Skip to main content
Erschienen in: BMC Public Health 4/2017

Open Access 01.11.2017 | Research

Water, sanitation and hygiene interventions for acute childhood diarrhea: a systematic review to provide estimates for the Lives Saved Tool

verfasst von: Nazia Darvesh, Jai K. Das, Tyler Vaivada, Michelle F. Gaffey, Kumanan Rasanathan, Zulfiqar A. Bhutta, for the Social Determinants of Health Study Team

Erschienen in: BMC Public Health | Sonderheft 4/2017

Abstract

Background

In the Sustainable Development Goals (SDGs) era, there is growing recognition of the responsibilities of non-health sectors in improving the health of children. Interventions to improve access to clean water, sanitation facilities, and hygiene behaviours (WASH) represent key opportunities to improve child health and well-being by preventing the spread of infectious diseases and improving nutritional status.

Methods

We conducted a systematic review of studies evaluating the effects of WASH interventions on childhood diarrhea in children 0–5 years old. Searches were run up to September 2016. We screened the titles and abstracts of retrieved articles, followed by screening of the full-text reports of relevant studies. We abstracted study characteristics and quantitative data, and assessed study quality. Meta-analyses were performed for similar intervention and outcome pairs.

Results

Pooled analyses showed diarrhea risk reductions from the following interventions: point-of-use water filtration (pooled risk ratio (RR): 0.47, 95% confidence interval (CI): 0.36–0.62), point-of-use water disinfection (pooled RR: 0.69, 95% CI: 0.60–0.79), and hygiene education with soap provision (pooled RR: 0.73, 95% CI: 0.57–0.94). Quality ratings were low or very low for most studies, and heterogeneity was high in pooled analyses. Improvements to the water supply and water disinfection at source did not show significant effects on diarrhea risk, nor did the one eligible study examining the effect of latrine construction.

Conclusions

Various WASH interventions show diarrhea risk reductions between 27% and 53% in children 0–5 years old, depending on intervention type, providing ample evidence to support the scale-up of WASH in low and middle-income countries (LMICs). Due to the overall low quality of the evidence and high heterogeneity, further research is required to accurately estimate the magnitude of the effects of these interventions in different contexts.
Abkürzungen
CHERG
Child Health Epidemiology Reference Group
cRCT
cluster randomized controlled trials
GRADE
Grading of Recommendations Assessment, Development and Evaluation
LMIC
low and middle-income countries
QE
quasi-experimental
RCT
randomized controlled trials
SDG
Sustainable Development Goals
WASH
water, sanitation and hygiene

Background

Clean water, availability of toilets and good hygiene practices are essential for the survival and development of children. Globally, there are 2.4 billion people who live without adequate sanitation, 663 million do not have access to improved water sources and 946 million still defecate in the open [1]. While there has been progress, it has been slow and uneven, with 96% of the global urban population using improved drinking water sources in 2015 compared to 84% of the rural population; 82% of the global urban population uses improved sanitation facilities compared to 51% of the rural population [1].
Children under the age of five years are the most affected as they are prone to water-borne diseases, especially diarrhea. It is estimated that over 800,000 children die annually from preventable diseases caused by poor water, lack of sanitation and poor hygiene [2]. Diarrhea is one of the leading causes of morbidity and mortality in children, and while there has been progress in the reduction of diarrhea-associated mortality [3], the reduction in incidence and morbidity has varied in different regions and between socio-economic classes. In particular, the relationship of early exposure to pathogens, diarrheal burdens, and high rates of stunting, also called environmental enteropathy, is well appreciated [4]. Poor status of water, sanitation and hygiene (WASH) and related interventions can impact growth and development of children in multiple ways [4] and there is consensus that improvement in undernutrition would not be possible without improving WASH conditions of underprivileged children around the world.
There are several interventions for improving WASH that have been implemented in varying contexts worldwide, with the evidence evaluated for their impact on health and social outcomes. The evidence so far has been sparse, complex, and not of sufficient quality to propose any conclusive impact of these interventions on broader health and other outcomes. Some of these difficulties relate to endpoints such as environmental enteropathy or developmental outcomes, and in other instances studies are not sufficiently powered to assess mortality outcomes. Diarrhea is a relevant outcome that has been evaluated relatively rigorously and has been used extensively in previous reviews to evaluate the effectiveness of WASH interventions in childhood [310]. We aimed to update the evidence synthesis presented by Cairncross et al. [7] which has guided interventions for the existing Lives Saved Tool (LiST) since 2010, and to propose fresh estimates for modeling within LiST.

Methods

Search and data abstraction

We systematically reviewed the published literature up to September 2016. We relied on a search that was previously conducted by our team for a broader evaluation of WASH interventions in September 2014 and updated that search in September 2016 to incorporate relevant new evidence. The search was conducted in Medline, CINAHL, EMBASE, CAB Abstracts, Cochrane, BLDS, EconLit, IDEAS, SIGLE, WHOLIS and JOLIS. Further articles from secondary sources were retrieved by screening the reference list of a Gapmap by Waddington and colleagues [11] and the reference lists of relevant reviews and reports [3–9]. A search strategy was designed including Medical Subject Heading Terms (MeSH) and keywords using various combinations. No language or date restrictions were employed in the electronic searches.
We initially screened, in duplicate, the titles and abstracts of retrieved articles to determine whether they met our inclusion and exclusion criteria. The full-texts of all selected studies were then retrieved and assessed by two reviewers for eligibility. In duplicate, we abstracted descriptive and quantitative data from included studies into a standardized form.

Inclusion/exclusion criteria

Two authors independently assessed study eligibility using pre-defined inclusion and exclusion criteria. Discrepancies between the reviewers in the decision to include or exclude studies were resolved by discussion aimed at reaching consensus or by consulting with a third author.
We limited included studies to randomized controlled trials (RCTs), cluster randomized controlled trials (cRCTs) and quasi-experimental (QE) trials where the following WASH interventions were evaluated in community settings in children 0–5 years old:
1.
Water quality improvement at source and point-of-use
 
2.
Promotion of handwashing with soap
 
3.
Safe excreta disposal
 
We included studies published in English that evaluated the impact of these interventions on acute childhood diarrhea in children 0–5 years old. Our outcomes of interest included diarrhea-related mortality, diarrhea-related morbidity and risk of diarrhea. We excluded studies reporting only behavioral outcomes. We excluded studies comparing the effect of different interventions without a control group; studies conducted in specific settings such as schools, daycares, and hospitals; studies where the intervention was the use of hand scrubs or disinfectants; studies measuring the impact on dysentery only, specific pathogens such as cholera or soil-transmitted helminths (STHs), or general gastrointestinal outcomes like highly-credible gastrointestinal illness (HCGI); studies conducted in emergency settings or refugee camps; or studies conducted only with specific populations such as HIV-infected persons. We also excluded studies where multiple interventions were evaluated together and the impact of a single intervention could not be inferred, or where the data were not reported sufficiently to be included in a meta-analysis.

Assessment of risk of bias

The quality of studies was assessed using methods adapted from the Cochrane ‘Risk of bias’ assessment tool [12] and the Child Health Epidemiology Reference Group (CHERG) guidelines [13]. For each study, two reviewers independently assessed the quality of included studies for the following domains; allocation concealment, sequence generation; blinding of outcome assessors, blinding of participants and personnel, and incomplete outcome data. During quality assessment, RCTs and cRCTs started at a ‘high’ rating and quasi-experimental (QE) studies started at a ‘low’ rating with each study’s rating adjusted accordingly and given either high, moderate, low or very low scores. Where a study reported multiple outcomes, we assigned a separate overall study score for each, depending on how the outcome was measured.

Data analysis

We entered the abstracted effect estimates into Review Manager (RevMan) 5.3 and made calculations where necessary [12, 14]. In duplicate, the effect of the interventions on diarrheal outcomes was extracted, and calculated when necessary. These included risk ratios (RRs), odds ratios (ORs), rate ratios, means ratios, and longitudinal prevalence ratios, depending on how the individual study authors chose to display the effect. For treating all effect measures as equivalent, the design effect was considered for the various effect measures for common outcomes like diarrhea. The different measures of effect were then converted to a single measure for such outcomes [15]. In our analysis, ORs were transformed into RRs using an assumed control risk and formula recommended by Higgins et al. [12].
Where studies presented outcomes at different time points, we selected the effect estimate from the longest follow-up time. When studies provided effect estimates separated into different age strata of children 0–5 years old, we combined the point estimates from each stratum in RevMan using fixed effects models and then added the resulting pooled effect estimate into our main meta-analysis [16]. To quantitatively synthesize the available evidence, we grouped together similar intervention and outcome types and conducted meta-analyses using the generic inverse variance method. Random effects models were used to estimate the average effect of the intervention under the assumption that the intervention effects from individual studies were drawn from a distribution of effects rather than indicating the same fixed effect. For each intervention-outcome pair, the pooled RR was reported with a 95% confidence interval (CI). Subgroup analysis was conducted for the difference in the intervention.

Quality of evidence

After each study was assessed for methodological quality and assigned a rating according to the CHERG adaptation of the GRADE technique [13], the quality of the overall evidence for each intervention and outcome combination was assessed on a four-level scale (high, moderate, low, very low).

Results

Figure 1 shows the results of the search strategy and altogether a total of 44 studies were identified to be included in the review. The characteristics of included studies are described in Table 1. The quality assessment of these studies suggests that the evidence is of low to very low quality (Table 2).
Table 1
Characteristics of included studies
Study
Country
Study design
Intervention
Estimates on diarrhea (RR [95% CI])
Improved water quality at source
 Alam 1989 [17]
Bangladesh
QE
Hand Pump
0.83 [0.71, 0.97]
 Opryszko 2010 [18]
Afghanistan
cRCT
Hand Pump
1.22 [0.86, 1.73]
 Jensen 2003 [19]
Pakistan
QE
Chlorination
0.95 [0.35, 2.60]
 Ryder 1985 [20]
Panama
QE
Improved Supply
1.34 [1.11, 1.62]
 Semenza 1998 [21]
Uzbekistan
cRCT
Improved Supply
0.65 [0.44, 0.95]
Improved water quality at point-of-use
 Water Filtration
  Aceituno 2012 [22]
Honduras
RCT
Biosand Filter
0.62 [0.36, 1.08]
  Boisson 2009 [23]
Ethiopia
RCT
Lifestraw
0.97 [0.67, 1.40]
  Boisson 2010 [24]
Democratic Republic of Congo
RCT
Lifestraw
0.85 [0.56, 1.29]
  Brown 2007 [25]
Cambodia
QE
Ceramic Filter
0.52 [0.32, 0.85]
  Brown 2008 [26]
Cambodia
RCT
Ceramic Filter (Iron rich)
0.58 [0.41, 0.82]
Ceramic Filter with Vessel
0.65 [0.46, 0.92]
  Clasen 2004 [27]
Bolivia
RCT
Ceramic Filter
0.41 [0.17, 1.02]
  Clasen 2005 [28]
Colombia
RCT
Ceramic Filter
0.63 [0.45, 0.89]
  Du Preez 2008 [29]
South Africa and Zimbabwe
RCT
Ceramic Filter
0.21 [0.12, 0.37]
  Lindquist 2014 [30]
Bolivia
cRCT
Hollow water filter
0.21 [0.15, 0.29]
Hollow water filter with behavior change campaign
0.27 [0.22, 0.33]
  Stauber 2009 [31]
Dominican Republic
RCT
Biosand Filter
0.46 [0.35, 0.60]
  Stauber 2012a [32]
Ghana
cRCT
Biosand Filter
0.26 [0.07, 0.97]
  Stauber 2012b [33]
Cambodia
cRCT
Biosand Filter
0.45 [0.26, 0.78]
  Tiwari 2009 [34]
Kenya
cRCT
Biosand Filter
0.49 [0.24, 1.00]
 Water Disinfection
  Boisson 2013 [35]
India
RCT
Chlorination
0.95 [0.79, 1.14]
  Chiller 2006 [36]
Republic of Guatemala
cRCT
Flocculent disinfectant
0.63 [0.48, 0.82]
  Crump 2005 [37]
Kenya
cRCT
Flocculent disinfectant
0.75 [0.59, 0.95]
Chlorination
0.83 [0.66, 1.04]
  Du Preez 2011 [38]
Kenya
RCT
SODIS
0.73 [0.63, 0.85]
  Harshfield 2012 [39]
Haiti
QE
Chlorination
0.61 [0.45, 0.83]
  Jain 2010 [40]
Ghana
RCT
Chlorination
1.13 [0.92, 1.39]
  Kirchhoff 1985 [41]
Brazil
QE
Chlorination
0.97 [0.84, 1.12]
  Luby 2006 (1) [42]
Pakistan
cRCT
Chlorination
0.39 [0.17, 0.89]
Flocculent disinfectant
0.54 [0.31, 0.94]
  Mahfouz 1995 [43]
Saudi Arabia
QE
Chlorination
0.55 [0.30, 1.00]
  McGuigan 2011 [44]
Cambodia
cRCT
SODIS
0.37 [0.29, 0.47]
  Mengistie 2013 [45]
Ethiopia
RCT
Chlorination
0.43 [0.38, 0.49]
  Mausezahl 2009 [46]
Bolivia
cRCT
SODIS
0.74 [0.50, 1.10]
  Opryszko 2010 [18]
Afghanistan
cRCT
Chlorination
1.20 [0.84, 1.71]
  Quick 1999 [47]
Bolivia
cRCT
Chlorination
0.56 [0.45, 0.69]
  Rai 2010 [48]
India
RCT
SODIS
0.24 [0.10, 0.60]
  Reller 2003 (1) [49]
Republic of Guatemala
RCT
Chlorination
0.77 [0.29, 2.08]
Chlorination with vessel
0.92 [0.65, 1.30]
Flocculent disinfectant
0.69 [0.50, 0.95]
Flocculent disinfectant with vessel
1.05 [0.78, 1.41]
  Rose 2006 [50]
India
QE
SODIS
0.64 [0.48, 0.86]
  Semenza 1998 [21]
Uzbekistan
cRCT
Chlorination
0.33 [0.19, 0.57]
  Sobsey 2003 [51]
Bangladesh
RCT
Chlorination
0.78 [0.73, 0.83]
HANDWASHING WITH SOAP
 Han 1989 [52]
Myanmar
cRCT
With Provision of Soap
0.70 [0.54, 0.93]
 Langford 2011 [53]
Nepal
cRCT
With Provision of Soap
0.74 [0.54, 1.01]
 Luby 2004a [54]
Pakistan
cRCT
With Provision of Soap
0.55 [0.45, 0.68]
 Nicholson 2014 [55]
India
cRCT
With Provision of Soap
1.10 [0.77, 1.57]
 Shahid 1996 [56]
Bangladesh
QE
With Provision of Soap
0.53 [0.44, 0.62]
 Sircar 1987 [57]
India
QE
With Provision of Soap
1.13 [0.79, 1.62]
Safe disposal of excreta
 Clasen 2014 [64]
India
cRCT
Latrine promotion and construction
0.97 [0.83–1.12]
Table 2
Quality assessment of the evidence
 
Quality Assessment
Number of studies
Study design(s)
Limitations
Consistency
Generalizability
Overall quality of evidence (justification)
Effect Of Water Quality Interventions at Source
Outcome: Diarrhea incidence or prevalence
5
2 cRCT,
3 QE
3 very low, 1 low, 1 moderate quality study
I2 = 81%
Studies favoured intervention, control, or showed no effect
Children 0–5 years; low and middle income countries (Afghanistan, Bangladesh, Pakistan, Panama, Uzbekistan)
Very low
(considerable heterogeneity, non-significant pooled estimate)
Point-Of-Use Water Treatment Interventions
Intervention: Water filters and water disinfection, Outcome: Diarrhea incidence or prevalence
32
15 RCT, 12 cRCT,
5 QE
17 very low, 11 low, 4 moderate quality studies
I2 = 89%
Studies either favoured intervention or showed no effect
Children 0–5 years; low and middle income countries
(Afghanistan, Bangladesh, Bolivia, Brazil, Cambodia, Colombia, Democratic Republic of Congo, Dominican Republic, Ethiopia, Ghana, Guatemala, Haiti, India, Honduras, Kenya, Pakistan, Saudi Arabia [rural], South Africa, Uzbekistan, Zimbabwe)
Low
(15 studies were low or moderate quality, large significant magnitude of effect, considerable heterogeneity warrants further research on the magnitude of the benefit)
Intervention: Water filters, Outcome: Diarrhea incidence or prevalence
13
8 RCT,
4 cRCT, 1 QE
8 very low, 5 low quality studies
I2 = 84%
Studies generally favoured intervention
Children 0–5 years; low and middle income countries (Bolivia, Cambodia, Colombia, Democratic Republic of Congo, Dominican Republic, Ethiopia, Ghana, Honduras, Kenya, South Africa, Zimbabwe)
Very low
(mostly very low quality studies)
Intervention: Water disinfection, Outcome: Diarrhea incidence or prevalence
19
7 RCT,
8 cRCT,
4 QE
9 very low, 6 low, 4 moderate quality studies
I2 = 87%
Studies either favoured intervention or showed no effect
Children 0–5 years; low and middle income countries
(Afghanistan, Bangladesh, Bolivia, Brazil, Cambodia, India, Ethiopia, Ghana, Guatemala, Haiti, Kenya, Pakistan, Saudi Arabia [rural], Uzbekistan)
Low
(studies ranged from very low to moderate quality, large significant magnitude of effect, considerable heterogeneity warrants further research on the magnitude of the benefit)
Hand Washing Education with Soap Interventions
Outcome: Diarrhea incidence or prevalence
6
4 cRCT,
2 QE
5 very low, 1 low quality study
I2 = 81%
Studies either favoured intervention or showed no effect
Children 0–5 years; low and middle income countries (Bangladesh, India, Myanmar, Nepal, Pakistan)
Very low
(most studies very low quality, considerable heterogeneity)

Water quality improvement

We identified five studies that provided water quality improvement intervention at the water supply [1721]; two studies were cRCTs and three were QE. All of these studies were conducted in low and middle-income (LMIC) settings and the interventions included improved supply systems, hand pumps, and water disinfection (chlorination). The combined analysis suggested no effect of water quality interventions at source on risk of diarrhea (pooled RR: 0.98 95%CI: 0.73, 1.32) and the subgroup analyses for the various interventions also suggested no effects (Fig. 2).
We identified 32 studies for inclusion in analysis that had a water quality improvement intervention at point-of-use [18, 2151]; 27 of these were RCTs or cRCTs while five were QE study designs. Studies were from Africa (Kenya, Ghana, Democratic Republic of the Congo, Ethiopia, Zimbabwe, South Africa), Asia (Bangladesh, Pakistan, India, Afghanistan, Saudi Arabia, Uzbekistan, Cambodia), South America (Bolivia, Brazil, Colombia), Central America (Honduras, Guatemala), and the Caribbean (Haiti, Dominican Republic). There were a range of interventions delivered which were broadly categorized into ‘water filtration’ [2234] and ‘water disinfection’ [18, 21, 3551] interventions. Water filtration interventions included biosand filters, ceramic filters, lifestraws, and hollow water filters while disinfection interventions included chlorination, use of flocculent-disinfectant, and solar disinfection (SODIS). One study reported the impact of flocculent-disinfectant on all-cause mortality in children under the age of two years and reported a 65% reduction (RR: 0.35, 95%CI: 0.13, 0.94) [37]. Overall, ‘water quality interventions at the point-of-use’ showed a significant decrease in risk of diarrhea by 40% (RR: 0.60, 95%CI: 0.53, 0.68), while the subgroup analyses suggested a 53% decrease (pooled RR: 0.47, 95% CI: 0.36, 0.62) with respect to water filtration and a 31% decrease (pooled RR: 0.69, 95% CI: 0.60, 0.79) with respect to water disinfection (Fig. 3). A further subgroup analysis suggested a significant effect for each of the specific interventions except for lifestraw (Fig. 4).

Handwashing with soap

We identified six studies which evaluated the effect of handwashing with soap [5257]; four were cRCTs and two were QE study designs. All studies were conducted in South Asian countries. Study participants were provided soap with education about handwashing before eating or food handling, after defecation or handling of child stools, or a combination of these. No study reported on mortality and the analysis suggests that handwashing with soap leads to a 27% decrease in risk of diarrhea (pooled RR: 0.73, 95% CI: 0.57, 0.94) (Fig. 5).

Excreta disposal

The search for studies for excreta disposal interventions resulted in few studies with study designs that met our inclusion criteria, and some studies had other interventions including water supply interventions or multiple interventions evaluated together, hence the impact of excreta disposal alone could not be ascertained [5863]. One study was included which showed that latrine construction in India increased mean village-level latrine coverage from 9% of households to 63% in the intervention group, but there was no impact on the risk of diarrhea in children younger than 5 years (RR: 0.97, 95% CI: 0.83–1.12)[64].

Discussion

The review findings suggest that point-of-use water quality improvement interventions are effective in reducing the risk of diarrhea by 40% in children 0–5 years old in communities living in LMICs and subgroup analyses suggest greater impacts with water filtration (53%) than with water disinfection (31%). In addition, hand washing promotion with soap can lead to 27% reduction in risk of diarrhea. Evidence for the effect of water supply interventions at source and safe excreta of stools is insufficient to conclude an impact on childhood diarrhea. The overall quality of evidence is low to very low since most studies were not blinded – a design which may be difficult and unethical to adhere to in this context.
We did a de novo search for studies with specific inclusion and exclusion criteria which could provide precise estimates for inclusion in LiST, and also updated the evidence since the last LiST review which was published more than five years ago. As only one study for water quality improvement assessed all-cause mortality and the number of events were less than 50 [37], we propose our estimates based on diarrhea risk reductions 40% and 27% for point-of-use water quality interventions and handwashing with soap respectively. The evidence for water quality interventions at source and safe excreta disposal is too limited to propose an estimate for LiST.
Our results are broadly consistent with prior reviews in this area [310], though the estimated magnitudes of intervention effect are different than those proposed by Cairncross et al. [7], which were 17%% and 48% for water quality interventions and handwashing with soap, respectively. In addition to the inclusion of more recent evidence in the present review, the differences between the present and previous LiST review may be attributable to choice of effect measure, study designs, populations and settings. The previous LiST review [7] included observational studies and evidence from settings other than those in LMIC communities, including studies conducted in schools, daycare centres, refugee camps, out-patient clinics, and hospitals, and it also included studies conducted in children over the age of five. The previous review also included studies with primary outcomes of typhoid, cholera or dysentery, while we only included studies reporting on diarrhea. We propose an estimate for water quality improvement at point-of-use only, as the evidence is more consistent, while there is limited evidence for water quality improvement at source and suggest a non-significant impact on diarrhea.
While point-of-use water quality interventions and handwashing promotion with soap appear to be effective in reducing diarrhea, much of the evidence is from trials conducted in small populations over short time periods. More evidence is needed on compliance over a longer duration to assess sustainability. The challenge is to find ways of encouraging people to maintain handwashing habits in the longer term. The need to conduct research with longer follow-up duration using a structured method of assessing the primary outcome is pertinent, since it has been observed that the choice of method may have significant effects on the precision of estimates. Outcome assessors should be blinded so as to reduce the bias in estimates of effect size. Self-reported outcome measurements such as diarrhea frequency are prone to recall and other biases, which contributed in part to the low methodological quality ratings overall. There are a number of large scale trials underway with results eagerly awaited which might shed further light on the short and long-term impact of WASH interventions at scale [65].
The importance of WASH strategies for reducing childhood diarrhea is fairly established, but the challenge remains to make their availability universal. Sustainable Development Goal (SDG) 6 covers the whole water cycle, and includes targets for universal access to drinking water, sanitation, and hygiene that are significantly more ambitious than the previous targets of the Millennium Development Goals (MDGs). To accomplish these goals, changing behaviours and social norms is essential, governance and accountability should be ensured, and inequalities will have to be eliminated.

Acknowledgements

Not applicable.

Funding

The publication costs for all supplement articles were funded by a grant from the Bill & Melinda Gates Foundation (JHU Grant 115,621, Award Number OPP1084423 for the “Development and Use of the Lives Saved Tool (LiST)”).”

Availability of data and materials

Not applicable.

About this supplement

This article has been published as part of BMC Public Health Volume 17 Supplement 4, 2017: The Lives Saved Tool in 2017: Updates, Applications, and Future Directions. The full contents of the supplement are available online at https://​bmcpublichealth.​biomedcentral.​com/​articles/​supplements/​volume-17-supplement-4

Authors’ information

Social Determinants of Health Study Team.
Zulfiqar A Bhutta, Nazia Darvesh, Andreea Seusan, Jelena Savic, Nisso Nurova, Azim Rattansi, Daina Als, Tyler Vaivada, Michelle F Gaffey (SickKids Centre for Global Child Health); Sue Cavill, Kumananan Rasanathan (UNICEF); Jai K Das (AKU).
Not applicable.
Not applicable.

Competing interests

We do not have any financial or non-financial competing interests for this review.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
3.
Zurück zum Zitat Fewtrell L, Kaufmann RB, Kay D, Enanoria W, Haller L, Colford JM Jr. Water, sanitation, and hygiene interventions to reduce diarrhea in less developed countries: a systematic review and meta-analysis. Lancet Infect Dis. 2005;5(1):42–52.CrossRefPubMed Fewtrell L, Kaufmann RB, Kay D, Enanoria W, Haller L, Colford JM Jr. Water, sanitation, and hygiene interventions to reduce diarrhea in less developed countries: a systematic review and meta-analysis. Lancet Infect Dis. 2005;5(1):42–52.CrossRefPubMed
4.
Zurück zum Zitat Arnold BF, Colford JM. Treating water with cholorine at point-of-use to improve water quality and reduce child diarrhea in developing countries: a systematic review and meta-analysis. Am J Trop Med Hyg. 2007;76(2):354–64.PubMed Arnold BF, Colford JM. Treating water with cholorine at point-of-use to improve water quality and reduce child diarrhea in developing countries: a systematic review and meta-analysis. Am J Trop Med Hyg. 2007;76(2):354–64.PubMed
6.
Zurück zum Zitat Wolf J, Prüss-Ustün A, Cumming O, Bartram J, Bonjour S, Cairncross S, et al. Assessing the impact of drinking water and sanitation on diarrheal disease in low- and middle income settings: systematic review and meta-regression. Tropical Med Int Health. 2014;19(8):928–42.CrossRef Wolf J, Prüss-Ustün A, Cumming O, Bartram J, Bonjour S, Cairncross S, et al. Assessing the impact of drinking water and sanitation on diarrheal disease in low- and middle income settings: systematic review and meta-regression. Tropical Med Int Health. 2014;19(8):928–42.CrossRef
7.
Zurück zum Zitat Cairncross S, Hunt C, Boisson S, Bostoen K, Curtis V, Fung ICH, et al. Water, sanitation and hygiene for the prevention of diarrhea. Int J Epidemiol. 2010;39(Suppl 1):i193–205.CrossRefPubMedPubMedCentral Cairncross S, Hunt C, Boisson S, Bostoen K, Curtis V, Fung ICH, et al. Water, sanitation and hygiene for the prevention of diarrhea. Int J Epidemiol. 2010;39(Suppl 1):i193–205.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Walker N, Fischer-Walker C, Bryce J, Bahl R, Cousens S. Effects CRGoI: Standards for CHERG reviews of intervention effects on child survival. Int J Epidemiol. 2010;39(Suppl 1):i21–31.CrossRefPubMedPubMedCentral Walker N, Fischer-Walker C, Bryce J, Bahl R, Cousens S. Effects CRGoI: Standards for CHERG reviews of intervention effects on child survival. Int J Epidemiol. 2010;39(Suppl 1):i21–31.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Review Manager (RevMan) In., 5.3 edn: Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration; 2014. Review Manager (RevMan) In., 5.3 edn: Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration; 2014.
15.
Zurück zum Zitat Zhang J, Yu KF. What’s the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA. 1998;280(19):1690–1.CrossRefPubMed Zhang J, Yu KF. What’s the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA. 1998;280(19):1690–1.CrossRefPubMed
16.
Zurück zum Zitat Borenstein M, Larry V.H, Julian PT H, Rothstein HR. Introduction to Meta-Analysis: John Wiley & Sons, Ltd. 2009. Borenstein M, Larry V.H, Julian PT H, Rothstein HR. Introduction to Meta-Analysis: John Wiley & Sons, Ltd. 2009.
17.
Zurück zum Zitat Alam N, Wojtyniak B, Henry FJ, Rahaman MM. Mothers' personal and domestic hygiene and diarrhea incidence in young children in rural Bangladesh. Int J Epidemiol. 1989;18(1):242–7.CrossRefPubMed Alam N, Wojtyniak B, Henry FJ, Rahaman MM. Mothers' personal and domestic hygiene and diarrhea incidence in young children in rural Bangladesh. Int J Epidemiol. 1989;18(1):242–7.CrossRefPubMed
18.
Zurück zum Zitat Opryszko MC, Majeed SW, Hansen PM, Myers JA, Baba D, Thompson RE, Burnham G. Water and hygiene interventions to reduce diarrhea in rural Afghanistan: a randomized controlled study. J Water Health. 2010;8(4):687–702.CrossRefPubMed Opryszko MC, Majeed SW, Hansen PM, Myers JA, Baba D, Thompson RE, Burnham G. Water and hygiene interventions to reduce diarrhea in rural Afghanistan: a randomized controlled study. J Water Health. 2010;8(4):687–702.CrossRefPubMed
19.
Zurück zum Zitat Jensen PK, Ensink JHJ, Jayasinghe G, van der Hoek W, Cairncross S, Dalsgaard A. Effect of chlorination of drinking-water on water quality and childhood diarrhea in a village in Pakistan. J Health Popul Nutr. 2003;21(1):26–31.PubMed Jensen PK, Ensink JHJ, Jayasinghe G, van der Hoek W, Cairncross S, Dalsgaard A. Effect of chlorination of drinking-water on water quality and childhood diarrhea in a village in Pakistan. J Health Popul Nutr. 2003;21(1):26–31.PubMed
20.
Zurück zum Zitat Ryder RW, Reeves WC, Singh N, Hall CB, Kapikian AZ, Gomez B, et al. The childhood health effects of an improved water supply system on a remote Panamanian island. Am J Trop Med Hyg. 1985;34(5):921–4.CrossRefPubMed Ryder RW, Reeves WC, Singh N, Hall CB, Kapikian AZ, Gomez B, et al. The childhood health effects of an improved water supply system on a remote Panamanian island. Am J Trop Med Hyg. 1985;34(5):921–4.CrossRefPubMed
21.
Zurück zum Zitat Semenza JC, Roberts L, Henderson A, Bogan J, Rubin CH. Water distribution system and diarrheal disease transmission: a case study in Uzbekistan. Am J Trop Med Hyg. 1998;59(6):941–6.CrossRefPubMed Semenza JC, Roberts L, Henderson A, Bogan J, Rubin CH. Water distribution system and diarrheal disease transmission: a case study in Uzbekistan. Am J Trop Med Hyg. 1998;59(6):941–6.CrossRefPubMed
22.
Zurück zum Zitat Fabiszewski de Aceituno AM, Stauber CE, Walters AR, Meza Sanchez RE, Sobsey MD. A randomized controlled trial of the plastic-housing BioSand filter and its impact on diarrheal disease in Copan. Honduras Am J Trop Med Hyg. 2012;86(6):913–21.CrossRefPubMed Fabiszewski de Aceituno AM, Stauber CE, Walters AR, Meza Sanchez RE, Sobsey MD. A randomized controlled trial of the plastic-housing BioSand filter and its impact on diarrheal disease in Copan. Honduras Am J Trop Med Hyg. 2012;86(6):913–21.CrossRefPubMed
23.
Zurück zum Zitat Boisson S, Schmidt WP, Berhanu T, Gezahegn H, Clasen T. Randomized controlled trial in rural Ethiopia to assess a portable water treatment device. Environmental science & technology. 2009;43(15):5934–9.CrossRef Boisson S, Schmidt WP, Berhanu T, Gezahegn H, Clasen T. Randomized controlled trial in rural Ethiopia to assess a portable water treatment device. Environmental science & technology. 2009;43(15):5934–9.CrossRef
24.
Zurück zum Zitat Boisson S, Kiyombo M, Sthreshley L, Tumba S, Makambo J, Clasen T. Field assessment of a novel household-based water filtration device: a randomised, placebo-controlled trial in the Democratic Republic of Congo. PLoS One. 2010;5(9):e12613.CrossRefPubMedPubMedCentral Boisson S, Kiyombo M, Sthreshley L, Tumba S, Makambo J, Clasen T. Field assessment of a novel household-based water filtration device: a randomised, placebo-controlled trial in the Democratic Republic of Congo. PLoS One. 2010;5(9):e12613.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Brown J, Sobsey MD, Loomis D. Local drinking water filters reduce diarrheal disease in Cambodia: a randomized, controlled trial of the ceramic water purifier. T Am J Trop Med Hyg. 2008;79(3):394–400. Brown J, Sobsey MD, Loomis D. Local drinking water filters reduce diarrheal disease in Cambodia: a randomized, controlled trial of the ceramic water purifier. T Am J Trop Med Hyg. 2008;79(3):394–400.
27.
Zurück zum Zitat Clasen TF, Brown J, Collin S, Suntura O, Cairncross S. Reducing diarrhea through the use of household-based ceramic water filters: a randomized, controlled trial in rural Bolivia. Am J Trop Med Hyg. 2004;70(6):651–7.PubMed Clasen TF, Brown J, Collin S, Suntura O, Cairncross S. Reducing diarrhea through the use of household-based ceramic water filters: a randomized, controlled trial in rural Bolivia. Am J Trop Med Hyg. 2004;70(6):651–7.PubMed
28.
Zurück zum Zitat Clasen T, Garcia Parra G, Boisson S, Collin S. Household-based ceramic water filters for the prevention of diarrhea: a randomized, controlled trial of a pilot program in Colombia. Am J Trop Med Hyg. 2005;73(4):790–5.PubMed Clasen T, Garcia Parra G, Boisson S, Collin S. Household-based ceramic water filters for the prevention of diarrhea: a randomized, controlled trial of a pilot program in Colombia. Am J Trop Med Hyg. 2005;73(4):790–5.PubMed
29.
Zurück zum Zitat Du Preez M, Conroy RM, Wright JA, Moyo S, Potgieter N, Gundry SW. Use of ceramic water filtration in the prevention of diarrheal disease: a randomized controlled trial in rural South Africa and Zimbabwe. Am J Trop Med Hyg. 2008;79(5):696–701.PubMed Du Preez M, Conroy RM, Wright JA, Moyo S, Potgieter N, Gundry SW. Use of ceramic water filtration in the prevention of diarrheal disease: a randomized controlled trial in rural South Africa and Zimbabwe. Am J Trop Med Hyg. 2008;79(5):696–701.PubMed
30.
Zurück zum Zitat Lindquist ED, George CM, Perin J, Neiswender de Calani KJ, Norman WR, Davis TP, et al. A cluster randomized controlled trial to reduce childhood diarrhea using hollow fiber water filter and/or hygiene-sanitation educational interventions. Am J Trop Med Hyg. 2014;91(1):190–7.CrossRefPubMedPubMedCentral Lindquist ED, George CM, Perin J, Neiswender de Calani KJ, Norman WR, Davis TP, et al. A cluster randomized controlled trial to reduce childhood diarrhea using hollow fiber water filter and/or hygiene-sanitation educational interventions. Am J Trop Med Hyg. 2014;91(1):190–7.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Stauber CE, Ortiz GM, Loomis DP, Sobsey MD. A randomized controlled trial of the concrete biosand filter and its impact on diarrheal disease in Bonao, Dominican Republic. Am J Trop Med Hyg. 2009;80(2):286–93.PubMed Stauber CE, Ortiz GM, Loomis DP, Sobsey MD. A randomized controlled trial of the concrete biosand filter and its impact on diarrheal disease in Bonao, Dominican Republic. Am J Trop Med Hyg. 2009;80(2):286–93.PubMed
32.
Zurück zum Zitat Stauber CE, Kominek B, Liang KR, Osman MK, Sobsey MD. Evaluation of the impact of the plastic BioSand filter on health and drinking water quality in rural tamale, Ghana. Int J Environ Res Public Health. 2012;9(11):3806–23.CrossRefPubMedPubMedCentral Stauber CE, Kominek B, Liang KR, Osman MK, Sobsey MD. Evaluation of the impact of the plastic BioSand filter on health and drinking water quality in rural tamale, Ghana. Int J Environ Res Public Health. 2012;9(11):3806–23.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Stauber CE, Printy ER, McCarty FA, Liang KR, Sobsey MD. Cluster randomized controlled trial of the plastic BioSand water filter in Cambodia. Environmental science & technology. 2012;46(2):722–8.CrossRef Stauber CE, Printy ER, McCarty FA, Liang KR, Sobsey MD. Cluster randomized controlled trial of the plastic BioSand water filter in Cambodia. Environmental science & technology. 2012;46(2):722–8.CrossRef
34.
Zurück zum Zitat Tiwari SS, Schmidt WP, Darby J, Kariuki ZG, Jenkins MW. Intermittent slow sand filtration for preventing diarrhea among children in Kenyan households using unimproved water sources: randomized controlled trial. Tropical Med Int Health. 2009;14(11):1374–82.CrossRef Tiwari SS, Schmidt WP, Darby J, Kariuki ZG, Jenkins MW. Intermittent slow sand filtration for preventing diarrhea among children in Kenyan households using unimproved water sources: randomized controlled trial. Tropical Med Int Health. 2009;14(11):1374–82.CrossRef
35.
Zurück zum Zitat Boisson S, Stevenson M, Shapiro L, Kumar V, Singh LP, Ward D, et al. Effect of household-based drinking water chlorination on diarrhea among children under five in Orissa, India: a double-blind randomised placebo-controlled trial. PLoS Med. 2013;10(8):e1001497.CrossRefPubMedPubMedCentral Boisson S, Stevenson M, Shapiro L, Kumar V, Singh LP, Ward D, et al. Effect of household-based drinking water chlorination on diarrhea among children under five in Orissa, India: a double-blind randomised placebo-controlled trial. PLoS Med. 2013;10(8):e1001497.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Chiller TM, Mendoza CE, Lopez MB, Alvarez M, Hoekstra RM, Keswick BH, et al. Reducing diarrhea in Guatemalan children: randomized controlled trial of flocculant-disinfectant for drinking-water. Bull World Health Organ. 2006;84(1):28–35.CrossRefPubMedPubMedCentral Chiller TM, Mendoza CE, Lopez MB, Alvarez M, Hoekstra RM, Keswick BH, et al. Reducing diarrhea in Guatemalan children: randomized controlled trial of flocculant-disinfectant for drinking-water. Bull World Health Organ. 2006;84(1):28–35.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Crump JA, Otieno PO, Slutsker L, Keswick BH, Rosen DH, Hoekstra RM, et al. Household based treatment of drinking water with flocculant-disinfectant for preventing diarrhea in areas with turbid source water in rural western Kenya: cluster randomised controlled trial. BMJ (Clinical research ed). 2005;331(7515):478.CrossRef Crump JA, Otieno PO, Slutsker L, Keswick BH, Rosen DH, Hoekstra RM, et al. Household based treatment of drinking water with flocculant-disinfectant for preventing diarrhea in areas with turbid source water in rural western Kenya: cluster randomised controlled trial. BMJ (Clinical research ed). 2005;331(7515):478.CrossRef
38.
Zurück zum Zitat du Preez M, Conroy RM, Ligondo S, Hennessy J, Elmore-Meegan M, Soita A, et al. Randomized intervention study of solar disinfection of drinking water in the prevention of dysentery in Kenyan children aged under 5 years. Environmental science & technology. 2011;45(21):9315–23.CrossRef du Preez M, Conroy RM, Ligondo S, Hennessy J, Elmore-Meegan M, Soita A, et al. Randomized intervention study of solar disinfection of drinking water in the prevention of dysentery in Kenyan children aged under 5 years. Environmental science & technology. 2011;45(21):9315–23.CrossRef
39.
Zurück zum Zitat Harshfield E, Lantagne D, Turbes A, Null C. Evaluating the sustained health impact of household chlorination of drinking water in rural Haiti. Am J Trop Med Hyg. 2012;87(5):786–95.CrossRefPubMedPubMedCentral Harshfield E, Lantagne D, Turbes A, Null C. Evaluating the sustained health impact of household chlorination of drinking water in rural Haiti. Am J Trop Med Hyg. 2012;87(5):786–95.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Jain S, Sahanoon OK, Blanton E, Schmitz A, Wannemuehler KA, Hoekstra RM, et al. Sodium dichloroisocyanurate tablets for routine treatment of household drinking water in periurban Ghana: a randomized controlled trial. Am J Trop Med Hyg. 2010;82(1):16–22.CrossRefPubMedPubMedCentral Jain S, Sahanoon OK, Blanton E, Schmitz A, Wannemuehler KA, Hoekstra RM, et al. Sodium dichloroisocyanurate tablets for routine treatment of household drinking water in periurban Ghana: a randomized controlled trial. Am J Trop Med Hyg. 2010;82(1):16–22.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Kirchhoff LV, McClelland KE, Do Carmo Pinho M, Araujo JG, de Sousa MA, Guerrant RL. Feasibility and efficacy of in-home water chlorination in rural North-eastern Brazil. J Hyg. 1985;94(2):173–80.CrossRefPubMedPubMedCentral Kirchhoff LV, McClelland KE, Do Carmo Pinho M, Araujo JG, de Sousa MA, Guerrant RL. Feasibility and efficacy of in-home water chlorination in rural North-eastern Brazil. J Hyg. 1985;94(2):173–80.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Luby SP, Agboatwalla M, Painter J, Altaf A, Billhimer W, Keswick B, et al. Combining drinking water treatment and hand washing for diarrhea prevention, a cluster randomised controlled trial. Tropical Med Int Health. 2006;11(4):479–89.CrossRef Luby SP, Agboatwalla M, Painter J, Altaf A, Billhimer W, Keswick B, et al. Combining drinking water treatment and hand washing for diarrhea prevention, a cluster randomised controlled trial. Tropical Med Int Health. 2006;11(4):479–89.CrossRef
43.
Zurück zum Zitat Mahfouz AA, Abdel-Moneim M, Al-Erian RA, al-Amari OM. Impact of chlorination of water in domestic storage tanks on childhood diarrhea: a community trial in the rural areas of Saudi Arabia. J Trop Med Hyg. 1995;98(2):126–30.PubMed Mahfouz AA, Abdel-Moneim M, Al-Erian RA, al-Amari OM. Impact of chlorination of water in domestic storage tanks on childhood diarrhea: a community trial in the rural areas of Saudi Arabia. J Trop Med Hyg. 1995;98(2):126–30.PubMed
44.
Zurück zum Zitat McGuigan KG, Samaiyar P, du Preez M, Conroy RM. High compliance randomized controlled field trial of solar disinfection of drinking water and its impact on childhood diarrhea in rural Cambodia. Environmental science & technology. 2011;45(18):7862–7.CrossRef McGuigan KG, Samaiyar P, du Preez M, Conroy RM. High compliance randomized controlled field trial of solar disinfection of drinking water and its impact on childhood diarrhea in rural Cambodia. Environmental science & technology. 2011;45(18):7862–7.CrossRef
45.
Zurück zum Zitat Mengistie B, Berhane Y, Worku A. Household water chlorination reduces incidence of diarrhea among under-five children in rural Ethiopia: a cluster randomized controlled trial. PLoS One. 2013;8(10):e77887.CrossRefPubMedPubMedCentral Mengistie B, Berhane Y, Worku A. Household water chlorination reduces incidence of diarrhea among under-five children in rural Ethiopia: a cluster randomized controlled trial. PLoS One. 2013;8(10):e77887.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Mausezahl D, Christen A, Pacheco GD, Tellez FA, Iriarte M, Zapata ME, et al. Solar drinking water disinfection (SODIS) to reduce childhood diarrhea in rural Bolivia: a cluster-randomized, controlled trial. PLoS Med. 2009;6(8):e1000125.CrossRefPubMedPubMedCentral Mausezahl D, Christen A, Pacheco GD, Tellez FA, Iriarte M, Zapata ME, et al. Solar drinking water disinfection (SODIS) to reduce childhood diarrhea in rural Bolivia: a cluster-randomized, controlled trial. PLoS Med. 2009;6(8):e1000125.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Quick RE, Venczel LV, Mintz ED, Soleto L, Aparicio J, Gironaz M, et al. Diarrhea prevention in Bolivia through point-of-use water treatment and safe storage: a promising new strategy. Epidemiol Infect. 1999;122(1):83–90.CrossRefPubMedPubMedCentral Quick RE, Venczel LV, Mintz ED, Soleto L, Aparicio J, Gironaz M, et al. Diarrhea prevention in Bolivia through point-of-use water treatment and safe storage: a promising new strategy. Epidemiol Infect. 1999;122(1):83–90.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Rai B, Pal R, Kar S, Tsering DC. Solar disinfection improves drinking water quality to prevent diarrhea in under-five children in sikkim. India J Glob Infect Dis. 2010;2(3):221–5.CrossRefPubMed Rai B, Pal R, Kar S, Tsering DC. Solar disinfection improves drinking water quality to prevent diarrhea in under-five children in sikkim. India J Glob Infect Dis. 2010;2(3):221–5.CrossRefPubMed
49.
Zurück zum Zitat Reller ME, Mendoza CE, Lopez MB, Alvarez M, Hoekstra RM, Olson CA, et al. A randomized controlled trial of household-based flocculant-disinfectant drinking water treatment for diarrhea prevention in rural Guatemala. Am J Trop Med Hyg. 2003;69(4):411–9.PubMed Reller ME, Mendoza CE, Lopez MB, Alvarez M, Hoekstra RM, Olson CA, et al. A randomized controlled trial of household-based flocculant-disinfectant drinking water treatment for diarrhea prevention in rural Guatemala. Am J Trop Med Hyg. 2003;69(4):411–9.PubMed
50.
Zurück zum Zitat Rose A, Roy S, Abraham V, Holmgren G, George K, Balraj V, et al. Solar disinfection of water for diarrheal prevention in southern India. Arch Dis Child. 2006;91(2):139–41.CrossRefPubMedPubMedCentral Rose A, Roy S, Abraham V, Holmgren G, George K, Balraj V, et al. Solar disinfection of water for diarrheal prevention in southern India. Arch Dis Child. 2006;91(2):139–41.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Sobsey MD, Handzel T, Venczel L. Chlorination and safe storage of household drinking water in developing countries to reduce waterborne disease. Water Sci Technol. 2003;47(3):221–8.PubMed Sobsey MD, Handzel T, Venczel L. Chlorination and safe storage of household drinking water in developing countries to reduce waterborne disease. Water Sci Technol. 2003;47(3):221–8.PubMed
52.
Zurück zum Zitat Aung Myo H, Thein H. Prevention of diarrhea and dysentery by hand washing. Trans R Soc Trop Med Hyg. 1989;83(1):128–31.CrossRef Aung Myo H, Thein H. Prevention of diarrhea and dysentery by hand washing. Trans R Soc Trop Med Hyg. 1989;83(1):128–31.CrossRef
53.
Zurück zum Zitat Langford R, Lunn P, Panter-Brick C. Hand-washing, subclinical infections, and growth: a longitudinal evaluation of an intervention in Nepali slums. Am J Hum Biol. 2011;23(5):621–9.CrossRefPubMed Langford R, Lunn P, Panter-Brick C. Hand-washing, subclinical infections, and growth: a longitudinal evaluation of an intervention in Nepali slums. Am J Hum Biol. 2011;23(5):621–9.CrossRefPubMed
54.
Zurück zum Zitat Luby SP, Agboatwalla M, Painter J, Altaf A, Billhimer WL, Hoekstra RM. Effect of intensive handwashing promotion on childhood diarrhea in high-risk communities in Pakistan: a randomized controlled trial. JAMA. 2004;291(21):2547–54.CrossRefPubMed Luby SP, Agboatwalla M, Painter J, Altaf A, Billhimer WL, Hoekstra RM. Effect of intensive handwashing promotion on childhood diarrhea in high-risk communities in Pakistan: a randomized controlled trial. JAMA. 2004;291(21):2547–54.CrossRefPubMed
55.
Zurück zum Zitat Nicholson JA, Naeeni M, Hoptroff M, Matheson JR, Roberts AJ, Taylor D, et al. An investigation of the effects of a hand washing intervention on health outcomes and school absence using a randomised trial in Indian urban communities. Tropical Med Int Health. 2014;19(3):284–92.CrossRef Nicholson JA, Naeeni M, Hoptroff M, Matheson JR, Roberts AJ, Taylor D, et al. An investigation of the effects of a hand washing intervention on health outcomes and school absence using a randomised trial in Indian urban communities. Tropical Med Int Health. 2014;19(3):284–92.CrossRef
56.
Zurück zum Zitat Shahid NS, Greenough WB 3rd, Samadi AR, Huq MI, Rahman N. Hand washing with soap reduces diarrhea and spread of bacterial pathogens in a Bangladesh village. J Diarrhoeal Dis Res. 1996;14(2):85–9.PubMed Shahid NS, Greenough WB 3rd, Samadi AR, Huq MI, Rahman N. Hand washing with soap reduces diarrhea and spread of bacterial pathogens in a Bangladesh village. J Diarrhoeal Dis Res. 1996;14(2):85–9.PubMed
57.
Zurück zum Zitat Sircar BK, Sengupta PG, Mondal SK, Gupta DN, Saha NC, Ghosh S, et al. Effect of handwashing on the incidence of diarrhea in a Calcutta slum. J Diarrhoeal Dis Res. 1987;5(2):112–4.PubMed Sircar BK, Sengupta PG, Mondal SK, Gupta DN, Saha NC, Ghosh S, et al. Effect of handwashing on the incidence of diarrhea in a Calcutta slum. J Diarrhoeal Dis Res. 1987;5(2):112–4.PubMed
58.
Zurück zum Zitat KMA, Hoque BA, Hasan KZ, Patwary MY, SRA H, Rahman MM, et al. Reduction in diarrheal diseases in children in rural Bangladesh by environmental and behavioural modifications. Trans R Soc Trop Med Hyg. 1990;84(3):433–8.CrossRef KMA, Hoque BA, Hasan KZ, Patwary MY, SRA H, Rahman MM, et al. Reduction in diarrheal diseases in children in rural Bangladesh by environmental and behavioural modifications. Trans R Soc Trop Med Hyg. 1990;84(3):433–8.CrossRef
59.
Zurück zum Zitat Garrett V, Ogutu P, Mabonga P, Ombeki S, Mwaki A, Aluoch G, et al. Diarrhea prevention in a high-risk rural Kenyan population through point-of-use chlorination, safe water storage, sanitation, and rainwater harvesting. Epidemiol Infect. 2008;136(11):1463–71.CrossRefPubMedPubMedCentral Garrett V, Ogutu P, Mabonga P, Ombeki S, Mwaki A, Aluoch G, et al. Diarrhea prevention in a high-risk rural Kenyan population through point-of-use chlorination, safe water storage, sanitation, and rainwater harvesting. Epidemiol Infect. 2008;136(11):1463–71.CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Huttly SR, Blum D, Kirkwood BR, Emeh RN, Okeke N, Ajala M, et al. The Imo state (Nigeria) drinking water supply and sanitation project, 2: impact on dracunculiasis, diarrhea and nutritional status. Trans R Soc Trop Med Hyg. 1990;84(2):316–21.CrossRefPubMed Huttly SR, Blum D, Kirkwood BR, Emeh RN, Okeke N, Ajala M, et al. The Imo state (Nigeria) drinking water supply and sanitation project, 2: impact on dracunculiasis, diarrhea and nutritional status. Trans R Soc Trop Med Hyg. 1990;84(2):316–21.CrossRefPubMed
61.
Zurück zum Zitat Hu X-R, Liu G, Liu S-P, Yan-Xin H, Zhang X-M, Fan YY, et al. [Field evaluation of the effect of diarrhea control of methanogenesis treatment of human and animal faeces and rubbish of cellulose nature in the rural areas of Xiang Cheng]. Henan Yu Fang Yi Xue Za Zhi [Henan Journal of Preventative Medicine]. 1988;1988:11–13. Hu X-R, Liu G, Liu S-P, Yan-Xin H, Zhang X-M, Fan YY, et al. [Field evaluation of the effect of diarrhea control of methanogenesis treatment of human and animal faeces and rubbish of cellulose nature in the rural areas of Xiang Cheng]. Henan Yu Fang Yi Xue Za Zhi [Henan Journal of Preventative Medicine]. 1988;1988:11–13.
62.
Zurück zum Zitat Messou E, Sangare SV, Josseran R, Le Corre C, Guelain J. Effect of hygiene and water sanitation and oral rehydration on diarrhea and mortality of children children less than five years old in the south of Ivory Coast. Bull Soc Pathol Exot. 1997;90(1):44–7.PubMed Messou E, Sangare SV, Josseran R, Le Corre C, Guelain J. Effect of hygiene and water sanitation and oral rehydration on diarrhea and mortality of children children less than five years old in the south of Ivory Coast. Bull Soc Pathol Exot. 1997;90(1):44–7.PubMed
63.
Zurück zum Zitat Rubenstein A, Boyle J, Odoroff CL, Kunitz SJ. Effect of improved sanitary facilities on infant diarrhea in a Hopi village. Public Health Rep. 1969;84(12):1093–7.CrossRefPubMedPubMedCentral Rubenstein A, Boyle J, Odoroff CL, Kunitz SJ. Effect of improved sanitary facilities on infant diarrhea in a Hopi village. Public Health Rep. 1969;84(12):1093–7.CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Clasen T, Boisson S, Routray P, Torondel B, Bell M, Cumming O, Ensink J, et al. Effectiveness of a rural sanitation programme on diarrhea, soil-transmitted helminth infection, and child malnutrition in Odisha, India: a cluster-randomised trial. Lancet Glob Health. 2014;2(11):e645–53.CrossRefPubMed Clasen T, Boisson S, Routray P, Torondel B, Bell M, Cumming O, Ensink J, et al. Effectiveness of a rural sanitation programme on diarrhea, soil-transmitted helminth infection, and child malnutrition in Odisha, India: a cluster-randomised trial. Lancet Glob Health. 2014;2(11):e645–53.CrossRefPubMed
65.
Zurück zum Zitat The Sanitation Hygiene Infant Nutrition Efficacy (SHINE) Trial Team. The sanitation hygiene infant nutrition efficacy (SHINE) trial: rationle, design, and methods. Clin Infect Dis. 2015;61(Supp7):S685–702. The Sanitation Hygiene Infant Nutrition Efficacy (SHINE) Trial Team. The sanitation hygiene infant nutrition efficacy (SHINE) trial: rationle, design, and methods. Clin Infect Dis. 2015;61(Supp7):S685–702.
Metadaten
Titel
Water, sanitation and hygiene interventions for acute childhood diarrhea: a systematic review to provide estimates for the Lives Saved Tool
verfasst von
Nazia Darvesh
Jai K. Das
Tyler Vaivada
Michelle F. Gaffey
Kumanan Rasanathan
Zulfiqar A. Bhutta
for the Social Determinants of Health Study Team
Publikationsdatum
01.11.2017
Verlag
BioMed Central
Erschienen in
BMC Public Health / Ausgabe Sonderheft 4/2017
Elektronische ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-017-4746-1

Weitere Artikel der Sonderheft 4/2017

BMC Public Health 4/2017 Zur Ausgabe