor suppressor genes from the cancer panel (illumina NovaSeq 6000 System, United States).
Sequencing analysis of the sample acquired from the gluteal metastasis revealed a microsatellite-stable tumor with a low tumor mutational burden (1.02 mut/MB) and immunohistochemical staining was negative for PD-L1 expression. Genes with alternation in the tumor sample were summarized in Table 1. Panel sequencing analysis of the 806 genes identified previously reported somatic mutation in RB1, exon 21 c.2211+1G>C (COSM7154357, COSM7154356), as well as heterozygous germline mutation in MSH2 exon1, c.14C>A/ p.P5Q (dbSNP:rs148098584) and RAD51C, exon4, c.635G>A/ p.R212H (dbSNP:rs200857129). Importantly, the therapeutic implication of the somatic mutation in RB1 indicated the patient might be sensitive to mTOR inhibitors. Above the aforementioned variants, several rare germline variants of ALK (exon3, c.862T>C/p.W288R), BLM (exon5, c.1021C>T/p.L341F), PTCH1 (exon1, c.152_154del/p.51_52del) were also identified in this patient (Fig. 4). These variants were further assessed for possible pathogenicity and the effects on protein function by using the bioinformatic programs, including Sorting Intolerant from Tolerant (SIFT), Polymorphism Phenotyping v2 (PolyPhen-2). Among the genetic alterations, germline variants of the PTCH1, MSH2 and RAD51C were predicted as “Possibly Damaging” by Polyphen-2 and “Tolerated” by SIFT; BLM was classified as “Tolerated”, while the germline variant of ALK was predicted to be damaging by both PolyPhen-2 and SIFT. However, all five germline mutations in the tumor sample were classified as variants of uncertain significance (VUS) in ClinVar (http://​www.​ncbi.​nlm.​nih.​gov/​clinvar). Based on the therapeutic implication of somatic mutation in the RB1 which might be sensitive to the targeted therapy of mTOR inhibitor, and everolimus was orally administrated with a dose of 10mg daily. However, the disease still progressed rapidly and the patient died from the complication of lung metastasis 2 months later.
Table 1
Genes with alteration in the sample from the skeletal muscle metastasis of the patient
Gene
Location
Nucleotide change
Amino acid change
Gene ID in databases
Mutation pattern
SIFT function
Polyphen-2 function
Therapeutic implication
 Somatic mutations
 RB1
exon21
c.2211 + 1G > C
NA
COSM7154357
Splicing
NA
NA
mTOR inhibitor
COSM7154356
 Germline mutation
 ALK
exon3
c.862 T > C
p.W288R
NA
Heterozygosis
Damaging
Damaging
VUS
 BLM
exon5
c.1021C > T
p.L341F
NA
Heterozygosis
Tolerated
Benign
VUS
 PTCH1
exon1
c.152_154del
p.51_52del
NA
Heterozygosis
Tolerated
Damaging
VUS
 MSH2
exon1
c.14C > A
p.P5Q
rs56170584
Heterozygosis
Tolerated
Damaging
VUS
 RAD51C
exon4
c.635G > A
p.R212H
rs200857129
Heterozygosis
Tolerated
Damaging
VUS
NA not achieved, VUS variant of uncertain significance

Discussion and Conclusion

Due to the resistant mechanism of skeletal muscle to metastatic deposits, metastases to soft tissue from primary malignancies are rare [17]. In osteosarcoma, skeletal muscle metastases are extremity rare accounting for about 1.6% of patients who developed metastatic lesions from primary sites [16]. Since the introduction of chemotherapy, the metastatic pattern of osteosarcoma has altered with a higher incidence of extrapulmonary metastases in patients who underwent adjuvant chemotherapy, with or without concurrent pulmonary metastases [18]. While the clinical features, therapeutic strategies and prognosis between the patients with lung-only and extrapulmonary lesions are markedly distinct. The latter metastatic pattern usually indicates the probability of disease dissemination, a poor histologic response to preoperative chemotherapy and difficulty in complete resection of metastatic lesions, which are associated with worse clinical outcomes [19, 20]. The median overall survival was 26.0 months for those with lung-only metastasis, but only 12.7 months for patients who developed extrapulmonary metastasis [16]. In the present case, the patient was resistant to the first-line chemotherapy with a histological response rate of less than 90% that was similar to the previously reported cases with skeletal muscle metastases [8, 20]. As the second-line therapy, additional ifosfamide chemotherapy was administrated, whereas it seemed insufficient to control disease progression. Although oral tyrosine kinase inhibitors apatinib had been demonstrated effective in the management of advanced osteosarcoma after the failure of multimodal therapy [21], the patient terminated apatinib treatment within two months due to the intolerable adverts side effects. Consequently, the patient developed multiple metastases in the bilateral lung and skeletal muscles. In this setting, the intensive chemotherapy combined with aggressive metastasectomy was not feasible leading to a dismal clinical prognosis.
Unlike other solid tumors, osteosarcoma exhibits chromosomal instability characterized by intra-tumoral and inter-tumoral heterogeneity with a higher mutation rate [22]. Several cancer predisposition syndromes have been established to be associated with osteosarcoma, including Li-Fraumeni syndrome and Diamond-Blackfan anemia, Rothmund-Thomson syndrome, Baller-Gerold syndrome, RAPADILINO syndrome, Werner syndrome, Bloom syndrome, ATR-X syndrome [2328]. In addition to the syndrome-related osteosarcoma, increasing pathogenic germline mutation has been identified in osteosarcoma individuals with use of the DNA sequencing which may contribute to the complex underlying mechanism of osteosarcoma development. A sequencing study of 1120 cases showed 7/39 osteosarcoma patients harboring pathogenic and likely pathogenic variants in TP53, RB1, APC, MSH2, and PALB2 [29]. Another targeted exon sequencing study involving 1162 patients with sarcoma revealed that more than 50% of all patients carried pathogenic variants in TP53, BRCA2, ATM, ATR, and ERCC2 [30]. More recently, an emerging study investigating the germline genetic architecture of 1244 patients with osteosarcoma demonstrated that 28% of patients possessed pathogenic or likely pathogenic cancer-susceptibility genes variants and identified new candidate genes including CDKN2A, MEN1, VHL, POT1, APC, MSH2 and ATRX [31]. In the present case, we likewise identified the heterozygous mutation in MSH2, RAD51C as previously reported in osteosarcoma [31]. Furthermore, we observed several novel germline variants of ALK (c.862 T > C), BLM (c.1021C > T), PTCH1 (c.152_154del) in this patient. However, only the germline variant of ALK was predicted to be pathogenic by using in silico prediction programs.
Aberrations in the oncogene ALK have emerged as potentially relevant biomarkers and therapeutic targets in several solid tumors, including neuroblastoma, inflammatory myofibroblastic tumor, and non-small-cell lung cancer [32]. Moreover, the ALK has been found to be rearranged, mutated, or amplified in Ewing sarcoma and rhabdomyosarcoma [3234]. The immunopositivity expression of ALK protein was also observed in 30% ~ 40% of patients with soft tissue sarcoma (including osteosarcoma) and correlated with a poor clinical course [35, 36]. In the synovial sarcoma cell lines, the ALK variant with a large extracellular domain deletion encoding by the absence of exons 2–17 and exon1- exon18 splicing was identified as a novel driver gene [37]. Subsequent functional analysis demonstrated this alteration activated multiple proliferative and survival pathways, resulting in a remarkable dependency on ALK for tumor cells growth both in vitro and in vivo [37]. Moreover, ALK-positive patients harboring ALK rearrangement in both primary synovial sarcoma and metastatic lesions further validated the role of ALK in synovial sarcoma and indicated ALK aberration may be required for metastatic progression [37]. Recently, a novel ALK transcript initiated from a de novo alternative transcription initiation (ATI) site in ALK intron 19, ALKATI, was frequently detected in soft tissue sarcoma [36]. In vitro and vivo, ALKATI drove tumorigenesis and enhanced cancer stem cell-like properties through interacting with c-Myc and promoting the binding of c-Myc to the ABCG2 promoter [36]. So far, few studies have systematically investigated the role of ALK in osteosarcoma, although somatic ALK loss (c.*60_*61insCAAT) and mutation (p.K911T and p.A585T) have been reported in human osteosarcoma samples [38, 39]. However, these aforementioned results implied ALK alteration might play an important role in the tumor progression of osteosarcoma.
Importantly, ALK mutation or rearrangement has been shown to lead to resistance of tumor cells to both radiotherapy and chemotherapy, but sensitiveness to ALK inhibitors [36, 37]. Several tyrosine kinase inhibitors targeting ALK were recently validated in clinical trials, such as brigatinib, crizotinib and ceritinib which have been approved by the Food and Drug Administration (FDA) for the management of inflammatory myofibroblastic tumors with ALK translocation [40, 41]. Mosse and colleagues have reported 86% of patients with ALK-fusion inflammatory myofibroblastic tumors responded to crizotinib and 36% of patients achieved a complete response [42]. Moreover, Jiao et al. reported a patient with metastatic low-grade sarcoma carrying CARS-ALK fusion who was dramatically responded to multiple ALK tyrosine kinase inhibitors (crizotinib and alectinib) after treatment failure of the first-line chemotherapy and successfully survived for more than 5 years with a durable response [43]. In this context, we speculated whether the present patient with mutation of ALK could benefit from ALK inhibitors treatment after failure of chemotherapy, which might halt the disease progression or improve the survival of the patient to some extent. However, the efficacy and potential benefit of ALK inhibitors in the adjuvant setting for osteosarcoma require further confirmation in future studies.
In conclusion, osteosarcoma with extrapulmonary metastases is rare, especially in the skeletal muscle, which predicts a worse clinical outcome compared with lung-only metastases. Additionally, several novel mutations have been identified in this study which would enrich the mutational spectrums of osteosarcoma. More information about the biological relevance of these mutations will be helpful to shed new light on the therapeutic targets for this refectory disease.

Acknowledgements

Not Applicable

Declarations

This study was approved by the ethics committee of the West China Hospital, Sichuan University (Chengdu, People’s Republic of China), and was permitted to be published. Written informed consent to have the case details and accompanying images published was obtained from the patient. All clinical investigations were conducted following the principles expressed in the Declaration of Helsinki.
The written consent to publish images or other personal or clinical details of participants was obtained from the patient and patient’s parent. A copy of written consent is available for review.

Competing interests

The authors declare that they have no conflict of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Kager L, Tamamyan G, Bielack SJFO. Novel insights and therapeutic interventions for pediatric osteosarcoma. Future Oncology. 2017;13(4):357–68.CrossRef Kager L, Tamamyan G, Bielack SJFO. Novel insights and therapeutic interventions for pediatric osteosarcoma. Future Oncology. 2017;13(4):357–68.CrossRef
2.
Zurück zum Zitat Isakoff MS, Bielack SS, Paul M. Richard GJJoCOOJotASoCO: Osteosarcoma: Current Treatment and a Collaborative Pathway to Success. 2015;33(27):3029–35. Isakoff MS, Bielack SS, Paul M. Richard GJJoCOOJotASoCO: Osteosarcoma: Current Treatment and a Collaborative Pathway to Success. 2015;33(27):3029–35.
3.
Zurück zum Zitat Ritter J, Bielack SSJAoO: Osteosarcoma. 2010, 21 Suppl 7(suppl_7):vii320–325. Ritter J, Bielack SSJAoO: Osteosarcoma. 2010, 21 Suppl 7(suppl_7):vii320–325.
4.
Zurück zum Zitat Beate KB, Bielack SS, Heribert J, Detlev B, Berdel WE. G Ulrich E, Ulrich GB, Knut H, Gernot J. Hartmut KJJoCO: Osteosarcoma relapse after combined modality therapy: an analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS). 2005;23(3):559–68. Beate KB, Bielack SS, Heribert J, Detlev B, Berdel WE. G Ulrich E, Ulrich GB, Knut H, Gernot J. Hartmut KJJoCO: Osteosarcoma relapse after combined modality therapy: an analysis of unselected patients in the Cooperative Osteosarcoma Study Group (COSS). 2005;23(3):559–68.
5.
Zurück zum Zitat Bielack SS, Beate KB, Detlev B, Dorothe C, Godehard F, Knut H, Matthias K, Gernot J, Thomas K, Rainer MJJoCOOJotASoCO: Second and subsequent recurrences of osteosarcoma: presentation, treatment, and outcomes of 249 consecutive cooperative osteosarcoma study group patients. 2009, 27(4):557–565. Bielack SS, Beate KB, Detlev B, Dorothe C, Godehard F, Knut H, Matthias K, Gernot J, Thomas K, Rainer MJJoCOOJotASoCO: Second and subsequent recurrences of osteosarcoma: presentation, treatment, and outcomes of 249 consecutive cooperative osteosarcoma study group patients. 2009, 27(4):557–565.
6.
Zurück zum Zitat Aljubran AH, Griffin A, Pintilie M, Blackstein M. Osteosarcoma in adolescents and adults: survival analysis with and without lung metastases. Annals of oncology : official journal of the European Society for Medical Oncology. 2009;20(6):1136–41.CrossRef Aljubran AH, Griffin A, Pintilie M, Blackstein M. Osteosarcoma in adolescents and adults: survival analysis with and without lung metastases. Annals of oncology : official journal of the European Society for Medical Oncology. 2009;20(6):1136–41.CrossRef
7.
Zurück zum Zitat Bielack SS, Kempf-Bielack B, Branscheid D, Carrle D, Friedel G, Helmke K, Kevric M, Jundt G, Kuhne T, Maas RJJoCOOJotASoCO: Second and Subsequent Recurrences of Osteosarcoma: Presentation, Treatment, and Outcomes of 249 Consecutive Cooperative Osteosarcoma Study Group Patients. 27(4):557–565. Bielack SS, Kempf-Bielack B, Branscheid D, Carrle D, Friedel G, Helmke K, Kevric M, Jundt G, Kuhne T, Maas RJJoCOOJotASoCO: Second and Subsequent Recurrences of Osteosarcoma: Presentation, Treatment, and Outcomes of 249 Consecutive Cooperative Osteosarcoma Study Group Patients. 27(4):557–565.
8.
Zurück zum Zitat Sakamoto Y, Yokouchi M, Nagano S, Shimada H, Nakamura S, Setoguchi T, Kawamura I, Ishidou Y, Tanimoto A, Komiya S. Metastasis of osteosarcoma to the trapezius muscle: a case report. World J Surg Oncol. 2014;12:176.CrossRef Sakamoto Y, Yokouchi M, Nagano S, Shimada H, Nakamura S, Setoguchi T, Kawamura I, Ishidou Y, Tanimoto A, Komiya S. Metastasis of osteosarcoma to the trapezius muscle: a case report. World J Surg Oncol. 2014;12:176.CrossRef
9.
Zurück zum Zitat Pirayesh E, Rakhshan A, Amoui M, Rakhsha A, Poor AS, Assadi M. Metastasis of femoral osteosarcoma to the abdominal wall detected on 99m Tc-MDP skeletal scintigraphy. Ann Nucl Med. 2013;27(5):478–80.CrossRef Pirayesh E, Rakhshan A, Amoui M, Rakhsha A, Poor AS, Assadi M. Metastasis of femoral osteosarcoma to the abdominal wall detected on 99m Tc-MDP skeletal scintigraphy. Ann Nucl Med. 2013;27(5):478–80.CrossRef
10.
Zurück zum Zitat Onoro G, Hernandez C, Sirvent S, Aleo E, Molina B, Atienza AL, Perez-Martinez A. Unusual sites of extrapulmonary metastases of osteosarcoma after several lines of treatment. Pediatr Hematol Oncol. 2011;28(7):604–8.CrossRef Onoro G, Hernandez C, Sirvent S, Aleo E, Molina B, Atienza AL, Perez-Martinez A. Unusual sites of extrapulmonary metastases of osteosarcoma after several lines of treatment. Pediatr Hematol Oncol. 2011;28(7):604–8.CrossRef
11.
Zurück zum Zitat Chan RS, Kumar G, Vijayananthan AA. Rare occurrence of bilateral breast and peritoneal metastases from osteogenic sarcoma. Singapore Med J. 2013;54(3):e68-71.CrossRef Chan RS, Kumar G, Vijayananthan AA. Rare occurrence of bilateral breast and peritoneal metastases from osteogenic sarcoma. Singapore Med J. 2013;54(3):e68-71.CrossRef
12.
Zurück zum Zitat Strong VE, Shalkow J, Antonescu CR, Meyers P, La Quaglia MP. Osteosarcoma with delayed metastasis to the stomach. J Pediatr Surg. 2007;42(4):737–9.CrossRef Strong VE, Shalkow J, Antonescu CR, Meyers P, La Quaglia MP. Osteosarcoma with delayed metastasis to the stomach. J Pediatr Surg. 2007;42(4):737–9.CrossRef
13.
Zurück zum Zitat Aarvold A, Bann S, Giblin V, Wotherspoon A, Mudan SS. Osteosarcoma metastasising to the duodenum and pancreas. J Bone Joint Surg Br. 2007;89(4):542–4.CrossRef Aarvold A, Bann S, Giblin V, Wotherspoon A, Mudan SS. Osteosarcoma metastasising to the duodenum and pancreas. J Bone Joint Surg Br. 2007;89(4):542–4.CrossRef
14.
Zurück zum Zitat Radhakrishnan VS, Balaji J, Lakshminarasimhan S, Karkuzhali P, Vijayasarathy K. Unusual case of extrapulmonary metastatic recurrence in a patient with osteosarcoma. J Clin Oncol. 2011;29(1):e3-5.CrossRef Radhakrishnan VS, Balaji J, Lakshminarasimhan S, Karkuzhali P, Vijayasarathy K. Unusual case of extrapulmonary metastatic recurrence in a patient with osteosarcoma. J Clin Oncol. 2011;29(1):e3-5.CrossRef
15.
Zurück zum Zitat Ting M, Rodriguez M, Gowda ST, Anders M, Qureshi AM, Grimes A. Cardiovascular recurrence of high-grade osteosarcoma presenting as atrial thrombosis and pulmonary embolism: A case report and review of the pediatric literature. Pediatr Hematol Oncol. 2019;36(4):244–51.CrossRef Ting M, Rodriguez M, Gowda ST, Anders M, Qureshi AM, Grimes A. Cardiovascular recurrence of high-grade osteosarcoma presenting as atrial thrombosis and pulmonary embolism: A case report and review of the pediatric literature. Pediatr Hematol Oncol. 2019;36(4):244–51.CrossRef
16.
Zurück zum Zitat Kim W, Han I, Lee JS, Cho HS, Park JW, Kim HS. Postmetastasis survival in high-grade extremity osteosarcoma: A retrospective analysis of prognostic factors in 126 patients. J Surg Oncol. 2018;117(6):1223–31.CrossRef Kim W, Han I, Lee JS, Cho HS, Park JW, Kim HS. Postmetastasis survival in high-grade extremity osteosarcoma: A retrospective analysis of prognostic factors in 126 patients. J Surg Oncol. 2018;117(6):1223–31.CrossRef
17.
Zurück zum Zitat Sammon J, Jain A, Bleakney R, Mohankumar R. Magnetic resonance imaging appearance of soft-tissue metastases: our experience at an orthopedic oncology center. Skeletal Radiol. 2017;46(4):513–21.CrossRef Sammon J, Jain A, Bleakney R, Mohankumar R. Magnetic resonance imaging appearance of soft-tissue metastases: our experience at an orthopedic oncology center. Skeletal Radiol. 2017;46(4):513–21.CrossRef
18.
Zurück zum Zitat Giuliano AE, Feig S, Eilber FR. Changing metastatic patterns of osteosarcoma. Cancer. 1984;54(10):2160–4.CrossRef Giuliano AE, Feig S, Eilber FR. Changing metastatic patterns of osteosarcoma. Cancer. 1984;54(10):2160–4.CrossRef
19.
Zurück zum Zitat Damron TA, Morganti C, Yang Y, Hojnowski L, Cherny R. Metastasis of osteosarcoma to soft tissue. A case report. J Bone Joint Surg Am. 2000;82(11):1634–8.CrossRef Damron TA, Morganti C, Yang Y, Hojnowski L, Cherny R. Metastasis of osteosarcoma to soft tissue. A case report. J Bone Joint Surg Am. 2000;82(11):1634–8.CrossRef
20.
Zurück zum Zitat Yamada K, Yatabe Y, Sugiura H. Osteosarcoma with skeletal muscle metastasis. Arch Orthop Trauma Surg. 2008;128(7):695–9.CrossRef Yamada K, Yatabe Y, Sugiura H. Osteosarcoma with skeletal muscle metastasis. Arch Orthop Trauma Surg. 2008;128(7):695–9.CrossRef
21.
Zurück zum Zitat Xie L, Xu J, Sun X, Tang X, Yan T, Yang R, Guo W. Apatinib for Advanced Osteosarcoma after Failure of Standard Multimodal Therapy: An Open Label Phase II Clinical Trial. Oncologist. 2019;24(7):e542–50.CrossRef Xie L, Xu J, Sun X, Tang X, Yan T, Yang R, Guo W. Apatinib for Advanced Osteosarcoma after Failure of Standard Multimodal Therapy: An Open Label Phase II Clinical Trial. Oncologist. 2019;24(7):e542–50.CrossRef
22.
Zurück zum Zitat Gianferante DM, Mirabello L, Savage SA. Germline and somatic genetics of osteosarcoma - connecting aetiology, biology and therapy. Nat Rev Endocrinol. 2017;13(8):480–91.CrossRef Gianferante DM, Mirabello L, Savage SA. Germline and somatic genetics of osteosarcoma - connecting aetiology, biology and therapy. Nat Rev Endocrinol. 2017;13(8):480–91.CrossRef
23.
Zurück zum Zitat Arora RS, Kontopantelis E, Alston RD, Eden TO, Geraci M, Birch JM. Relationship between height at diagnosis and bone tumours in young people: a meta-analysis. Cancer Causes Control. 2011;22(5):681–8.CrossRef Arora RS, Kontopantelis E, Alston RD, Eden TO, Geraci M, Birch JM. Relationship between height at diagnosis and bone tumours in young people: a meta-analysis. Cancer Causes Control. 2011;22(5):681–8.CrossRef
24.
Zurück zum Zitat Ognjanovic S, Olivier M, Bergemann TL, Hainaut P. Sarcomas in TP53 germline mutation carriers: a review of the IARC TP53 database. Cancer. 2012;118(5):1387–96.CrossRef Ognjanovic S, Olivier M, Bergemann TL, Hainaut P. Sarcomas in TP53 germline mutation carriers: a review of the IARC TP53 database. Cancer. 2012;118(5):1387–96.CrossRef
25.
Zurück zum Zitat Vlachos A, Rosenberg PS, Atsidaftos E, Kang J, Onel K, Sharaf RN, Alter BP, Lipton JM. Increased risk of colon cancer and osteogenic sarcoma in Diamond-Blackfan anemia. Blood. 2018;132(20):2205–8.CrossRef Vlachos A, Rosenberg PS, Atsidaftos E, Kang J, Onel K, Sharaf RN, Alter BP, Lipton JM. Increased risk of colon cancer and osteogenic sarcoma in Diamond-Blackfan anemia. Blood. 2018;132(20):2205–8.CrossRef
26.
Zurück zum Zitat Maciaszek JL, Oak N, Chen W, Hamilton KV, McGee RB, Nuccio R, Mostafavi R, Hines-Dowell S, Harrison L, Taylor L, et al. Enrichment of heterozygous germline RECQL4 loss-of-function variants in pediatric osteosarcoma. Cold Spring Harb Mol Case Stud. 2019;5(5):a004218.CrossRef Maciaszek JL, Oak N, Chen W, Hamilton KV, McGee RB, Nuccio R, Mostafavi R, Hines-Dowell S, Harrison L, Taylor L, et al. Enrichment of heterozygous germline RECQL4 loss-of-function variants in pediatric osteosarcoma. Cold Spring Harb Mol Case Stud. 2019;5(5):a004218.CrossRef
27.
Zurück zum Zitat Chu WK, Hickson ID. RecQ helicases: multifunctional genome caretakers. Nat Rev Cancer. 2009;9(9):644–54.CrossRef Chu WK, Hickson ID. RecQ helicases: multifunctional genome caretakers. Nat Rev Cancer. 2009;9(9):644–54.CrossRef
28.
Zurück zum Zitat Masliah-Planchon J, Lévy D, Héron D, Giuliano F, Badens C, Fréneaux P, Galmiche L, Guinebretierre JM, Cellier C, Waterfall JJ, et al. Does ATRX germline variation predispose to osteosarcoma? Three additional cases of osteosarcoma in two ATR-X syndrome patients. Eur J Hum Genet. 2018;26(8):1217–21.CrossRef Masliah-Planchon J, Lévy D, Héron D, Giuliano F, Badens C, Fréneaux P, Galmiche L, Guinebretierre JM, Cellier C, Waterfall JJ, et al. Does ATRX germline variation predispose to osteosarcoma? Three additional cases of osteosarcoma in two ATR-X syndrome patients. Eur J Hum Genet. 2018;26(8):1217–21.CrossRef
29.
Zurück zum Zitat Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, Hedges D, Ma X, Zhou X, Yergeau DA, et al. Germline Mutations in Predisposition Genes in Pediatric Cancer. N Engl J Med. 2015;373(24):2336–46.CrossRef Zhang J, Walsh MF, Wu G, Edmonson MN, Gruber TA, Easton J, Hedges D, Ma X, Zhou X, Yergeau DA, et al. Germline Mutations in Predisposition Genes in Pediatric Cancer. N Engl J Med. 2015;373(24):2336–46.CrossRef
30.
Zurück zum Zitat Ballinger ML, Goode DL, Ray-Coquard I, James PA, Mitchell G, Niedermayr E, Puri A, Schiffman JD, Dite GS, Cipponi A, et al. Monogenic and polygenic determinants of sarcoma risk: an international genetic study. Lancet Oncol. 2016;17(9):1261–71.CrossRef Ballinger ML, Goode DL, Ray-Coquard I, James PA, Mitchell G, Niedermayr E, Puri A, Schiffman JD, Dite GS, Cipponi A, et al. Monogenic and polygenic determinants of sarcoma risk: an international genetic study. Lancet Oncol. 2016;17(9):1261–71.CrossRef
31.
Zurück zum Zitat Mirabello L, Zhu B, Koster R, Karlins E, Dean M, Yeager M, Gianferante M, Spector LG, Morton LM, Karyadi D, et al. Frequency of Pathogenic Germline Variants in Cancer-Susceptibility Genes in Patients With Osteosarcoma. JAMA Oncol. 2020;6(5):724–34.CrossRef Mirabello L, Zhu B, Koster R, Karlins E, Dean M, Yeager M, Gianferante M, Spector LG, Morton LM, Karyadi D, et al. Frequency of Pathogenic Germline Variants in Cancer-Susceptibility Genes in Patients With Osteosarcoma. JAMA Oncol. 2020;6(5):724–34.CrossRef
32.
Zurück zum Zitat Takita J. The role of anaplastic lymphoma kinase in pediatric cancers. Cancer Sci. 2017;108(10):1913–20.CrossRef Takita J. The role of anaplastic lymphoma kinase in pediatric cancers. Cancer Sci. 2017;108(10):1913–20.CrossRef
33.
Zurück zum Zitat Yoshida A, Shibata T, Wakai S, Ushiku T, Tsuta K, Fukayama M, Makimoto A, Furuta K, Tsuda H. Anaplastic lymphoma kinase status in rhabdomyosarcomas. Mod Pathol. 2013;26(6):772–81.CrossRef Yoshida A, Shibata T, Wakai S, Ushiku T, Tsuta K, Fukayama M, Makimoto A, Furuta K, Tsuda H. Anaplastic lymphoma kinase status in rhabdomyosarcomas. Mod Pathol. 2013;26(6):772–81.CrossRef
34.
Zurück zum Zitat Mossé YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF, Laquaglia MJ, Sennett R, Lynch JE, Perri P, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008;455(7215):930–5.CrossRef Mossé YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF, Laquaglia MJ, Sennett R, Lynch JE, Perri P, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008;455(7215):930–5.CrossRef
35.
Zurück zum Zitat Ishibashi Y, Miyoshi H, Hiraoka K, Arakawa F, Haraguchi T, Nakashima S, Hashiguchi T, Shoda T, Hamada T, Okawa T, et al. Anaplastic lymphoma kinase protein expression, genetic abnormalities, and phosphorylation in soft tissue tumors: Phosphorylation is associated with recurrent metastasis. Oncol Rep. 2015;33(4):1667–74.CrossRef Ishibashi Y, Miyoshi H, Hiraoka K, Arakawa F, Haraguchi T, Nakashima S, Hashiguchi T, Shoda T, Hamada T, Okawa T, et al. Anaplastic lymphoma kinase protein expression, genetic abnormalities, and phosphorylation in soft tissue tumors: Phosphorylation is associated with recurrent metastasis. Oncol Rep. 2015;33(4):1667–74.CrossRef
36.
Zurück zum Zitat Xu BS, Chen HY, Que Y, Xiao W, Zeng MS, Zhang X. ALK(ATI) interacts with c-Myc and promotes cancer stem cell-like properties in sarcoma. Oncogene. 2020;39(1):151–63.CrossRef Xu BS, Chen HY, Que Y, Xiao W, Zeng MS, Zhang X. ALK(ATI) interacts with c-Myc and promotes cancer stem cell-like properties in sarcoma. Oncogene. 2020;39(1):151–63.CrossRef
37.
Zurück zum Zitat Fleuren EDG, Vlenterie M, van der Graaf WTA, Hillebrandt-Roeffen MHS, Blackburn J, Ma X, Chan H, Magias MC, van Erp A, van Houdt L, et al. Phosphoproteomic Profiling Reveals ALK and MET as Novel Actionable Targets across Synovial Sarcoma Subtypes. Cancer Res. 2017;77(16):4279–92.CrossRef Fleuren EDG, Vlenterie M, van der Graaf WTA, Hillebrandt-Roeffen MHS, Blackburn J, Ma X, Chan H, Magias MC, van Erp A, van Houdt L, et al. Phosphoproteomic Profiling Reveals ALK and MET as Novel Actionable Targets across Synovial Sarcoma Subtypes. Cancer Res. 2017;77(16):4279–92.CrossRef
38.
Zurück zum Zitat Perry JA, Kiezun A, Tonzi P, Van Allen EM, Carter SL, Baca SC, Cowley GS, Bhatt AS, Rheinbay E, Pedamallu CS, et al. Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc Natl Acad Sci U S A. 2014;111(51):E5564-5573.CrossRef Perry JA, Kiezun A, Tonzi P, Van Allen EM, Carter SL, Baca SC, Cowley GS, Bhatt AS, Rheinbay E, Pedamallu CS, et al. Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc Natl Acad Sci U S A. 2014;111(51):E5564-5573.CrossRef
39.
Zurück zum Zitat Reimann E, Kõks S, Ho XD, Maasalu K, Märtson A. Whole exome sequencing of a single osteosarcoma case–integrative analysis with whole transcriptome RNA-seq data. Hum Genomics. 2014;8(1):20.PubMedPubMedCentral Reimann E, Kõks S, Ho XD, Maasalu K, Märtson A. Whole exome sequencing of a single osteosarcoma case–integrative analysis with whole transcriptome RNA-seq data. Hum Genomics. 2014;8(1):20.PubMedPubMedCentral
40.
Zurück zum Zitat Butrynski JE, D’Adamo DR, Hornick JL, Dal Cin P, Antonescu CR, Jhanwar SC, Ladanyi M, Capelletti M, Rodig SJ, Ramaiya N, et al. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N Engl J Med. 2010;363(18):1727–33.CrossRef Butrynski JE, D’Adamo DR, Hornick JL, Dal Cin P, Antonescu CR, Jhanwar SC, Ladanyi M, Capelletti M, Rodig SJ, Ramaiya N, et al. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N Engl J Med. 2010;363(18):1727–33.CrossRef
41.
Zurück zum Zitat Shaw AT, Kim DW, Mehra R, Tan DS, Felip E, Chow LQ, Camidge DR, Vansteenkiste J, Sharma S, De Pas T, et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med. 2014;370(13):1189–97.CrossRef Shaw AT, Kim DW, Mehra R, Tan DS, Felip E, Chow LQ, Camidge DR, Vansteenkiste J, Sharma S, De Pas T, et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med. 2014;370(13):1189–97.CrossRef
42.
Zurück zum Zitat Mossé YP, Voss SD, Lim MS, Rolland D, Minard CG, Fox E, Adamson P, Wilner K, Blaney SM, Weigel BJ. Targeting ALK With Crizotinib in Pediatric Anaplastic Large Cell Lymphoma and Inflammatory Myofibroblastic Tumor: A Children’s Oncology Group Study. J Clin Oncol. 2017;35(28):3215–21.CrossRef Mossé YP, Voss SD, Lim MS, Rolland D, Minard CG, Fox E, Adamson P, Wilner K, Blaney SM, Weigel BJ. Targeting ALK With Crizotinib in Pediatric Anaplastic Large Cell Lymphoma and Inflammatory Myofibroblastic Tumor: A Children’s Oncology Group Study. J Clin Oncol. 2017;35(28):3215–21.CrossRef
43.
Zurück zum Zitat Jiao XD, Liu K, Xu M, Yu G, Liu D, Huang T, Qin BD, Liu M, Wu Y, Ling Y, et al. Metastatic Low-Grade Sarcoma with CARS-ALK Fusion Dramatically Responded to Multiple ALK Tyrosine Kinase Inhibitors: A Case Report with Comprehensive Genomic Analysis. Oncologist. 2020;26(4):e524–9.CrossRef Jiao XD, Liu K, Xu M, Yu G, Liu D, Huang T, Qin BD, Liu M, Wu Y, Ling Y, et al. Metastatic Low-Grade Sarcoma with CARS-ALK Fusion Dramatically Responded to Multiple ALK Tyrosine Kinase Inhibitors: A Case Report with Comprehensive Genomic Analysis. Oncologist. 2020;26(4):e524–9.CrossRef
Metadaten
Titel
Synchronous lung and multiple soft tissue metastases developed from osteosarcoma of tibia: a rare case report and genetic profile analysis
verfasst von
Chuanxi Zheng
Yitian Wang
Yi Luo
Zongguo Pang
Yong Zhou
Li Min
Chongqi Tu
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
BMC Musculoskeletal Disorders / Ausgabe 1/2022
Elektronische ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-022-05020-6

Weitere Artikel der Ausgabe 1/2022

BMC Musculoskeletal Disorders 1/2022 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Aquatherapie bei Fibromyalgie wirksamer als Trockenübungen

03.05.2024 Fibromyalgiesyndrom Nachrichten

Bewegungs-, Dehnungs- und Entspannungsübungen im Wasser lindern die Beschwerden von Patientinnen mit Fibromyalgie besser als das Üben auf trockenem Land. Das geht aus einer spanisch-brasilianischen Vergleichsstudie hervor.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.