Skip to main content
Erschienen in: BMC Cancer 1/2020

Open Access 01.12.2020 | Research article

Analysis of the expression and potential molecular mechanism of interleukin-1 receptor antagonist (IL1RN) in papillary thyroid cancer via bioinformatics methods

verfasst von: Zhenyu Xie, Xin Li, Yuzhen He, Song Wu, Shiyue Wang, Jianjian Sun, Yuchen He, Yu Lun, Shijie Xin, Jian Zhang

Erschienen in: BMC Cancer | Ausgabe 1/2020

Abstract

Background

Interleukin-1 receptor antagonist (IL1RN) has been reported as a biomarker of many cancers. However, the biological function of IL1RN in papillary thyroid carcinoma (PTC) remains undetermined.

Methods

We obtained IL1RN expression data from The Cancer Genome Atlas (TCGA) database. Enrichment analysis of coexpressed genes and IL1RN methylation analysis were performed via LinkedOmics. The correlations between IL1RN and immune infiltrates were investigated via ESTIMATE, TIMER and TISIDB. We analyzed the association of IL1RN expression with pancancer overall survival (OS) via Gene Expression Profiling Interactive Analysis (GEPIA).

Results

IL1RN showed higher expression levels and lower methylation levels in PTC tissues than in normal tissues. Higher IL1RN expression was significantly associated with shorter progression-free survival (PFS), advanced tumor stage, tumor metastasis, increased incidence of BRAF mutations, and decreased incidence of N-RAS and H-RAS mutations. Genes coexpressed with IL1RN participate primarily in immune-related pathways. IL1RN expression positively correlated with immune infiltration, tumor progression and poor OS for all cancers.

Conclusions

IL1RN is a good prognostic and diagnostic biomarker for PTC. IL1RN may promote thyroid cancer progression through immune-related pathways. Methylation may act as an upstream regulator of IL1RN expression and biological function. Additionally, IL1RN was shown to have broad prognostic value in a pancancer cohort.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12885-020-07620-8.
Zhenyu Xie and Xin Li contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
IL1RN
Interleukin-1 receptor antagonist
PTC
Papillary thyroid carcinoma
TCGA
The Cancer Genome Atlas
OS
Overall survival
GEPIA
Gene Expression Profiling Interactive Analysis
PFS
Progression-free survival
THCA
Thyroid carcinoma
IL-1
Interleukin-1
sIL-1ra
The soluble extracellular form of IL1RN
icIL-1ra
The intracellular form of IL1RN
ATC
Anaplastic carcinoma
FTC
Follicular carcinoma
NCBI
The National Center for Biotechnology Information
GEO
Gene Expression Omnibus
H-IL1RN
High IL1RN expression group
L-IL1RN
Low IL1RN expression group
PPI
Protein-protein interaction
ssGSEA
Single-sample gene-set enrichment analysis
TIMER
Tumor Immune Estimation Resource
DCs
Dendritic cells
MHC
Major histocompatibility complex
K-M
Kaplan-Meier
CAMs
Cell adhesion molecules
KIRC
Kidney renal clear cell carcinoma
LGG
Lower grade glioma
PADD
Pancreatic adenocarcinoma
UCEC
Uterine corpus endometrial carcinoma
OSCCs
Oral squamous cell carcinomas
NK
Natural killer
GM-CSF
Granulocyte/macrophage colony stimulating factor
TNF-α
Tumor necrosis factor-α

Background

Thyroid carcinoma (THCA) is the most common endocrine malignancy worldwide [1]. The incidence of THCA has increased sharply over the past 3 decades [2]. Papillary thyroid carcinoma (PTC) is the major subtype of THCA, accounting for more than 90% of cases [3]. The clinical course of PTC is generally indolent, and the cancer-specific mortality of PTC is low compared to that of other cancers [4]. However, the incidence of cervical lymph node metastasis is high, which leads to local recurrence and poor prognosis [5]. The main task for the future is to identify high-risk patients and to give them appropriate treatment and care [6]. Therefore, further studies are required to explore the underlying mechanisms of tumorigenesis as well as identify additional biomarkers that predict prognosis and serve as therapeutic targets.
The interleukin-1 (IL-1) family of cytokines are the most effective molecules in the innate immune system [7]. IL-1 receptor antagonist (IL1RN) was initially found as a natural antagonist of IL-1 [8]. IL1RN is structurally related to IL-lα and IL-lβ but binds to IL-1 receptors on various target cells without inducing any discernible biological responses [9]. The balance between IL1RN and IL-1 plays a crucial role in many diseases, including cancer [10]. IL1RN has been studied in several cancers, including prostate carcinoma [11, 12], cervical carcinoma [13], gastric carcinoma [14], bronchogenic carcinoma [15], endometrial cancer [16], lung cancer [17], ovarian cancer [18], oral malignancies [19], leukemia [20], and other cancers.
Two structural variants of IL1RN have been described: the soluble extracellular form (sIL-1ra) and the intracellular form (icIL-1ra) [8]. Niedzwiecki, S. and colleagues assayed the serum levels of IL1RN in thyroid cancer patients. They measured preoperative IL1RN serum levels of patients with thyroid cancer, and the results showed that the serum concentrations of sIL-1ra were significantly higher in anaplastic carcinoma (ATC) and follicular carcinoma (FTC) patients [21]. To our knowledge, no reports have been published to date concerning IL1RN expression in thyroid tissue. Because IL1RN has been associated with various diseases and the serum concentration of sIL-1ra has been confirmed to be increased in PTC, we hypothesized that IL1RN may play a role in PTC. The objective of this study was to investigate IL1RN expression in normal and PTC tissues by performing bioinformatics analysis to elucidate its possible role in tumor progression.

Methods

Expression level analysis

The cohort that comprised 512 PTC and 58 normal thyroid samples was obtained from The Cancer Genome Atlas (TCGA) (https://​tcga-data.​nci.​nih.​gov/​tcga/​). The clinical data, normalized RNA expression data, DNA methylation data and simple nucleotide variation data were downloaded from the TCGA data portal.
To assess the diagnostic value of IL1RN, we selected data-sets containing both PTC and normal tissues in the GEO database. The gene expression profiles of four independent datasets (GSE3467, GSE33630, GSE58545, and GSE60542) were downloaded from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database (http://​www.​ncbi.​nlm.​nih.​gov/​geo/​).

Diagnostic and prognostic value analysis

ROC curves were plotted, and the area under the ROC curve was calculated using the ROCR package in R. The patients were divided into a high IL1RN expression group (H-IL1RN) and a low IL1RN expression group (L-IL1RN) according to the best matched value for the survival analysis. The best cut-off value was derived using Cutoff Finder software based on an R routine which optimized the significance of the split between Kaplan-Meier (K-M) survival curves measured by the log-rank test [22]. K-M survival curves were generated by the R survival package. The primary end point of the study was progression-free survival (PFS). Univariate and multivariate analyses were performed using the Cox regression model to assess the significance of various variables to survival. A chi-square test was performed to compare the clinical characteristics between the H-IL1RN group and the L-IL1RN group.

Gene functional enrichment analysis

We identified the genes that were significantly positively or negatively correlated with IL1RN using the LinkedOmics website (http://​www.​linkedomics.​org/​) [23].
The top 50 positively correlated genes and the top 50 negatively correlated genes were selected to build the heatmaps.
These genes were input into the GO and KEGG websites to obtain the enriched GO terms and significant KEGG pathways. GO function annotation analysis was performed based on the GO database (http://​geneontology.​org/​page/​go-database), and KEGG pathway annotation analysis was performed based on the KEGG database (http://​www.​kegg.​jp/​kegg/​ko.​html).
The protein-protein interaction (PPI) network with a confidence > 0.7 was constructed using STRING (https://​string-db.​org) and CytoScape version 3.7.2.

Tumor immunology analysis

ESTIMATE used the single-sample gene-set enrichment analysis (ssGSEA) score to quantify the enrichment levels of immune gene signatures in tumors. ESTIMATE [24], a method that uses gene expression signatures to infer the fractions of stromal and immune cells in tumor samples, was used to evaluate the levels of immune cell infiltration (immune score), the stromal content (stromal score), the stromal-immune comprehensive score (ESTIMATE score) and tumor purity for each THCA sample.
The Tumor Immune Estimation Resource (TIMER) web server (https://​cistrome.​shinyapps.​io/​timer/​), a comprehensive analytic web tool [25], was used to analyze the correlation of IL1RN with infiltration of immune cells, including B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells (DCs).
We used TISIDB (http://​cis.​hku.​hk/​TISIDB/​), a web portal for investigation of tumor and immune system interaction [26], to determine the Spearman correlation between IL1RN expression and 28 TIL types, chemokines, immune-activating cytokines, immunosuppressive cytokines, major histocompatibility complex (MHC) molecules, and chemokine receptors.
DNA methylation data were downloaded from the data portal of TCGA (https://​portal.​gdc.​cancer.​gov/​), and the DNA methylation levels of the PTC and control groups were then compared. Spearman correlation analysis was conducted to examine the associations between the methylation density and gene expression and between the methylation density and tumor purity. Additionally, we analyzed the correlation between IL1RN expression and the methylation level of each CpG site using the Spearman correlation test. The analysis of the relationship between methylation and the clinical characteristics and the GO and KEGG analyses were performed using linkedOmics.

Pancancer analysis

The pancancer expression and survival analysis of IL1RN was performed using the online software Gene Expression Profiling Interactive Analysis (GEPIA) (http://​gepia.​cancer-pku.​cn/​) [27]. We used TISIDB to analyze the relationships between IL1RN expression and overall survival (OS) in pancancer. K-M curves were generated for pancancer using the TCGA cohort data.
The analysis of the relationship between IL1RN expression and PTC mutations was performed by linkedOmics. The IL1RN expression level was further compared between the groups with wild-type and mutant versions of BRAF, NRAS and HRAS.

Statistical analysis

The t-test and Mann-Whitney U test were used for comparisons between two groups. The chi-square test was used to assess the differences in clinical parameters between the L-IL1RN and H-IL1RN groups. The Pearson and Spearman methods were used for correlation analysis. The log-rank method was used to calculate the significant P-values related to survival. R software (v3.6.0) and SPSS version 25.0 software were used for statistical processing. Visualization of data was performed with GraphPad Prism V.8.0 and R software. P < 0.05 was considered significant.

Results

The differential expression and diagnostic value of IL1RN

The expression levels of IL1RN were initially analyzed in the TCGA cohort consisting of 512 PTC samples and 58 normal samples (Fig. 1a). Furthermore, expression data from four independent PTC cohorts obtained from the Gene Expression Omnibus (GEO) (GSE3467, GSE33630, GSE58545, and GSE60542) were employed for validation (Fig. 1d-g). Both the GEO and TCGA patient cohorts had significantly higher IL1RN mRNA expression in PTC tissues than in normal tissues (P < 0.05).
ROC curves were constructed to evaluate the diagnostic value of IL1RN for PTC. The area under the ROC curve of the TCGA cohort was 0.7084 (Fig. 1b) and that of each GEO cohort was 0.9753, 0.7279, 0.8868, and 0.8384, respectively (Fig. 1h-k). These results suggest the good positive diagnostic value of IL1RN for PTC.

Prognostic value and clinical significance of IL1RN

The PTC samples from the TCGA cohort were divided into two groups according to the IL1RN expression level: the high-expression group (H-IL1RN) (n = 116) and the low-expression group (L-IL1RN) (n = 385). Differences in progression-free survival (PFS) between the two groups were analyzed by Kaplan-Meier analysis (Fig. 1c). The results showed that patients with high IL1RN expression had significantly shorter PFS than those with low expression (P = 0.0034). However, the data for the multivariate analysis by the Cox regression model suggested that IL1RN expression was not a significant independent prognostic risk indicator for PTC (hazard ratio, 1.033; 95% confidence interval, 0.999–1.068, P > 0.05) (Table 1). Age was an independent predictor of poor prognosis (P < 0.05).
Table 1
Results of univariate and multivariate logistic regression analysis
Variables
Univariate analysis
Multivariate analysis
Hazard ratio (95%CI)
P value
Hazard ratio (95%CI)
P value
Age (y ≥ 55/< 55)
3.958 (2.274–6.891)
< 0.001
2.582(1.312–5.083)
0.006
Sex
1.471 (0.834–2.592)
0.182
1.098(0.604–1.997)
0.758
Clinical stage
1.736 (1.380–2.185)
< 0.001
1.301(0.968–1.748)
0.081
Radiation therapy
1.305 (0.728–2.343)
0.372
1.205(0.651–2.233)
0.553
IL1RN
1.058 (1.024–1.093)
< 0.001
1.033(0.999–1.068)
0.059
To examine the clinical significance of IL1RN in PTC, the relationship between the expression level of IL1RN and clinical characteristics was investigated by the chi-square test (Table 2). The results suggested that IL1RN expression was significantly associated with clinical stage, N stage, T stage, pathologic type, BRAF mutations and RAS mutations.
Table 2
Association between IL1RN expression and clinical parameters
Clinical parameters
L-IL1RN
(n = 385, %)
H-IL1RN
(n = 116, %)
P-value
Age (y)
  < 55
261 (67.8)
73 (62.9)
0.330
  ≥ 55
124 (32.2)
43 (37.1)
Sex
 Female
282 (73.2)
84(72.4)
0.859
 Male
103 (26.8)
32(27.6)
Clinical stage
 I
224 (58.5)
57 (49.1)
0.001
 II
47 (12.3)
5 (4.3)
 III
77 (20.1)
34 (29.3)
 IV
35 (9.1)
20 (17.2)
 NA
2
0
 
Metastasis
 M0
208 (97.2)
74 (96.1)
0.635
 M1
6 (2.8)
3 (3.9)
 NA
171
39
 
N classification
 N0
189 (54.8)
40 (37.7)
0.002
 N1
156 (45.2)
66 (62.3)
 NA
40
10
 
T classification
 T1
120 (31.2)
22 (19.3)
< 0.001
 T2
135 (35.1)
29 (25.4)
 T3
116 (30.1)
54 (47.4)
 T4
14 (3.6)
9 (7.9)
 NA
0
2
 
Pathologic type
 Classical
268 (69.6)
87 (75.0)
< 0.001
 Follicular
94 (24.4)
7 (6.0)
 Tall Cell
17 (4.4)
19 (16.4)
 Other
6 (1.6)
3 (2.6)
BRAF
 Wild
179 (48.5)
16 (14.3)
< 0.001
 Mutation
190 (51.5)
96 (85.7)
 NA
16
4
 
RAS
 Wild
311 (84.3)
110 (98.2)
< 0.001
 Mutation
58 (15.7)
2 (1.8)
 NA
16
4
 

Gene coexpression and pathway enrichment analysis

The Function module of LinkedOmics was used to analyse mRNA sequencing data from 512 PTC patients in TCGA. The result is presented as a volcano plot (Fig. 2a). A total of 8960 genes showed significant positive correlations with IL1RN(red dots), while 10,967 genes showed significant negative correlations with IL1RN (green dots). The top 50 positively (Fig. 2b) or negatively (Fig. 2c) correlated genes are depicted by heatmaps. In addition, 2 hub genes (CCL20 and FN1) were identified from the protein–protein interaction (PPI) network (Fig. 2d).
We used gene set enrichment analysis (GSEA) to conduct GO term and KEGG analyses for all positive IL1RN co-expressed or negative IL1RN co-expressed genes. GO enrichment analysis revealed that IL1RN co-expressed genes were mainly enriched for the GO biological process terms “neutrophil mediated immunity”, “positive regulation of cytokine production”, “adaptive immune response” and “immune response-regulating signalling pathway” (Fig. 2e). Further KEGG enrichment analysis suggested that the identified genes were mainly involved in pathways associated with “cell adhesion molecules (CAMs)”, “cytokine-cytokine receptor interaction”, and “phagosome” (Fig. 2f).
Using ESTIMATE, the association between IL1RN expression and immune infiltrates was analyzed. We found that the H-IL1RN group showed a higher immune score (Fig. 3b) and ESTIMATE score (Fig. 3c) and lower tumor purity (Fig. 3d) than the L-IL1RN group. No significant difference in the stromal score was found between the two groups (Fig. 3a). The correlations between the IL1RN expression level and the infiltration of six immune cell types in PTC were estimated. The results demonstrated that IL1RN expression was found to be significantly positively correlated with the infiltration of immune cells, especially neutrophils and dendritic cells (Fig. 3e). Correlations between IL1RN expression and 28 TIL types (Fig. 3f), chemokines (Fig. 3g), immune-activating cytokines (Fig. S1A), immunosuppressive cytokines (Fig. S1B), MHC molecules (Fig. S1C), and chemokine receptors (Fig. S1D) in pancancer are shown in heatmaps. A positive correlation between IL1RN expression and immune-related molecules was observed.
The data showed that the degree of IL1RN DNA methylation was lower in carcinoma tissues than in normal tissues (P < 0.0001) (Fig. 4a). To further determine the role of methylation, we performed a correlation analysis between the DNA methylation levels of IL1RN and the expression levels of IL1RN. As expected, DNA methylation negatively correlated with IL1RN expression (R = -0.600, P = 2.29e-50) (Fig. 4b). Tumor purity was significantly positively associated with IL1RN methylation (R = 0.447, P = 7.49e-32) (Fig. 4c). Patients with an advanced clinical stage (Fig. 4d), advanced T stage (Fig. 4e) and lymph node metastasis (Fig. 4f) tended to have decreased IL1RN methylation levels. In the pathological subtype of PTC, the tall cell type variant of PTC had the lowest degree of methylation, followed by the classical type, and the follicular variant of PTC had the highest degree of methylation (Fig. 4g).
To understand the biological significance of IL1RN methylation in THCA, a functional module of LinkedOmics was used to examine IL1RN coexpression pattern in the THCA cohort. Based on RNAseq, we screened 19,927 genes related to IL1RN methylation (false discovery rate (FDR) < 0.01). The GO (biological process) analysis results derived by GSEA were significant. The results indicated that IL1RN methylation coexpressed genes that participate primarily in mitochondrial gene expression, the generation of precursor metabolites and energy and small molecule catabolic process, while immune related activities, such as the adaptive immune response, immune response-regulating signalling, and neutrophil mediated immunity were inhibited (Fig. 4h). KEGG pathway analysis also showed that genes related to valine, leucine and isoleucine degradation, carbon metabolism and thermogenesis, among other pathways, were inhibited (Fig. 4i). These results illustrate that methylated IL1RN may inhibit immune-related pathways by downregulating IL1RN expression. Furthermore, the most significant methylation sites are shown in Table 3.
Table 3
Spearman correlation between IL1RN methylation sites and IL1RN expression
Methylation site
Spearman r
P value
cg01467417
−0.597
7.76E-50
cg02543462
−0.406
2.53E-21
cg01991967
−0.19
1.81E-05
cg03989987
−0.164
2.28E-04
cg10938446
− 0.116
0.009
cg03703171
−0.107
0.016
cg11783497
− 0.1
0.016
cg17669033
0.027
0.548
cg23041410
−0.022
0.625
cg06658391
0.018
0.687
cg25928199
NA
NA
cg25265126
NA
NA
cg02377053
NA
NA
The analysis of the relationship between IL1RN expression and PTC mutations was performed by LinkedOmics (Fig. S2A). The IL1RN expression level was further compared between the groups with wild-type and mutant variants of BRAF, NRAS and HRAS (Fig. S2B-D). The expression of IL1RN was significantly higher in PTC with the BRAF mutant than in PTC with the wild type (Fig. S2B). However, mutated NRAS (Fig. S2C) and mutated HRAS (Fig. S2D) correlated with decreased IL1RN expression.

Pancancer analysis of IL1RN

To investigate whether IL1RN has broad value, we performed a series of studies on IL1RN across all cancers. We analyzed the IL1RN expression levels in different kinds of tumors via the GEPIA platform (Fig. 5a). The results showed that the expression levels of IL1RN varied greatly in different cancer types. Of the 33 cancer types tested, 12 cancer types were associated with significantly increased IL1RN expression. Subsequently, the relationship between IL1RN and OS in pancancer was investigated (Fig. 5b). Kaplan-Meier survival curves for the high IL1RN expression group (4745 patients) and low IL1RN expression group (4750 patients) indicated that increased IL1RN expression was associated with a shorter survival time in pancancer (HR = 1.6, P < 0.0001) (Fig. 5c). The results showed that increased IL1RN expression levels were significantly associated with shorter OS in kidney renal clear cell carcinoma (KIRC) (Fig. 5d), brain lower grade glioma (LGG) (Fig. 5e), pancreatic adenocarcinoma (PADD) (Fig. 5f) and uterine corpus endometrial carcinoma (UCEC) (Fig. 5g).

Discussion

In this study, we first revealed higher IL1RN expression in PTC tissue compared than in normal tissues and its diagnostic and prognostic value by integrated bioinformatics analysis. To further explore the potential function of IL1RN, we identified genes related to IL1RN expression, and functional enrichment analyses were conducted. The results of the KEGG pathway and GO analyses revealed the significant enrichment of genes in immune-related pathways. Our work further demonstrated that high IL1RN expression was significantly associated with decreased tumor purity and increased immune infiltration. Through methylation-related analysis, we determined that DNA methylation might be a regulatory mechanism of IL1RN. In addition, the analysis of the relationship between IL1RN expression and PTC mutations showed that high IL1RN expression was associated with mutated BRAF, wild-type NRAS and wild-type HRAS. Finally, IL1RN shows superior prognostic value for various cancers according to the pancancer analysis.
Niedzwiecki et al. [21] revealed that the serum levels of IL1RN were upregulated in patients with ATC and PTC, but no statistically significant difference was found in PTC. We found that the expression of IL1RN was increased in PTC tissues compared with that in normal tissues in 1 TCGA cohort and 4 GEO cohorts and suggested that IL1RN might be used as a potential diagnostic biomarker in PTC. We guess that overexpression of IL1RN in thyroid tissues of PTC patients result in elevated levels of serum IL1RN. Thus, the findings of Niedzwiecki et al. corroborate our results. Our results were consistent with those of previous reports on the upregulation of IL1RN in cervical carcinoma [13], gastric cancer [14], lung cancer [15], and endometrial cancer tissues [16]. These findings are also basically consistent with the results of our pancancer study. In contrast to these findings, IL1RN exhibited low expression in oral squamous cell carcinomas (OSCCs) [19].
The results of this study showed the value of IL1RN as a clinical biomarker in PTC and emphasized its potential as a prognostic biomarker in PTC patients. PTC patients with high IL1RN expression had decreased PFS compared to those with low IL1RN expression. Furthermore, high expression of IL1RN was significantly correlated with clinical stage, lymph node metastasis and pathological type. Various studies have highlighted the significant association between IL1RN expression and poor cancer prognosis; however, the results of these studies are conflicting. Some studies revealed that there was a significant positive correlation between poor prognosis and the expression of IL1RN [14, 16, 28]. In contrast, low levels of IL1RN have been associated with increased disease severity in myeloma [29], colorectal cancer [30] and prostate cancer [31].
The underlying mechanism of IL1RN in cancer development and progression is complicated and unclear. In this study, functional enrichment analysis of genes coexpressed with IL1RN showed that IL1RN participates in immune-related biological processes. Consistent with our findings, previous studies have focused on the role of IL1RN in tumor immunity. A study of gastric carcinoma [14] pointed out that on the one hand, IL1RN may promote tumor growth via the impairment of cellular immunity; on the other hand, IL1RN enables malignant cells to escape host immune responses. Smith, D. R. et al. [15] revealed that increased IL1RN in bronchogenic carcinoma is not accompanied by increased IL-1β activity. The altered balance of IL1RN and IL-1β may result in impaired immune surveillance and cytotoxic activity. An experimental study of human glioblastoma cells showed that IL1RN secreted by tumor cells can counteract IL-1 function, which represents a potential escape mechanism that supports cancer growth [32]. In our study, IL1RN was significantly positively correlated with lymph node metastasis and tumor stage, so we speculated that IL1RN might also promote tumor aggressiveness and poor prognosis through immune-related mechanisms in PTC.
IL1RN is an endogenous natural antagonist of IL-1 [8], so the discovery of the interaction between IL1RN and IL-1 family molecules is a breakthrough in exploring the function of IL1RN. Onozaki et al. [33] reported that IL-1 is a cytocidal factor against several tumor cell lines. IL-1 may enhance cytotoxic T cell activity [34], the tumoricidal capacities of natural killer (NK) cells [35], and monocyte-mediated cytotoxicity [36]. Because IL-1 is critical for tumor immunity, elevation of IL1RN expression may result in a general environment favourable to tumor cells and enhance the metastatic and recurrence potential of tumors by changing local IL-1-dependent pathways.
IL-1β has been reported as an anticancer factor that acts to suppress proliferation and reduce the invasive potential of human PTC cells [37]. sIL-1ra has been shown to block IL-1 function by binding to IL-1 receptors at the cell membrane level [34]. IcIL-1ra is postulated to inhibit intracellular IL-1 activity [38]. Therefore, whether IL1RN can block the function of IL-1 and inhibit the anticancer effect of IL-1β in PTC is worth further study.
In our study, IL1RN showed a significant positive correlation with immune cells, which may be because a variety of immune cells can produce IL1RN through the stimulation of cytokines. Neutrophils produce IL1RN in response to granulocyte/macrophage colony stimulating factor (GM-CSF) and tumor necrosis factor-α (TNF-α) [39]. IL-4 and IL-10 have been reported to increase the production of IL1RN by human monocytes [36]. Yanagawa, H.et, al. reported that IL-13 increases IL1RN production by human alveolar macrophages [40]. It was reported that the apoptotic cell death of monocytes was enhanced by administration of recombinant IL1RN [41]. Our study also showed a significant correlation between IL1RN expression and various cytokines, which implied that IL1RN may play a complex role in tumor immunity.
Our study suggests that methylation is a pretranscriptional regulatory mechanism for IL1RN. The methylation level of IL1RN was negatively correlated with its expression level and was also correlated with the disease stage, lymph node metastasis, and pathological type.
IL1RN is likely to be a potential biomarker associated with the diagnosis and prognosis of PTC. However, although the diagnostic value, prognostic value and molecular functions of IL1RN in PTC have been analyzed through bioinformatics methods, the conclusions have not yet been confirmed by experiments. Therefore, further research is necessary to explore the role of IL1RN in PTC and the pharmacological value of IL1RN as a therapeutic target.

Conclusions

IL1RN is a good prognostic and diagnostic biomarker of PTC. IL1RN may promote thyroid cancer progression through immune-related pathways. Methylation may act as an upstream regulator of IL1RN expression and biological function. Additionally, IL1RN showed broad prognostic value in an analysis of a pancancer cohort.

Acknowledgements

We would like to acknowledge the public databases including TCGA and GEO for their contributions to human medicine.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.CrossRefPubMed Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.CrossRefPubMed
2.
Zurück zum Zitat Seib CD, Sosa JA. Evolving understanding of the epidemiology of thyroid cancer. Endocrinol Metab Clin North Am. 2019;48(1):23–35.PubMedCrossRef Seib CD, Sosa JA. Evolving understanding of the epidemiology of thyroid cancer. Endocrinol Metab Clin North Am. 2019;48(1):23–35.PubMedCrossRef
3.
Zurück zum Zitat Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30.PubMedCrossRef Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30.PubMedCrossRef
4.
Zurück zum Zitat Cancer Genome Atlas Research N. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–90.CrossRef Cancer Genome Atlas Research N. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–90.CrossRef
5.
Zurück zum Zitat Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133.PubMedPubMedCentralCrossRef Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Raue F, Frank-Raue K. Thyroid cancer: risk-stratified management and individualized therapy. Clin Cancer Res. 2016;22(20):5012–21.PubMedCrossRef Raue F, Frank-Raue K. Thyroid cancer: risk-stratified management and individualized therapy. Clin Cancer Res. 2016;22(20):5012–21.PubMedCrossRef
7.
Zurück zum Zitat Sims JE, Smith DE. The IL-1 family: regulators of immunity. Nat Rev Immunol. 2010;10(2):89–102.PubMedCrossRef Sims JE, Smith DE. The IL-1 family: regulators of immunity. Nat Rev Immunol. 2010;10(2):89–102.PubMedCrossRef
9.
Zurück zum Zitat Arend WP, Malyak M, Guthridge CJ, Gabay C. Interleukin-1 receptor antagonist: role in biology. Annu Rev Immunol. 1998;16:27–55.PubMedCrossRef Arend WP, Malyak M, Guthridge CJ, Gabay C. Interleukin-1 receptor antagonist: role in biology. Annu Rev Immunol. 1998;16:27–55.PubMedCrossRef
10.
Zurück zum Zitat Arend WP. The balance between IL-1 and IL-1Ra in disease. Cytokine Growth Factor Rev. 2002;13(4–5):323–40.PubMedCrossRef Arend WP. The balance between IL-1 and IL-1Ra in disease. Cytokine Growth Factor Rev. 2002;13(4–5):323–40.PubMedCrossRef
11.
Zurück zum Zitat Ricote M, Garcia-Tunon I, Bethencourt FR, Fraile B, Paniagua R, Royuela M. Interleukin-1 (IL-1alpha and IL-1beta) and its receptors (IL-1RI, IL-1RII, and IL-1Ra) in prostate carcinoma. Cancer. 2004;100(7):1388–96.PubMedCrossRef Ricote M, Garcia-Tunon I, Bethencourt FR, Fraile B, Paniagua R, Royuela M. Interleukin-1 (IL-1alpha and IL-1beta) and its receptors (IL-1RI, IL-1RII, and IL-1Ra) in prostate carcinoma. Cancer. 2004;100(7):1388–96.PubMedCrossRef
12.
Zurück zum Zitat Hsieh TC, Chiao JW. Growth modulation of human prostatic cancer cells by interleukin-1 and interleukin-1 receptor antagonist. Cancer Lett. 1995;95(1–2):119–23.PubMedCrossRef Hsieh TC, Chiao JW. Growth modulation of human prostatic cancer cells by interleukin-1 and interleukin-1 receptor antagonist. Cancer Lett. 1995;95(1–2):119–23.PubMedCrossRef
13.
Zurück zum Zitat Fujiwaki R, Iida K, Nakayama K, Kanasaki H, Hata K, Katabuchi H, et al. Clinical significance of interleukin-1 receptor antagonist in patients with cervical carcinoma. Gynecol Oncol. 2003;89(1):77–83.PubMedCrossRef Fujiwaki R, Iida K, Nakayama K, Kanasaki H, Hata K, Katabuchi H, et al. Clinical significance of interleukin-1 receptor antagonist in patients with cervical carcinoma. Gynecol Oncol. 2003;89(1):77–83.PubMedCrossRef
14.
Zurück zum Zitat Iizuka N, Hazama S, Hirose K, Abe T, Tokuda N, Fukumoto T, et al. Interleukin-1 receptor antagonist mRNA expression and the progression of gastric carcinoma. Cancer Lett. 1999;142(2):179–84.PubMedCrossRef Iizuka N, Hazama S, Hirose K, Abe T, Tokuda N, Fukumoto T, et al. Interleukin-1 receptor antagonist mRNA expression and the progression of gastric carcinoma. Cancer Lett. 1999;142(2):179–84.PubMedCrossRef
15.
Zurück zum Zitat Smith DR, Kunkel SL, Standiford TJ, Chensue SW, Rolfe MW, Orringer MB, et al. The production of interleukin-1 receptor antagonist by human bronchogenic carcinoma. Am J Pathol. 1993;143(3):794–803.PubMedPubMedCentral Smith DR, Kunkel SL, Standiford TJ, Chensue SW, Rolfe MW, Orringer MB, et al. The production of interleukin-1 receptor antagonist by human bronchogenic carcinoma. Am J Pathol. 1993;143(3):794–803.PubMedPubMedCentral
16.
Zurück zum Zitat Van Le L, Haskill S, Jaffe GJ, Fowler WC Jr. Expression of interleukin-1 and interleukin-1 receptor antagonists in endometrial cancer. Gynecol Oncol. 1991;42(2):161–4.PubMedCrossRef Van Le L, Haskill S, Jaffe GJ, Fowler WC Jr. Expression of interleukin-1 and interleukin-1 receptor antagonists in endometrial cancer. Gynecol Oncol. 1991;42(2):161–4.PubMedCrossRef
17.
Zurück zum Zitat Yanagawa H, Yano S, Haku T, Ohmoto Y, Sone S. Interleukin-1 receptor antagonist in pleural effusion due to inflammatory and malignant lung disease. Eur Respir J. 1996;9(6):1211–6.PubMedCrossRef Yanagawa H, Yano S, Haku T, Ohmoto Y, Sone S. Interleukin-1 receptor antagonist in pleural effusion due to inflammatory and malignant lung disease. Eur Respir J. 1996;9(6):1211–6.PubMedCrossRef
18.
Zurück zum Zitat Mustea A, Pirvulescu C, Konsgen D, Braicu EI, Yuan S, Sun P, et al. Decreased IL-1 RA concentration in ascites is associated with a significant improvement in overall survival in ovarian cancer. Cytokine. 2008;42(1):77–84.PubMedCrossRef Mustea A, Pirvulescu C, Konsgen D, Braicu EI, Yuan S, Sun P, et al. Decreased IL-1 RA concentration in ascites is associated with a significant improvement in overall survival in ovarian cancer. Cytokine. 2008;42(1):77–84.PubMedCrossRef
19.
Zurück zum Zitat Shiiba M, Saito K, Yamagami H, Nakashima D, Higo M, Kasamatsu A, et al. Interleukin-1 receptor antagonist (IL1RN) is associated with suppression of early carcinogenic events in human oral malignancies. Int J Oncol. 2015;46(5):1978–84.PubMedCrossRef Shiiba M, Saito K, Yamagami H, Nakashima D, Higo M, Kasamatsu A, et al. Interleukin-1 receptor antagonist (IL1RN) is associated with suppression of early carcinogenic events in human oral malignancies. Int J Oncol. 2015;46(5):1978–84.PubMedCrossRef
20.
Zurück zum Zitat Wetzler M, Kurzrock R, Estrov Z, Kantarjian H, Gisslinger H, Underbrink MP, et al. Altered levels of interleukin-1 beta and interleukin-1 receptor antagonist in chronic myelogenous leukemia: clinical and prognostic correlates. Blood. 1994;84(9):3142–7.PubMedCrossRef Wetzler M, Kurzrock R, Estrov Z, Kantarjian H, Gisslinger H, Underbrink MP, et al. Altered levels of interleukin-1 beta and interleukin-1 receptor antagonist in chronic myelogenous leukemia: clinical and prognostic correlates. Blood. 1994;84(9):3142–7.PubMedCrossRef
21.
Zurück zum Zitat Niedzwiecki S, Stepien T, Kuzdak K, Stepien H, Krupinski R, Seehofer D, et al. Serum levels of interleukin-1 receptor antagonist (IL-1ra) in thyroid cancer patients. Langenbecks Arch Surg. 2008;393(3):275–80.PubMedCrossRef Niedzwiecki S, Stepien T, Kuzdak K, Stepien H, Krupinski R, Seehofer D, et al. Serum levels of interleukin-1 receptor antagonist (IL-1ra) in thyroid cancer patients. Langenbecks Arch Surg. 2008;393(3):275–80.PubMedCrossRef
22.
Zurück zum Zitat Budczies J, Klauschen F, Sinn BV, Gyorffy B, Schmitt WD, Darb-Esfahani S, et al. Cutoff finder: a comprehensive and straightforward web application enabling rapid biomarker cutoff optimization. PLoS One. 2012;7(12):e51862.PubMedPubMedCentralCrossRef Budczies J, Klauschen F, Sinn BV, Gyorffy B, Schmitt WD, Darb-Esfahani S, et al. Cutoff finder: a comprehensive and straightforward web application enabling rapid biomarker cutoff optimization. PLoS One. 2012;7(12):e51862.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 2018;46(D1):D956–63.PubMedCrossRef Vasaikar SV, Straub P, Wang J, Zhang B. LinkedOmics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 2018;46(D1):D956–63.PubMedCrossRef
24.
Zurück zum Zitat Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.PubMedCrossRef Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.PubMedCrossRef
25.
Zurück zum Zitat Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 2017;77(21):e108–10.PubMedPubMedCentralCrossRef Li T, Fan J, Wang B, Traugh N, Chen Q, Liu JS, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 2017;77(21):e108–10.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Ru B, Wong CN, Tong Y, Zhong JY, Zhong SSW, Wu WC, et al. TISIDB: an integrated repository portal for tumor-immune system interactions. Bioinformatics. 2019;35(20):4200–2.PubMedCrossRef Ru B, Wong CN, Tong Y, Zhong JY, Zhong SSW, Wu WC, et al. TISIDB: an integrated repository portal for tumor-immune system interactions. Bioinformatics. 2019;35(20):4200–2.PubMedCrossRef
27.
Zurück zum Zitat Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98–W102.PubMedPubMedCentralCrossRef Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45(W1):W98–W102.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Ito H, Miki C. Profile of circulating levels of interleukin-1 receptor antagonist and interleukin-6 in colorectal cancer patients. Scand J Gastroenterol. 1999;34(11):1139–43.PubMedCrossRef Ito H, Miki C. Profile of circulating levels of interleukin-1 receptor antagonist and interleukin-6 in colorectal cancer patients. Scand J Gastroenterol. 1999;34(11):1139–43.PubMedCrossRef
29.
Zurück zum Zitat Gherardi RK, Belec L, Soubrier M, Malapert D, Zuber M, Viard JP, et al. Overproduction of proinflammatory cytokines imbalanced by their antagonists in POEMS syndrome. Blood. 1996;87(4):1458–65.PubMedCrossRef Gherardi RK, Belec L, Soubrier M, Malapert D, Zuber M, Viard JP, et al. Overproduction of proinflammatory cytokines imbalanced by their antagonists in POEMS syndrome. Blood. 1996;87(4):1458–65.PubMedCrossRef
30.
Zurück zum Zitat Iwagaki H, Hizuta A, Tanaka N. Interleukin-1 receptor antagonists and other markers in colorectal cancer patients. Scand J Gastroenterol. 1997;32(6):577–81.PubMedCrossRef Iwagaki H, Hizuta A, Tanaka N. Interleukin-1 receptor antagonists and other markers in colorectal cancer patients. Scand J Gastroenterol. 1997;32(6):577–81.PubMedCrossRef
31.
Zurück zum Zitat Parekh DJ, Ankerst DP, Baillargeon J, Higgins B, Platz EA, Troyer D, et al. Assessment of 54 biomarkers for biopsy-detectable prostate cancer. Cancer Epidemiol Biomarkers Prev. 2007;16(10):1966–72.PubMedCrossRef Parekh DJ, Ankerst DP, Baillargeon J, Higgins B, Platz EA, Troyer D, et al. Assessment of 54 biomarkers for biopsy-detectable prostate cancer. Cancer Epidemiol Biomarkers Prev. 2007;16(10):1966–72.PubMedCrossRef
32.
Zurück zum Zitat Oelmann E, Kraemer A, Serve H, Reufi B, Oberberg D, Patt S, et al. Autocrine interleukin-1 receptor antagonist can support malignant growth of glioblastoma by blocking growth-inhibiting autocrine loop of interleukin-1. Int J Cancer. 1997;71(6):1066–76.PubMedCrossRef Oelmann E, Kraemer A, Serve H, Reufi B, Oberberg D, Patt S, et al. Autocrine interleukin-1 receptor antagonist can support malignant growth of glioblastoma by blocking growth-inhibiting autocrine loop of interleukin-1. Int J Cancer. 1997;71(6):1066–76.PubMedCrossRef
33.
Zurück zum Zitat Onozaki K, Matsushima K, Aggarwal BB, Oppenheim JJ. Human interleukin 1 is a cytocidal factor for several tumor cell lines. J Immunol. 1985;135(6):3962–8.PubMed Onozaki K, Matsushima K, Aggarwal BB, Oppenheim JJ. Human interleukin 1 is a cytocidal factor for several tumor cell lines. J Immunol. 1985;135(6):3962–8.PubMed
34.
Zurück zum Zitat Hannum CH, Wilcox CJ, Arend WP, Joslin FG, Dripps DJ, Heimdal PL, et al. Interleukin-1 receptor antagonist activity of a human interleukin-1 inhibitor. Nature. 1990;343(6256):336–40.PubMedCrossRef Hannum CH, Wilcox CJ, Arend WP, Joslin FG, Dripps DJ, Heimdal PL, et al. Interleukin-1 receptor antagonist activity of a human interleukin-1 inhibitor. Nature. 1990;343(6256):336–40.PubMedCrossRef
35.
Zurück zum Zitat Voronov E, Weinstein Y, Benharroch D, Cagnano E, Ofir R, Dobkin M, et al. Antitumor and immunotherapeutic effects of activated invasive T lymphoma cells that display short-term interleukin 1alpha expression. Cancer Res. 1999;59(5):1029–35.PubMed Voronov E, Weinstein Y, Benharroch D, Cagnano E, Ofir R, Dobkin M, et al. Antitumor and immunotherapeutic effects of activated invasive T lymphoma cells that display short-term interleukin 1alpha expression. Cancer Res. 1999;59(5):1029–35.PubMed
36.
Zurück zum Zitat de Waal Malefyt R, Abrams J, Bennett B, Figdor CG, de Vries JE. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med. 1991;174(5):1209–20.PubMedCrossRef de Waal Malefyt R, Abrams J, Bennett B, Figdor CG, de Vries JE. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med. 1991;174(5):1209–20.PubMedCrossRef
37.
Zurück zum Zitat Yip I, Pang XP, Berg L, Hershman JM. Antitumor actions of interferon-gamma and interleukin-1 beta on human papillary thyroid carcinoma cell lines. J Clin Endocrinol Metab. 1995;80(5):1664–9.PubMed Yip I, Pang XP, Berg L, Hershman JM. Antitumor actions of interferon-gamma and interleukin-1 beta on human papillary thyroid carcinoma cell lines. J Clin Endocrinol Metab. 1995;80(5):1664–9.PubMed
38.
Zurück zum Zitat Mosley B, Urdal DL, Prickett KS, Larsen A, Cosman D, Conlon PJ, et al. The interleukin-1 receptor binds the human interleukin-1 alpha precursor but not the interleukin-1 beta precursor. J Biol Chem. 1987;262(7):2941–4.PubMed Mosley B, Urdal DL, Prickett KS, Larsen A, Cosman D, Conlon PJ, et al. The interleukin-1 receptor binds the human interleukin-1 alpha precursor but not the interleukin-1 beta precursor. J Biol Chem. 1987;262(7):2941–4.PubMed
39.
Zurück zum Zitat McColl SR, Paquin R, Menard C, Beaulieu AD. Human neutrophils produce high levels of the interleukin 1 receptor antagonist in response to granulocyte/macrophage colony-stimulating factor and tumor necrosis factor alpha. J Exp Med. 1992;176(2):593–8.PubMedCrossRef McColl SR, Paquin R, Menard C, Beaulieu AD. Human neutrophils produce high levels of the interleukin 1 receptor antagonist in response to granulocyte/macrophage colony-stimulating factor and tumor necrosis factor alpha. J Exp Med. 1992;176(2):593–8.PubMedCrossRef
40.
Zurück zum Zitat Lovett D, Kozan B, Hadam M, Resch K, Gemsa D. Macrophage cytotoxicity: interleukin 1 as a mediator of tumor cytostasis. J Immunol. 1986;136(1):340–7.PubMed Lovett D, Kozan B, Hadam M, Resch K, Gemsa D. Macrophage cytotoxicity: interleukin 1 as a mediator of tumor cytostasis. J Immunol. 1986;136(1):340–7.PubMed
41.
Zurück zum Zitat Furukawa Y, Kikuchi J, Terui Y, Kitagawa S, Ohta M, Miura Y, et al. Preferential production of interleukin-1 beta over interleukin-1 receptor antagonist contributes to proliferation and suppression of apoptosis in leukemic cells. Jpn J Cancer Res. 1995;86(2):208–16.PubMedPubMedCentralCrossRef Furukawa Y, Kikuchi J, Terui Y, Kitagawa S, Ohta M, Miura Y, et al. Preferential production of interleukin-1 beta over interleukin-1 receptor antagonist contributes to proliferation and suppression of apoptosis in leukemic cells. Jpn J Cancer Res. 1995;86(2):208–16.PubMedPubMedCentralCrossRef
Metadaten
Titel
Analysis of the expression and potential molecular mechanism of interleukin-1 receptor antagonist (IL1RN) in papillary thyroid cancer via bioinformatics methods
verfasst von
Zhenyu Xie
Xin Li
Yuzhen He
Song Wu
Shiyue Wang
Jianjian Sun
Yuchen He
Yu Lun
Shijie Xin
Jian Zhang
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2020
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-020-07620-8

Weitere Artikel der Ausgabe 1/2020

BMC Cancer 1/2020 Zur Ausgabe

CAR-M-Zellen: Warten auf das große Fressen

22.05.2024 Onkologische Immuntherapie Nachrichten

Auch myeloide Immunzellen lassen sich mit chimären Antigenrezeptoren gegen Tumoren ausstatten. Solche CAR-Fresszell-Therapien werden jetzt für solide Tumoren entwickelt. Künftig soll dieser Prozess nicht mehr ex vivo, sondern per mRNA im Körper der Betroffenen erfolgen.

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

Alphablocker schützt vor Miktionsproblemen nach der Biopsie

16.05.2024 alpha-1-Rezeptorantagonisten Nachrichten

Nach einer Prostatabiopsie treten häufig Probleme beim Wasserlassen auf. Ob sich das durch den periinterventionellen Einsatz von Alphablockern verhindern lässt, haben australische Mediziner im Zuge einer Metaanalyse untersucht.

Antikörper-Wirkstoff-Konjugat hält solide Tumoren in Schach

16.05.2024 Zielgerichtete Therapie Nachrichten

Trastuzumab deruxtecan scheint auch jenseits von Lungenkrebs gut gegen solide Tumoren mit HER2-Mutationen zu wirken. Dafür sprechen die Daten einer offenen Pan-Tumor-Studie.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.