Skip to main content
Erschienen in: BMC Cancer 1/2020

Open Access 01.12.2020 | Case report

An unusual hematopoietic stem cell transplantation for donor acute lymphoblastic leukemia: a case report

verfasst von: Di Zhou, Ting Xie, Suning Chen, Yipeng Ling, Yueyi Xu, Bing Chen, Jian Ouyang, Yonggong Yang

Erschienen in: BMC Cancer | Ausgabe 1/2020

Abstract

Background

Donor acute lymphoblastic leukemia with recipient intact is a rare condition. We report a case of donor developing acute lymphoblastic leukemia 8 yrs after donating both bone marrow and peripheral blood hematopoietic stem cells.

Case presentation

This case report describes a 51-year old female diagnosed with acute lymphoblastic leukemia who donated both bone marrow and peripheral blood stem cells 8 yrs ago for her brother with severe aplastic anemia. Whole exome sequencing revealed leukemic genetic lesions (SF3B1 and BRAF mutation) only appeared in the donor sister, not the recipient, and an unusual type of hematopoietic stem cell transplantation with the recipient’s peripheral blood stem cells was done. The patient remained in remission for 3 months before disease relapsed. CD19 CAR-T therapy followed by HLA-identical unrelated hematopoietic stem cell transplantation was applied and the patient remains in remission for 7 months till now.

Conclusions

This donor leukemia report supports the hypothesis that genetic lesions happen randomly in leukemogenesis. SF3B1 combined with BRAF mutation might contribute to the development of acute lymphoblastic leukemia.
Hinweise
Di Zhou and Ting Xie are co-first authors

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Background

Donor leukemia is a rare condition and only anecdotal reports described its development [1, 2]. There are two types of donor leukemia, literally the donor itself developing leukemia or donor cells in the recipient developing leukemia (Donor Cell Leukemia, DCL), which is more commonly reported. Two mechanisms have been proposed for DCL development: occult transfer of malignant cells from donors during hematopoietic stem cell transplantation (HSCT) or leukemic transformation of healthy donor cells in recipients [36]. The latter one is unpredictable but it takes up the majority of DCL. Donor developing leukemia with recipient intact is even a rarer condition and only few reports described the development of acute myeloid leukemia (AML), not acute lymphoblastic leukemia (ALL), in peripheral blood stem cell (PBSC) donors [7, 8]. G-CSF administration was suspected for leukemogenesis but there have been no valid evidence to support the hypothesis. Meanwhile, there have been no reports describing the development of ALL in hematopoietic stem cell donors, not recipients.
Here we reported a case with only the donor developing ALL 8 yrs after donating hematopoietic stem cells but not the recipient. Whole exome sequencing (WES) showed leukemic genetic lesions (SF3B1 and BRAF mutation) only appeared in the donor’s hematopoietic cells. A special type of HSCT using the recipient’s PBSCs was done. To our knowledge, this is the first case report of donor developing ALL and an unusual type of HSCT. We hope it could provide more evidence for donor leukemia formation and the potential role of SF3B1 and BRAF mutation in ALL.

Case presentation

In May 2017, a 51-year old female presented to our hospital with over 1 week of fatigue. She has medical history of donating both bone marrow and PBSCs 8 yrs ago for her brother with severe aplastic anemia (SAA). G-CSF was used to mobilize hematopoietic stem cells for PBSC collection. Complete blood count (CBC) showed lymphocytosis (Lymphocyte 10*10^9/L), moderate anemia (Hb 61 g/L) and thrombocytopenia (PLT 20*10^9/L). Peripheral blood smear demonstrated 30% of blast cells. Bone marrow biopsy showed lymphoblastic leukemia involving a markedly hypercellular marrow (Fig. 1). Flow cytometry showed the blasts expressed CD10, CD19, CD22, CD38, HLA-DR, but not CD13, CD33, CD117, or cytoplasmic MPO. Chromosomal analysis showed a normal female karyotype. The diagnosis of B-ALL was made. VDP regimen (Vindesine, Daunorubicin, Prednisone) was started after her diagnosis and bone marrow aspirate 14 days later revealed complete remission (CR). Then 2 cycles of VDLP regimen (Vindesine, Daunorubicin, Prednisone, Pegaspargase) and 2 cycles of MA (Mitoxantrone, Cytosine arabinoside) + Pegaspargase (PEG-Asp) regimen were administered. During this period, the patient remained in remission and cerebrospinal fluid (CSF) remained clear after intermittent four time lumbar punctures. Minimal residue disease (MRD) monitoring by flow cytometry after each cycle did not detect blast cells with abnormal phenotype. Considering she has no other HLA-identical siblings or unrelated donors from China Bone Marrow Bank at that time and her brother, who was perfectly stable, a special type of auto-HSCT using her brother’s PBSCs was performed in December 2017. Before the transplantation, whole exome sequencing (WES) was done for both the donor and recipient to rule out occult genetic abnormalities in the stem cells. Results showed that only the patient, not her brother, has genetic mutations including SF3B1 and BRAF mutation associated with hematological malignancies in her hematopoietic cells, not oral mucosal cells (Table 1) [911]. Myeloablative conditioning regimen (Melphalan 140 mg/m2 d-3/d-2/d-1, Cytarabine 1 g/m2 d-3/d-2, Cyclophosphamide 60 mg/Kg d-3/d-2) was used. A total of 2.34*10^6/kg CD34+ cells, 13.0*10^8/kg MNCs from peripheral blood were collected and transfused into the patient. Neutrophil engraftment occurred at day + 11 and platelet engraftment occurred at day + 14. VP regimen (Vindesine, Prednisone) and MTX + 6-MP regimen were used for maintenance therapy. Bone marrow aspirate and flow cytometry showed that the patient remained in complete remission 3 months after transplantation. In May 2018, the patient’s CBC showed leukocytosis and bone marrow aspirate indicated disease relapsed with 53.33% blast cells. Flow cytometry showed the blasts expressed CD10, CD19, HLA-DR and partially expressed CD11b. Genetic testing using polymerase chain reaction (PCR) technique found that SF3B1 and BRAF exome mutation was negative. Re-induction chemotherapy with VDP regimen was administered, the patient achieved CR. However, after another 2 cycles of high-dose MTX+ PEG-Asp regimen, disease relapsed. In November 2018, CD19 CAR-T therapy followed by HLA-identical unrelated hematopoietic stem cell transplantation was applied and the patient remains in remission for 7 months till now.
Table 1
Genetic mutations in the sister’s hematopoietic cells (Sample A), oral mucosal cells (Sample B) and the brother’s hematopoietic cells (Sample C) detected by WES
 
Gene
Chrs
Position
Ref Allele
Alt Allele
Predicted Protein Variants
Genetic mutations shared by Sample A,B,C
ARHGEF10L
1
18,014,104
G
A
V794M, V972M, V719M, V1016M, V977M
YIF1B
19
38,798,111
T
C
Y234C, Y232C, Y249C, Y246C, Y218C
AMBRA1
11
46,529,825
C
T
R662H, R755H, R633H
ATRAID
2
27,438,205
T
C
C80R, C22R, C135R
CACNB3
12
49,212,737
G
A
G9R
IPO4
14
24,650,793
G
C
L991V
PLA2G15
16
68,293,133
C
T
P271L
ZNF574
19
42,582,813
T
C
S109P, S19P
NID2
14
52,505,486
T
G
N746H
ALG8
11
77,824,984
C
T
G242E
HOXB5
17
46,670,899
T
C
Y49C
TIE1
1
43,787,288
T
G
Y1083D, Y1038D
CACNA1F
X
49,066,102
G
C
S1603C, S1614C, S1549C
FREM2
13
39,263,181
C
G
T567R
Genetic mutations shared by Sample A and C
ZGRF1
4
113,506,711
C
T
E1305K, E1363K
SLC43A2
17
1,495,007
C
T
 
CHM
X
85,134,073–85,134,073
A
 
Genetic mutations specific to Sample A
SF3B1
2
198,267,483
C
T
R625H
BRAF
7
140,481,411
C
T
G466E
ZC3H7B
22
41,742,094
G
C
R516P
LAMC1
1
183,077,450
C
T
R255C
Sample A: the sister’s hematopoietic cells; Sample B: the sister’s oral mucosal cells; Sample C: the brother’s hematopoietic cells

Discussion and conclusion

Leukemogenesis is a complex process involving accumulation of genetic changes in self-renewing hematopoietic stem cells (HSCs) [12]. Two-hit model was proposed for the clonal evolution of leukemia [13]. Genome sequencing indicated that most mutations in the leukemia genome were random events and the acquirement of one or two initiating mutations generated the founding clone for leukemogenesis [14]. In this case, a careful review of the medical history of both the brother and sister showed that there were no noteworthy differences in hazard substance exposure. During HSCT, the brother was exposed to more cytotoxic drugs, including CTX, MTX, CsA, while the sister was only exposed to short-time G-CSF before she developed ALL. WES revealed leukemic alterations including SF3B1 and BRAF mutation only happened in the donor sister. So we assumed that development of these mutations in her hematopoietic stem cells, not oral mucosal cells, were probably random events.
SF3B1 gene is located at chromosome 2q33.1 and the encoded protein is an essential component of the U2 small nuclear ribonucleoproteins complex (U2 snRNP), which functions by splicing pre-mRNAs. SF3B1 mutation often occurs in melanoma, chronic lymphocytic leukemia (CLL) or myelodysplastic syndrome (MDS) [15]. Quesada et al. found that SF3B1 mutation could possibly alter its normal function by changing the physical interactions with its binding partners [16]. Of note, U2 snRNP with mutated SF3B1 could affects the splicing of FOXP1 pre-mRNA resulting in the expression of truncated FOXP1 protein, which has been implicated in diffuse large B-cell lymphoma [17]. In this case, WES found SF3B1 R625H mutation in the patient’s blood cells but there have not been reports about the association between SF3B1 mutation and ALL. Considering the mutation could affect genes involved in malignant transformation of B cells like FOXP1, in might participate in the patient’s leukemogenesis.
BRAF gene is located at chromosome 7q34 and it encodes a member of the Raf kinase family which regulates cell division, differentiation and secretion. More than 30 mutations of BRAF gene have been identified in human cancers and V600E was most frequently found [18]. It is a likely driver mutation in hairy cell leukemia and has been widely observed in melanoma, Langerhans cell histiocytosis, papillary thyroid carcinoma, colorectal cancer and non-small-cell lung cancer [19]. BRAF mutations could change the activation segment from inactive state into active state and enhance B-raf kinase activity, which augment cell proliferation. However, in ALL the frequency of BRAF mutation is very low and only V600E, G468A, L597Q mutations have been reported [2022]. Helene Cav et al. reported that children with Noonan Syndrome, some of which harbor BRAF mutation, are at higher risk of developing ALL [23]. In this case, we found BRAF G466E in the patient, not her brother. It might form double hits with SF3B1 mutation, which could affect genes involved in pre-B cell differentiation, and ultimately leads to leukemogenesis in this patient. More basic research needs to be done to clarify the mechanism.
ZC3H7B and LAMC1 gene mutations were also found in the patient’s hematopoietic cells, but there have been no reports of them in hematological malignancies. Their roles in leukemogenesis still need to be uncovered.
G-CSF is used in the majority of allogeneic hematopoietic stem cell donations. Some studies showed its application was associated with increased risk of later development of MDS/AML [6, 8]. Meanwhile, some other studies failed to identify the correlation [24, 25]. It is a critical issue but it remains controversial. In our case, the donor developed ALL 8 yrs after hematopoietic stem cell mobilization using G-CSF. Her leukemogenesis and G-CSF usage were probably irrelevant since G-CSF is a regulator for granulopoiesis, not lymphopoiesis. The duration and dosage of G-CSF administration was longer and higher in the recipient brother, but till now no signs of MDS/AML have been detected in him. Therefore, high quality and more conclusive clinical data is needed to clarify G-CSF usage and leukemia formation especially in healthy donors.
The suspicion of delayed onset of DCL was also considered. According to previous reports of DCL, the average latent period is within 4 yrs of HSCT [26, 27]. In our case, the recipient brother did not develop leukemia 8 yrs after transplantation. Additionally, WES showed no leukemia-associated gene mutations in him and it further ruled out the possibility of delayed leukemia onset.
Auto-HSCT can be considered in MRD negative ALL patients without appropriate HLA-identical donors. In this case, a special type of auto-HSCT was performed. Compared with stem cells collected from the patient herself, peripheral blood stem cells from her brother were leukemia cell free and it was supposed to lower the risk of disease relapse. However, the patient relapsed 3 months after transplantation. Since SF3B1 and BRAF mutation turned negative after disease relapsing, we hypothesized that leukemia sub-clones outgrew and caused disease relapse.
To our knowledge, this is the first case report with only donor developing ALL but not the recipient and this is also the first report of an unusual type of auto-HSCT. We hope it could provide more evidence for the double-hit model in leukemogenesis and a potential alternative for donor leukemia treatment.

Acknowledgements

The authors would like to thank all the staff from the Department of Hematology, Drum Tower Hospital for their helpful suggestions when preparing this manuscript.
Patients provided written informed consent for genetic analysis based on the Declaration of Helsinki and were informed of the existence of other treatment options in accordance with the Ethics Committee of Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School.
Written informed consent was obtained from the patient for publication of this case report and accompanying images.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Niederwieser DW, Appelbaum FR, Gastl G, Gersdorf E, Meister B, Geissler D, Tratkiewicz JA, Thaler J, Huber C. Inadvertent transmission of a donor's acute myeloid leukemia in bone marrow transplantation for chronic myelocytic leukemia. N Engl J Med. 1990;322(25):1794–6.CrossRef Niederwieser DW, Appelbaum FR, Gastl G, Gersdorf E, Meister B, Geissler D, Tratkiewicz JA, Thaler J, Huber C. Inadvertent transmission of a donor's acute myeloid leukemia in bone marrow transplantation for chronic myelocytic leukemia. N Engl J Med. 1990;322(25):1794–6.CrossRef
2.
Zurück zum Zitat Ma H, Liu T. Development of donor cell leukemia following peripheral blood stem cell transplantation for severe aplastic anemia: a case report. Oncol Lett. 2016;11(6):3858–62.CrossRef Ma H, Liu T. Development of donor cell leukemia following peripheral blood stem cell transplantation for severe aplastic anemia: a case report. Oncol Lett. 2016;11(6):3858–62.CrossRef
3.
Zurück zum Zitat Sala-Torra O, Hanna C, Loken MR, Flowers ME, Maris M, Ladne PA, Mason JR, Senitzer D, Rodriguez R, Forman SJ, et al. Evidence of donor-derived hematologic malignancies after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2006;12(5):511–7.CrossRef Sala-Torra O, Hanna C, Loken MR, Flowers ME, Maris M, Ladne PA, Mason JR, Senitzer D, Rodriguez R, Forman SJ, et al. Evidence of donor-derived hematologic malignancies after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2006;12(5):511–7.CrossRef
4.
Zurück zum Zitat Loren AW, Porter DL, Stadtmauer EA, Tsai DE. Post-transplant lymphoproliferative disorder: a review. Bone Marrow Transplant. 2003;31(3):145–55.CrossRef Loren AW, Porter DL, Stadtmauer EA, Tsai DE. Post-transplant lymphoproliferative disorder: a review. Bone Marrow Transplant. 2003;31(3):145–55.CrossRef
5.
Zurück zum Zitat Blau O, Hofmann WK, Baldus CD, Thiel G, Serbent V, Schumann E, Thiel E, Blau IW. Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia. Exp Hematol. 2007;35(2):221–9.CrossRef Blau O, Hofmann WK, Baldus CD, Thiel G, Serbent V, Schumann E, Thiel E, Blau IW. Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia. Exp Hematol. 2007;35(2):221–9.CrossRef
6.
Zurück zum Zitat Bennett CL, Evens AM, Andritsos LA, Balasubramanian L, Mai M, Fisher MJ, Kuzel TM, Angelotta C, McKoy JM, Vose JM, et al. Haematological malignancies developing in previously healthy individuals who received haematopoietic growth factors: report from the research on adverse drug events and reports (RADAR) project. Br J Haematol. 2006;135(5):642–50.CrossRef Bennett CL, Evens AM, Andritsos LA, Balasubramanian L, Mai M, Fisher MJ, Kuzel TM, Angelotta C, McKoy JM, Vose JM, et al. Haematological malignancies developing in previously healthy individuals who received haematopoietic growth factors: report from the research on adverse drug events and reports (RADAR) project. Br J Haematol. 2006;135(5):642–50.CrossRef
7.
Zurück zum Zitat Glasser L, Meloni-Ehrig A, Greaves W, Demel KC, Butera J. Synchronous development of acute myeloid leukemia in recipient and donor after allogeneic bone marrow transplantation: report of a case with comments on donor evaluation. Transfusion. 2009;49(3):555–62.CrossRef Glasser L, Meloni-Ehrig A, Greaves W, Demel KC, Butera J. Synchronous development of acute myeloid leukemia in recipient and donor after allogeneic bone marrow transplantation: report of a case with comments on donor evaluation. Transfusion. 2009;49(3):555–62.CrossRef
8.
Zurück zum Zitat Tigue CC, McKoy JM, Evens AM, Trifilio SM, Tallman MS, Bennett CL. Granulocyte-colony stimulating factor administration to healthy individuals and persons with chronic neutropenia or cancer: an overview of safety considerations from the research on adverse drug events and reports project. Bone Marrow Transplant. 2007;40(3):185–92.CrossRef Tigue CC, McKoy JM, Evens AM, Trifilio SM, Tallman MS, Bennett CL. Granulocyte-colony stimulating factor administration to healthy individuals and persons with chronic neutropenia or cancer: an overview of safety considerations from the research on adverse drug events and reports project. Bone Marrow Transplant. 2007;40(3):185–92.CrossRef
9.
Zurück zum Zitat Hahn CN, Scott HS. Spliceosome mutations in hematopoietic malignancies. Nat Genet. 2011;44(1):9–10.CrossRef Hahn CN, Scott HS. Spliceosome mutations in hematopoietic malignancies. Nat Genet. 2011;44(1):9–10.CrossRef
10.
Zurück zum Zitat Tiacci E, Park JH, De Carolis L, Chung SS, Broccoli A, Scott S, Zaja F, Devlin S, Pulsoni A, Chung YR, et al. Targeting mutant BRAF in relapsed or refractory hairy-cell leukemia. N Engl J Med. 2015;373(18):1733–47.CrossRef Tiacci E, Park JH, De Carolis L, Chung SS, Broccoli A, Scott S, Zaja F, Devlin S, Pulsoni A, Chung YR, et al. Targeting mutant BRAF in relapsed or refractory hairy-cell leukemia. N Engl J Med. 2015;373(18):1733–47.CrossRef
11.
Zurück zum Zitat Xu Y, Wertheim G, Morrissette JJ, Bagg A. BRAF kinase domain mutations in de novo acute myeloid leukemia with monocytic differentiation. Leuk Lymphoma. 2017;58(3):743–5.CrossRef Xu Y, Wertheim G, Morrissette JJ, Bagg A. BRAF kinase domain mutations in de novo acute myeloid leukemia with monocytic differentiation. Leuk Lymphoma. 2017;58(3):743–5.CrossRef
12.
Zurück zum Zitat Korn C, Mendez-Ferrer S. Myeloid malignancies and the microenvironment. Blood. 2017;129(7):811–22.CrossRef Korn C, Mendez-Ferrer S. Myeloid malignancies and the microenvironment. Blood. 2017;129(7):811–22.CrossRef
13.
Zurück zum Zitat Schneider F, Bohlander SK, Schneider S, Papadaki C, Kakadyia P, Dufour A, Vempati S, Unterhalt M, Feuring-Buske M, Buske C, et al. AML1-ETO meets JAK2: clinical evidence for the two hit model of leukemogenesis from a myeloproliferative syndrome progressing to acute myeloid leukemia. Leukemia. 2007;21(10):2199–201.CrossRef Schneider F, Bohlander SK, Schneider S, Papadaki C, Kakadyia P, Dufour A, Vempati S, Unterhalt M, Feuring-Buske M, Buske C, et al. AML1-ETO meets JAK2: clinical evidence for the two hit model of leukemogenesis from a myeloproliferative syndrome progressing to acute myeloid leukemia. Leukemia. 2007;21(10):2199–201.CrossRef
14.
Zurück zum Zitat Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, Wartman LD, Lamprecht TL, Liu F, Xia J, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150(2):264–78.CrossRef Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, Wartman LD, Lamprecht TL, Liu F, Xia J, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150(2):264–78.CrossRef
15.
Zurück zum Zitat Wan Y, Wu CJ. SF3B1 mutations in chronic lymphocytic leukemia. Blood. 2013;121(23):4627–34.CrossRef Wan Y, Wu CJ. SF3B1 mutations in chronic lymphocytic leukemia. Blood. 2013;121(23):4627–34.CrossRef
16.
Zurück zum Zitat Quesada V, Conde L, Villamor N, Ordonez GR, Jares P, Bassaganyas L, Ramsay AJ, Bea S, Pinyol M, Martinez-Trillos A, et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet. 2011;44(1):47–52.CrossRef Quesada V, Conde L, Villamor N, Ordonez GR, Jares P, Bassaganyas L, Ramsay AJ, Bea S, Pinyol M, Martinez-Trillos A, et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet. 2011;44(1):47–52.CrossRef
17.
Zurück zum Zitat Brown PJ, Ashe SL, Leich E, Burek C, Barrans S, Fenton JA, Jack AS, Pulford K, Rosenwald A, Banham AH. Potentially oncogenic B-cell activation-induced smaller isoforms of FOXP1 are highly expressed in the activated B cell-like subtype of DLBCL. Blood. 2008;111(5):2816–24.CrossRef Brown PJ, Ashe SL, Leich E, Burek C, Barrans S, Fenton JA, Jack AS, Pulford K, Rosenwald A, Banham AH. Potentially oncogenic B-cell activation-induced smaller isoforms of FOXP1 are highly expressed in the activated B cell-like subtype of DLBCL. Blood. 2008;111(5):2816–24.CrossRef
18.
Zurück zum Zitat Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.CrossRef Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–54.CrossRef
19.
Zurück zum Zitat Tiacci E, Trifonov V, Schiavoni G, Holmes A, Kern W, Martelli MP, Pucciarini A, Bigerna B, Pacini R, Wells VA, et al. BRAF mutations in hairy-cell leukemia. N Engl J Med. 2011;364(24):2305–15.CrossRef Tiacci E, Trifonov V, Schiavoni G, Holmes A, Kern W, Martelli MP, Pucciarini A, Bigerna B, Pacini R, Wells VA, et al. BRAF mutations in hairy-cell leukemia. N Engl J Med. 2011;364(24):2305–15.CrossRef
20.
Zurück zum Zitat Lee JW, Soung YH, Park WS, Kim SY, Nam SW, Min WS, Lee JY, Yoo NJ, Lee SH. BRAF mutations in acute leukemias. Leukemia. 2004;18(1):170–2.CrossRef Lee JW, Soung YH, Park WS, Kim SY, Nam SW, Min WS, Lee JY, Yoo NJ, Lee SH. BRAF mutations in acute leukemias. Leukemia. 2004;18(1):170–2.CrossRef
21.
Zurück zum Zitat Hou P, Liu D, Xing M. The T1790A BRAF mutation (L597Q) in childhood acute lymphoblastic leukemia is a functional oncogene. Leukemia. 2007;21(10):2216–8.CrossRef Hou P, Liu D, Xing M. The T1790A BRAF mutation (L597Q) in childhood acute lymphoblastic leukemia is a functional oncogene. Leukemia. 2007;21(10):2216–8.CrossRef
22.
Zurück zum Zitat Alonso CM, Such E, Gomez-Segui I, Cervera J, Martinez-Cuadron D, Luna I, Ibanez M, Lopez-Pavia M, Vera B, Navarro I, et al. BRAF V600E mutation in adult acute lymphoblastic leukemia. Leuk Lymphoma. 2013;54(5):1105–6.CrossRef Alonso CM, Such E, Gomez-Segui I, Cervera J, Martinez-Cuadron D, Luna I, Ibanez M, Lopez-Pavia M, Vera B, Navarro I, et al. BRAF V600E mutation in adult acute lymphoblastic leukemia. Leuk Lymphoma. 2013;54(5):1105–6.CrossRef
23.
Zurück zum Zitat Cave H, Caye A, Strullu M, Aladjidi N, Vignal C, Ferster A, Mechinaud F, Domenech C, Pierri F, Contet A, et al. Acute lymphoblastic leukemia in the context of RASopathies. Eur J Med Genet. 2016;59(3):173–8.CrossRef Cave H, Caye A, Strullu M, Aladjidi N, Vignal C, Ferster A, Mechinaud F, Domenech C, Pierri F, Contet A, et al. Acute lymphoblastic leukemia in the context of RASopathies. Eur J Med Genet. 2016;59(3):173–8.CrossRef
24.
Zurück zum Zitat Holig K, Kramer M, Kroschinsky F, Bornhauser M, Mengling T, Schmidt AH, Rutt C, Ehninger G. Safety and efficacy of hematopoietic stem cell collection from mobilized peripheral blood in unrelated volunteers: 12 years of single-center experience in 3928 donors. Blood. 2009;114(18):3757–63.CrossRef Holig K, Kramer M, Kroschinsky F, Bornhauser M, Mengling T, Schmidt AH, Rutt C, Ehninger G. Safety and efficacy of hematopoietic stem cell collection from mobilized peripheral blood in unrelated volunteers: 12 years of single-center experience in 3928 donors. Blood. 2009;114(18):3757–63.CrossRef
25.
Zurück zum Zitat Cavallaro AM, Lilleby K, Majolino I, Storb R, Appelbaum FR, Rowley SD, Bensinger WI. Three to six year follow-up of normal donors who received recombinant human granulocyte colony-stimulating factor. Bone Marrow Transplant. 2000;25(1):85–9.CrossRef Cavallaro AM, Lilleby K, Majolino I, Storb R, Appelbaum FR, Rowley SD, Bensinger WI. Three to six year follow-up of normal donors who received recombinant human granulocyte colony-stimulating factor. Bone Marrow Transplant. 2000;25(1):85–9.CrossRef
26.
Zurück zum Zitat Sala Torra O, Loeb KR. Donor cell-derived leukemia and myelodysplastic neoplasm: unique forms of leukemia. Am J Clin Pathol. 2011;135(4):501–4.CrossRef Sala Torra O, Loeb KR. Donor cell-derived leukemia and myelodysplastic neoplasm: unique forms of leukemia. Am J Clin Pathol. 2011;135(4):501–4.CrossRef
27.
Zurück zum Zitat Hertenstein B, Hambach L, Bacigalupo A, Schmitz N, McCann S, Slavin S, Gratwohl A, Ferrant A, Elmaagacli A, Schwertfeger R, et al. Development of leukemia in donor cells after allogeneic stem cell transplantation--a survey of the European Group for Blood and Marrow Transplantation (EBMT). Haematologica. 2005;90(7):969–75.PubMed Hertenstein B, Hambach L, Bacigalupo A, Schmitz N, McCann S, Slavin S, Gratwohl A, Ferrant A, Elmaagacli A, Schwertfeger R, et al. Development of leukemia in donor cells after allogeneic stem cell transplantation--a survey of the European Group for Blood and Marrow Transplantation (EBMT). Haematologica. 2005;90(7):969–75.PubMed
Metadaten
Titel
An unusual hematopoietic stem cell transplantation for donor acute lymphoblastic leukemia: a case report
verfasst von
Di Zhou
Ting Xie
Suning Chen
Yipeng Ling
Yueyi Xu
Bing Chen
Jian Ouyang
Yonggong Yang
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2020
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-020-6681-2

Weitere Artikel der Ausgabe 1/2020

BMC Cancer 1/2020 Zur Ausgabe

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

So sicher sind Tattoos: Neue Daten zur Risikobewertung

22.05.2024 Melanom Nachrichten

Das größte medizinische Problem bei Tattoos bleiben allergische Reaktionen. Melanome werden dadurch offensichtlich nicht gefördert, die Farbpigmente könnten aber andere Tumoren begünstigen.

CAR-M-Zellen: Warten auf das große Fressen

22.05.2024 Onkologische Immuntherapie Nachrichten

Auch myeloide Immunzellen lassen sich mit chimären Antigenrezeptoren gegen Tumoren ausstatten. Solche CAR-Fresszell-Therapien werden jetzt für solide Tumoren entwickelt. Künftig soll dieser Prozess nicht mehr ex vivo, sondern per mRNA im Körper der Betroffenen erfolgen.

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.