Skip to main content
Erschienen in: European Radiology 9/2022

06.04.2022 | Computed Tomography

A novel methodology to train and deploy a machine learning model for personalized dose assessment in head CT

verfasst von: Eleftherios Tzanis, John Damilakis

Erschienen in: European Radiology | Ausgabe 9/2022

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To propose a machine learning–based methodology for the creation of radiation dose maps and the prediction of patient-specific organ/tissue doses associated with head CT examinations.

Methods

CT data were collected retrospectively for 343 patients who underwent standard head CT examinations. Patient-specific Monte Carlo (MC) simulations were performed to determine the radiation dose distribution to patients’ organs/tissues. The collected CT images and the MC–produced dose maps were processed and used for the training of the deep neural network (DNN) model. For the training and validation processes, data from 231 and 112 head CT examinations, respectively, were used. Furthermore, a software tool was developed to produce dose maps from head CT images using the trained DNN model and to automatically calculate the dose to the brain and cranial bones.

Results

The mean (range) percentage differences between the doses predicted from the DNN model and those provided by MC simulations for the brain, eye lenses, and cranial bones were 4.5% (0–17.7%), 5.7% (0.2–19.0%), and 5.2% (0.1–18.9%), respectively. The graphical user interface of the software offers a user-friendly way for radiation dose/risk assessment. The implementation of the DNN allowed for a 97% reduction in the computational time needed for the dose estimations.

Conclusions

A novel methodology that allows users to develop a DNN model for patient-specific CT dose prediction was developed and implemented. The approach demonstrated herein allows accurate and fast radiation dose estimation for the brain, eye lenses, and cranial bones of patients who undergo head CT examinations and can be used in everyday clinical practice.

Key Points

The methodology presented herein allows fast and accurate radiation dose estimation for the brain, eye lenses, and cranial bones of patients who undergo head CT examinations and can be implemented in everyday clinical practice.
The scripts developed in the current study will allow users to train models for the acquisition protocols of their CT scanners, generate dose maps, estimate the doses to the brain and cranial bones, and estimate the lifetime attributable risk of radiation-induced brain cancer.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Gaudreau K, Thome C, Weaver B, Boreham DR (2020) Cataract formation and low-dose radiation exposure from head computed tomography (CT) scans in Ontario, Canada, 1994-2015. Radiat Res 193:322–330CrossRef Gaudreau K, Thome C, Weaver B, Boreham DR (2020) Cataract formation and low-dose radiation exposure from head computed tomography (CT) scans in Ontario, Canada, 1994-2015. Radiat Res 193:322–330CrossRef
2.
Zurück zum Zitat Brinjikji W, Kallmes DF, Cloft HJ (2015) Rising utilization of CT in adult fall patients. AJR Am J Roentgenol 204:558–562 Brinjikji W, Kallmes DF, Cloft HJ (2015) Rising utilization of CT in adult fall patients. AJR Am J Roentgenol 204:558–562
3.
Zurück zum Zitat Kim HG, Lee HJ, Lee SK, Kim HJ, Kim MJ (2017) Head CT: image quality improvement with ASIR-V using a reduced radiation dose protocol for children. Eur Radiol 27:3609–3617CrossRef Kim HG, Lee HJ, Lee SK, Kim HJ, Kim MJ (2017) Head CT: image quality improvement with ASIR-V using a reduced radiation dose protocol for children. Eur Radiol 27:3609–3617CrossRef
4.
Zurück zum Zitat Investigative Report ICES (2007) Enhancing the effectiveness of health care for Ontarians through research Diagnostic Services in Ontario: Descriptive Analysis and Jurisdictional Review. ICES, Toronto, ON Investigative Report ICES (2007) Enhancing the effectiveness of health care for Ontarians through research Diagnostic Services in Ontario: Descriptive Analysis and Jurisdictional Review. ICES, Toronto, ON
5.
Zurück zum Zitat Götz TI, Schmidkonz C, Chen S, Al-Baddai S, Kuwert T, Lang EW (2020) A deep learning approach to radiation dose estimation. Phys Med Biol 65:035007CrossRef Götz TI, Schmidkonz C, Chen S, Al-Baddai S, Kuwert T, Lang EW (2020) A deep learning approach to radiation dose estimation. Phys Med Biol 65:035007CrossRef
6.
Zurück zum Zitat Lee MS, Hwang D, Kim JH, Lee JS (2019) Deep-dose: a voxel dose estimation method using deep convolutional neural network for personalized internal dosimetry. Sci Rep 9(1):10308CrossRef Lee MS, Hwang D, Kim JH, Lee JS (2019) Deep-dose: a voxel dose estimation method using deep convolutional neural network for personalized internal dosimetry. Sci Rep 9(1):10308CrossRef
7.
Zurück zum Zitat Maier J, Eulig E, Dorn S, Sawall S, Kachelrieß M (2018) Real-time patient-specific CT dose estimation using a deep convolutional neural network. IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), pp 1–3 Maier J, Eulig E, Dorn S, Sawall S, Kachelrieß M (2018) Real-time patient-specific CT dose estimation using a deep convolutional neural network. IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), pp 1–3
8.
Zurück zum Zitat Deak P, van Straten M, Shrimpton PC, Zankl M, Kalender WA (2008) Validation of a Monte Carlo tool for patient-specific dose simulations in multi-slice computed tomography. Eur Radiol 18:759–772CrossRef Deak P, van Straten M, Shrimpton PC, Zankl M, Kalender WA (2008) Validation of a Monte Carlo tool for patient-specific dose simulations in multi-slice computed tomography. Eur Radiol 18:759–772CrossRef
9.
Zurück zum Zitat Myronakis M, Perisinakis K, Tzedakis A, Gourtsoyianni S, Damilakis J (2009) Evaluation of a patient-specific Monte Carlo software for CT dosimetry. Radiat Prot Dosimetry 133:248–255CrossRef Myronakis M, Perisinakis K, Tzedakis A, Gourtsoyianni S, Damilakis J (2009) Evaluation of a patient-specific Monte Carlo software for CT dosimetry. Radiat Prot Dosimetry 133:248–255CrossRef
10.
Zurück zum Zitat Damilakis J, Perisinakis K, Tzedakis A, Papadakis AE, Karantanas A (2010) Radiation dose to the conceptus from multidetector CT during early gestation: a method that allows for variations in maternal body size and conceptus position. Radiology 257:483–489CrossRef Damilakis J, Perisinakis K, Tzedakis A, Papadakis AE, Karantanas A (2010) Radiation dose to the conceptus from multidetector CT during early gestation: a method that allows for variations in maternal body size and conceptus position. Radiology 257:483–489CrossRef
11.
Zurück zum Zitat Lloyd SP (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28:129–137CrossRef Lloyd SP (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28:129–137CrossRef
12.
Zurück zum Zitat Erisoglu M, Calis N, Sakallioglu S (2011) A new algorithm for initial cluster centers in k-means algorithm. Pattern Recognit Lett 32:1701–1705CrossRef Erisoglu M, Calis N, Sakallioglu S (2011) A new algorithm for initial cluster centers in k-means algorithm. Pattern Recognit Lett 32:1701–1705CrossRef
13.
Zurück zum Zitat Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830 Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830
14.
Zurück zum Zitat Harris CR, Millman KJ, van der Walt SJ et al (2020) Array programming with NumPy. Nature 585:357–362CrossRef Harris CR, Millman KJ, van der Walt SJ et al (2020) Array programming with NumPy. Nature 585:357–362CrossRef
16.
Zurück zum Zitat Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958 Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15:1929–1958
17.
Zurück zum Zitat Li L, Jamieson K, DeSalvo G, Rostamizadeh A, Talwalkar A (2018) Hyperband: a novel bandit-based approach to hyperparameter optimization. J Mach Learn Res 18:1–52 Li L, Jamieson K, DeSalvo G, Rostamizadeh A, Talwalkar A (2018) Hyperband: a novel bandit-based approach to hyperparameter optimization. J Mach Learn Res 18:1–52
18.
Zurück zum Zitat Agarap AF (2018) Deep learning using rectified linear units (relu). ArXiv Preprint ArXiv:1803.08375. Agarap AF (2018) Deep learning using rectified linear units (relu). ArXiv Preprint ArXiv:1803.08375.
19.
Zurück zum Zitat National Research Council (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII Phase 2. The National Academies Press, Washington, DC National Research Council (2006) Health risks from exposure to low levels of ionizing radiation: BEIR VII Phase 2. The National Academies Press, Washington, DC
20.
Zurück zum Zitat Van Rossum G (2020) The Python library reference, release 3.8.2. Python Software Foundation 2020 Van Rossum G (2020) The Python library reference, release 3.8.2. Python Software Foundation 2020
21.
Zurück zum Zitat Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682CrossRef Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682CrossRef
22.
Zurück zum Zitat Damilakis J (2021) CT dosimetry: what has been achieved and what remains to be done. Invest Radiol 56:62–68CrossRef Damilakis J (2021) CT dosimetry: what has been achieved and what remains to be done. Invest Radiol 56:62–68CrossRef
23.
Zurück zum Zitat ICRP (2007) The 2007 Recommendations of the International Commission on Radiological Protection. CRP publication 103. Ann ICRP 37:9–34 ICRP (2007) The 2007 Recommendations of the International Commission on Radiological Protection. CRP publication 103. Ann ICRP 37:9–34
24.
Zurück zum Zitat Harrison JD, Balonov M, Bochud F et al (2021) ICRP Publication 147: use of dose quantities in radiological protection. Ann ICRP 50:9–82CrossRef Harrison JD, Balonov M, Bochud F et al (2021) ICRP Publication 147: use of dose quantities in radiological protection. Ann ICRP 50:9–82CrossRef
25.
Zurück zum Zitat Ria F, Bergantin A, Vai A et al (2017) Awareness of medical radiation exposure among patients: a patient survey as a first step for effective communication of ionizing radiation risks. Phys Med 43:57–62CrossRef Ria F, Bergantin A, Vai A et al (2017) Awareness of medical radiation exposure among patients: a patient survey as a first step for effective communication of ionizing radiation risks. Phys Med 43:57–62CrossRef
26.
Zurück zum Zitat Sin HK, Wong CS, Huang B, Yiu KL, Wong WL, Chu YCT (2013) Assessing local patients’ knowledge and awareness of radiation dose and risks associated with medical imaging: a questionnaire study. J Med Imaging Radiat Oncol 57:38–44CrossRef Sin HK, Wong CS, Huang B, Yiu KL, Wong WL, Chu YCT (2013) Assessing local patients’ knowledge and awareness of radiation dose and risks associated with medical imaging: a questionnaire study. J Med Imaging Radiat Oncol 57:38–44CrossRef
27.
Zurück zum Zitat Schuster AL, Forman HP, Strassle PD, Meyer LT, Connelly SV, Lee CI (2018) Awareness of radiation risks from CT scans among patients and providers and obstacles for informed decision-making. Emerg Radiol 25:41–49CrossRef Schuster AL, Forman HP, Strassle PD, Meyer LT, Connelly SV, Lee CI (2018) Awareness of radiation risks from CT scans among patients and providers and obstacles for informed decision-making. Emerg Radiol 25:41–49CrossRef
28.
Zurück zum Zitat Lee CI, Haims AH, Monico EP, Brink JA, Forman HP (2004) Diagnostic CT scans: assessment of patient, physician, and radiologist awareness of radiation dose and possible risks. Radiology 231:393–398CrossRef Lee CI, Haims AH, Monico EP, Brink JA, Forman HP (2004) Diagnostic CT scans: assessment of patient, physician, and radiologist awareness of radiation dose and possible risks. Radiology 231:393–398CrossRef
29.
Zurück zum Zitat Peng Z, Fang X, Yan P et al (2020) A method of rapid quantification of patient-specific organ doses for CT using deep-learning-based multi-organ segmentation and GPU-accelerated Monte Carlo dose computing. Med Phys 47(6):2526–2536CrossRef Peng Z, Fang X, Yan P et al (2020) A method of rapid quantification of patient-specific organ doses for CT using deep-learning-based multi-organ segmentation and GPU-accelerated Monte Carlo dose computing. Med Phys 47(6):2526–2536CrossRef
30.
Zurück zum Zitat Kearney V, Chan JW, Haaf S, Descovich M, Solberg TD (2018) DoseNet: a volumetric dose prediction algorithm using 3D fully-convolutional neural networks. Phys Med Biol 63(23):235022CrossRef Kearney V, Chan JW, Haaf S, Descovich M, Solberg TD (2018) DoseNet: a volumetric dose prediction algorithm using 3D fully-convolutional neural networks. Phys Med Biol 63(23):235022CrossRef
Metadaten
Titel
A novel methodology to train and deploy a machine learning model for personalized dose assessment in head CT
verfasst von
Eleftherios Tzanis
John Damilakis
Publikationsdatum
06.04.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 9/2022
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-022-08756-w

Weitere Artikel der Ausgabe 9/2022

European Radiology 9/2022 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.