Skip to main content
Erschienen in: Pediatric Cardiology 7/2022

15.03.2022 | Original Article

The Secrets of the Frogs Heart

verfasst von: Antonio F. Corno, Zhen Zhou, Santosh C. Uppu, Shuning Huang, Bruno Marino, Dianna M. Milewicz, Jorge D. Salazar

Erschienen in: Pediatric Cardiology | Ausgabe 7/2022

Einloggen, um Zugang zu erhalten

Abstract

The heart of the African clawed frog has a double-inlet and single-outlet ventricle supporting systemic and pulmonary circulations via a truncus, and a lifespan of 25–30 years. We sought to understand the unique cardiac anatomic and physiologic characteristics, with balanced circulation and low metabolic rate, by comparing the basic anatomy structures with focused echocardiography and cardiac magnetic resonance imaging. Twenty-four adult female African clawed frogs were randomly subjected to anatomic dissection (n = 4), echocardiography (n = 10), and cardiac magnetic resonance (n = 10). All anatomical features were confirmed and compared with echocardiography and cardiac magnetic resonance imaging. The main characteristics of the cardiovascular circulation in frogs are the following: Intact interatrial septum, with two separate atrio-ventricular valves, preventing atrial mixing of oxygenated and desaturated blood. Single spongiform ventricular cavity, non-conducive for homogeneous mixing. Single outlet with a valve-like mobile spiral structure, actively streaming into systemic and pulmonary arteries. Intact interatrial septum, spongiform ventricle, and valve-like spiral in the conus arteriosus are likely responsible for balanced systemic and pulmonary circulation in frogs, in spite of double-inlet and single-outlet ventricle.
Literatur
1.
Zurück zum Zitat Corno AF, Becker AE, Bulterijs AHK et al (1982) Univentricular heart: can we alter the natural history? Ann Thorac Surg 34:716–726PubMedCrossRef Corno AF, Becker AE, Bulterijs AHK et al (1982) Univentricular heart: can we alter the natural history? Ann Thorac Surg 34:716–726PubMedCrossRef
2.
Zurück zum Zitat Marcelletti C, Corno AF, Giannico S, Marino B (1990) Inferior vena cava to pulmonary artery extracardiac conduit: a new form of right heart bypass. J Thorac Cardiovasc Surg 100:228–232PubMedCrossRef Marcelletti C, Corno AF, Giannico S, Marino B (1990) Inferior vena cava to pulmonary artery extracardiac conduit: a new form of right heart bypass. J Thorac Cardiovasc Surg 100:228–232PubMedCrossRef
3.
Zurück zum Zitat Giannico S, Corno AF, Marino B et al (1992) Total extracardiac right heart bypass. Circulation 86:110–117 Giannico S, Corno AF, Marino B et al (1992) Total extracardiac right heart bypass. Circulation 86:110–117
4.
Zurück zum Zitat Buchhorn R, Bartmus D, Buhre W, Bursch J (2001) Pathogenetic mechanisms of venous congestion after the Fontan procedure. Cardiol Young 11:161–168PubMedCrossRef Buchhorn R, Bartmus D, Buhre W, Bursch J (2001) Pathogenetic mechanisms of venous congestion after the Fontan procedure. Cardiol Young 11:161–168PubMedCrossRef
5.
Zurück zum Zitat Duncan BW, Desai S (2003) Pulmonary arteriovenous malformations after cavopulmonary anastomosis. Ann Thorac Surg 76:1759–1766PubMedCrossRef Duncan BW, Desai S (2003) Pulmonary arteriovenous malformations after cavopulmonary anastomosis. Ann Thorac Surg 76:1759–1766PubMedCrossRef
6.
Zurück zum Zitat Narkewicz MR, Sondheimer HM, Ziegler JW (2003) Hepatic dysfunction following the Fontan operation. J Pediatr Gastroenterol Nutr 36:352–357PubMedCrossRef Narkewicz MR, Sondheimer HM, Ziegler JW (2003) Hepatic dysfunction following the Fontan operation. J Pediatr Gastroenterol Nutr 36:352–357PubMedCrossRef
7.
Zurück zum Zitat de Leval MR, Deanfield JE (2010) Four decades of Fontan palliation. Nat Rev Cardiol 7:520–527PubMedCrossRef de Leval MR, Deanfield JE (2010) Four decades of Fontan palliation. Nat Rev Cardiol 7:520–527PubMedCrossRef
8.
Zurück zum Zitat Gewillig M, Brown SC (2016) The Fontan circulation after 45 years: update in physiology. Heart 102:1081–1086PubMedCrossRef Gewillig M, Brown SC (2016) The Fontan circulation after 45 years: update in physiology. Heart 102:1081–1086PubMedCrossRef
9.
Zurück zum Zitat Pundi KN, Pundi KN, Johnson JN et al (2017) Sudden cardiac death and late arrhythmias after the Fontan operation. Congenit Heart Dis 12:17–23PubMedCrossRef Pundi KN, Pundi KN, Johnson JN et al (2017) Sudden cardiac death and late arrhythmias after the Fontan operation. Congenit Heart Dis 12:17–23PubMedCrossRef
10.
Zurück zum Zitat Dennis M, Zannino D, du Plessis K et al (2018) Clinical outcomes in adolescents and adults after the Fontan procedure. J Am Coll Cardiol 71:1009–1017PubMedCrossRef Dennis M, Zannino D, du Plessis K et al (2018) Clinical outcomes in adolescents and adults after the Fontan procedure. J Am Coll Cardiol 71:1009–1017PubMedCrossRef
12.
Zurück zum Zitat Restaino G, Dirksen MS, de Roos A (2004) Long-term survival in a case of unoperated single ventricle. Int J Cardiovasc Imaging 20:221–225PubMedCrossRef Restaino G, Dirksen MS, de Roos A (2004) Long-term survival in a case of unoperated single ventricle. Int J Cardiovasc Imaging 20:221–225PubMedCrossRef
13.
Zurück zum Zitat Ammash NM, Warnes CA (1996) Survival into adulthood of patients with unoperated single ventricle. Am J Cardiol 77:542–544PubMedCrossRef Ammash NM, Warnes CA (1996) Survival into adulthood of patients with unoperated single ventricle. Am J Cardiol 77:542–544PubMedCrossRef
14.
Zurück zum Zitat Poterucha JT, Anavekar NS, Egbe AC et al (2016) Survival and outcomes of patients with unoperated single ventricle. Heart 102:216–222PubMedCrossRef Poterucha JT, Anavekar NS, Egbe AC et al (2016) Survival and outcomes of patients with unoperated single ventricle. Heart 102:216–222PubMedCrossRef
15.
Zurück zum Zitat Corno AF, Vergara C, Subramanian C et al (2010) Assisted Fontan procedure: animal and in vitro models and computational fluid dynamics study. Interactive CardioVasc Thorac Surg 10:679–684CrossRef Corno AF, Vergara C, Subramanian C et al (2010) Assisted Fontan procedure: animal and in vitro models and computational fluid dynamics study. Interactive CardioVasc Thorac Surg 10:679–684CrossRef
16.
Zurück zum Zitat Puelz C, Acosta S, Riviere B, Penny DJ, Brady KM, Rusin CG (2017) A computational study of the Fontan circulation with fenestration or hepatic vein exclusion. Comput Biol Med 89:405–418PubMedPubMedCentralCrossRef Puelz C, Acosta S, Riviere B, Penny DJ, Brady KM, Rusin CG (2017) A computational study of the Fontan circulation with fenestration or hepatic vein exclusion. Comput Biol Med 89:405–418PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Rijnberg FM, Hazekamp MG, Wentzel JJ et al (2018) Energetics of blood flow in cardiovascular disease concept and clinical implications of adverse energetics in patients with a Fontan circulation. Circulation 137:2393–2407PubMedCrossRef Rijnberg FM, Hazekamp MG, Wentzel JJ et al (2018) Energetics of blood flow in cardiovascular disease concept and clinical implications of adverse energetics in patients with a Fontan circulation. Circulation 137:2393–2407PubMedCrossRef
18.
Zurück zum Zitat Hsia TY, Conover T, Figliola R, for the Modeling of Congenital Hearts Alliance (MOCHA) Investigators (2020) Computational modeling to support surgical decision making in single ventricle physiology. Semin Thorac Cardiovasc Surg Pediatr Card Surg Ann 23:2–10CrossRef Hsia TY, Conover T, Figliola R, for the Modeling of Congenital Hearts Alliance (MOCHA) Investigators (2020) Computational modeling to support surgical decision making in single ventricle physiology. Semin Thorac Cardiovasc Surg Pediatr Card Surg Ann 23:2–10CrossRef
19.
Zurück zum Zitat Hicks JW (2002) The physiological and evolutionary significance of cardiovascular shunting patterns in reptiles. News Physiol Sci 17:241–245PubMed Hicks JW (2002) The physiological and evolutionary significance of cardiovascular shunting patterns in reptiles. News Physiol Sci 17:241–245PubMed
20.
Zurück zum Zitat Driedzic WR, Gesser H (1994) Energy metabolism and contractility in ectothermic vertebrate hearts: hypoxia, acidosis and low temperature. Physiol Rev 74:221–258PubMedCrossRef Driedzic WR, Gesser H (1994) Energy metabolism and contractility in ectothermic vertebrate hearts: hypoxia, acidosis and low temperature. Physiol Rev 74:221–258PubMedCrossRef
21.
Zurück zum Zitat Burggren WW, Warburton S (2007) Amphibians as animal models for laboratory research in physiology. ILAR J 48:260–269PubMedCrossRef Burggren WW, Warburton S (2007) Amphibians as animal models for laboratory research in physiology. ILAR J 48:260–269PubMedCrossRef
24.
Zurück zum Zitat Chambers WN, Criscittiello MG, Goodale F (1961) Cor triloculare biatriatum. Survival to adult life. Circulation 23:91–101PubMedCrossRef Chambers WN, Criscittiello MG, Goodale F (1961) Cor triloculare biatriatum. Survival to adult life. Circulation 23:91–101PubMedCrossRef
25.
Zurück zum Zitat Sharma HL (1961) The circulatory mechanism and anatomy of the heart of the frog, Rana pipiens. J Morphol 109:323–349PubMedCrossRef Sharma HL (1961) The circulatory mechanism and anatomy of the heart of the frog, Rana pipiens. J Morphol 109:323–349PubMedCrossRef
26.
Zurück zum Zitat Haberich FJ (1965) The functional separation of venous and arterial blood in the univentricular frog heart. Ann N Y Acad Sci 127:459–476PubMedCrossRef Haberich FJ (1965) The functional separation of venous and arterial blood in the univentricular frog heart. Ann N Y Acad Sci 127:459–476PubMedCrossRef
27.
Zurück zum Zitat Hillman SS, Hedrick MS, Kohl ZF (2014) Net cardiac shunts in anuran amphibians: physiology or physics? J Exp Biol 217:2844–2847PubMed Hillman SS, Hedrick MS, Kohl ZF (2014) Net cardiac shunts in anuran amphibians: physiology or physics? J Exp Biol 217:2844–2847PubMed
29.
Zurück zum Zitat Lagerstrand G, Poupa O (1980) Effects of calcium and pH on the mechanical performance of heart muscle in the frog, Rana temporaria, during anoxia and subsequent recovery. Acta Physiol Scand 108:399–404PubMedCrossRef Lagerstrand G, Poupa O (1980) Effects of calcium and pH on the mechanical performance of heart muscle in the frog, Rana temporaria, during anoxia and subsequent recovery. Acta Physiol Scand 108:399–404PubMedCrossRef
30.
Zurück zum Zitat Ventura-Clapier R, Vassort G (1980) Electrical and mechanical activities of frog heart during energetic deficiency. J Muscle Res Cell Motil 1:429–444CrossRef Ventura-Clapier R, Vassort G (1980) Electrical and mechanical activities of frog heart during energetic deficiency. J Muscle Res Cell Motil 1:429–444CrossRef
31.
Zurück zum Zitat Knight VA, Richardson DR, Makoba B (1989) Use of frog ventricle to examine mechanical and electrical activity of heart. Am J Physiol 256:S9-13PubMed Knight VA, Richardson DR, Makoba B (1989) Use of frog ventricle to examine mechanical and electrical activity of heart. Am J Physiol 256:S9-13PubMed
32.
Zurück zum Zitat Bartlett HL, Escalera RB, Patel SS et al (2010) Echocardiographic assessment of cardiac morphology and function in Xenopus. Comp Med 60:107–113PubMedPubMedCentral Bartlett HL, Escalera RB, Patel SS et al (2010) Echocardiographic assessment of cardiac morphology and function in Xenopus. Comp Med 60:107–113PubMedPubMedCentral
33.
Zurück zum Zitat Van Praagh R (1977) Terminology of congenital heart disease: glossary and commentary. Circulation 56:139–143PubMedCrossRef Van Praagh R (1977) Terminology of congenital heart disease: glossary and commentary. Circulation 56:139–143PubMedCrossRef
35.
Zurück zum Zitat Lohr JL, Danos MC, Yost HJ (1977) Left-right asymmetry and a nodal-related gene is regulated by dorsoanterior midline structures during Xenopus development. Development 124:1465–1472CrossRef Lohr JL, Danos MC, Yost HJ (1977) Left-right asymmetry and a nodal-related gene is regulated by dorsoanterior midline structures during Xenopus development. Development 124:1465–1472CrossRef
36.
Zurück zum Zitat Levin M, Mercola M (1998) Evolutionary conservation of mechanisms upstream of asymmetric Nodal expression: reconciling chick and Xenopus. Develop Genet 23:185–193CrossRef Levin M, Mercola M (1998) Evolutionary conservation of mechanisms upstream of asymmetric Nodal expression: reconciling chick and Xenopus. Develop Genet 23:185–193CrossRef
37.
Zurück zum Zitat Lohr JL, Danos MC, Groth TV, Yost HJ (1998) Maintenance of asymmetric Nodal expression in Xenopus laevis. Develop Genet 23:194–202CrossRef Lohr JL, Danos MC, Groth TV, Yost HJ (1998) Maintenance of asymmetric Nodal expression in Xenopus laevis. Develop Genet 23:194–202CrossRef
38.
Zurück zum Zitat Bajolle F, Zaffran S, Kelly RG et al (2006) Rotation of the myocardial wall of the outflow tract is implicated in the normal positioning of the great arteries. Circ Res 94:421–428CrossRef Bajolle F, Zaffran S, Kelly RG et al (2006) Rotation of the myocardial wall of the outflow tract is implicated in the normal positioning of the great arteries. Circ Res 94:421–428CrossRef
40.
Zurück zum Zitat Oliverio M, Digiglio MC, Versacci P, Dallapiccola B, Marino B (2010) Shells and heart: are human laterality and chirality of snails controlled by the same maternal genes? Am J Med Genet 152:2419–2425CrossRef Oliverio M, Digiglio MC, Versacci P, Dallapiccola B, Marino B (2010) Shells and heart: are human laterality and chirality of snails controlled by the same maternal genes? Am J Med Genet 152:2419–2425CrossRef
41.
Zurück zum Zitat Versacci P, Digiglio MC, Oliverio M, Dallapiccola B, Marino B (2011) The heart and shell. Anatomical and genetic similarities. Am Heart J 161:647–649PubMedCrossRef Versacci P, Digiglio MC, Oliverio M, Dallapiccola B, Marino B (2011) The heart and shell. Anatomical and genetic similarities. Am Heart J 161:647–649PubMedCrossRef
42.
Zurück zum Zitat Marino B, Digilio MC, Di Donato R (2002) Transposition of the great arteries in asplenia and polysplenia phenotypes. Am J Med Genet 110:292–294PubMedCrossRef Marino B, Digilio MC, Di Donato R (2002) Transposition of the great arteries in asplenia and polysplenia phenotypes. Am J Med Genet 110:292–294PubMedCrossRef
43.
Zurück zum Zitat Marino B, Corno AF (2003) Spiral pattern: universe, normal heart, and complex congenital heart defects. J Thorac Cardiovasc Surg 126:1225–1226PubMedCrossRef Marino B, Corno AF (2003) Spiral pattern: universe, normal heart, and complex congenital heart defects. J Thorac Cardiovasc Surg 126:1225–1226PubMedCrossRef
44.
Zurück zum Zitat DeLuca A, Sarkozy A, Consoli F et al (2020) familial transposition of the great arteries caused by multiple mutations in laterality genes. Heart 96:673–677CrossRef DeLuca A, Sarkozy A, Consoli F et al (2020) familial transposition of the great arteries caused by multiple mutations in laterality genes. Heart 96:673–677CrossRef
45.
Zurück zum Zitat Christoffels VM, Habets PEMH, Franco D et al (2000) Chamber formation and morphogenesis in the developing mammalian heart. Develop Biol 223:266–278PubMedCrossRef Christoffels VM, Habets PEMH, Franco D et al (2000) Chamber formation and morphogenesis in the developing mammalian heart. Develop Biol 223:266–278PubMedCrossRef
46.
Zurück zum Zitat Lamers VH, Moorman AFM (2002) Cardiac septation: a late contricution of the embryonic primary myocardium to heart morphogenesis. Circ Res 91:93–103PubMedCrossRef Lamers VH, Moorman AFM (2002) Cardiac septation: a late contricution of the embryonic primary myocardium to heart morphogenesis. Circ Res 91:93–103PubMedCrossRef
47.
Zurück zum Zitat Moorman AFM, Christoffels VM (2003) Cardiac chamber formation: development, genes and evolution. Physiol Rev 83:1223–1267PubMedCrossRef Moorman AFM, Christoffels VM (2003) Cardiac chamber formation: development, genes and evolution. Physiol Rev 83:1223–1267PubMedCrossRef
48.
Zurück zum Zitat Sylva M, van den Hoff MJB, Moorman AFM (2014) Development of the human heart. Am J Med Genet 164A:1347–1371PubMedCrossRef Sylva M, van den Hoff MJB, Moorman AFM (2014) Development of the human heart. Am J Med Genet 164A:1347–1371PubMedCrossRef
Metadaten
Titel
The Secrets of the Frogs Heart
verfasst von
Antonio F. Corno
Zhen Zhou
Santosh C. Uppu
Shuning Huang
Bruno Marino
Dianna M. Milewicz
Jorge D. Salazar
Publikationsdatum
15.03.2022
Verlag
Springer US
Erschienen in
Pediatric Cardiology / Ausgabe 7/2022
Print ISSN: 0172-0643
Elektronische ISSN: 1432-1971
DOI
https://doi.org/10.1007/s00246-022-02870-8

Weitere Artikel der Ausgabe 7/2022

Pediatric Cardiology 7/2022 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Adipositas-Medikament auch gegen Schlafapnoe wirksam

24.04.2024 Adipositas Nachrichten

Der als Antidiabetikum sowie zum Gewichtsmanagement zugelassene Wirkstoff Tirzepatid hat in Studien bei adipösen Patienten auch schlafbezogene Atmungsstörungen deutlich reduziert, informiert der Hersteller in einer Vorab-Meldung zum Studienausgang.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.