Skip to main content
Erschienen in: BMC Pediatrics 1/2014

Open Access 01.12.2014 | Research article

Association of sexual maturation with excess body weight and height in children and adolescents

verfasst von: Jucemar Benedet, Adair da Silva Lopes, Fernando Adami, Patrícia de Fragas Hinnig, Francisco de Assis Guedes de Vasconcelos

Erschienen in: BMC Pediatrics | Ausgabe 1/2014

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

Studies addressing the influence of early sexual maturation on the excess of body weight and height of children and adolescents are scarce. The aim of the study was to analyze the association of sexual maturation with excess body weight and height in children and adolescents.

Methods

This was a cross-sectional study performed in Florianópolis city, Brazil, in 2007, with 2339 school children, aged 8–14 years (1107 males). Selection was based on a probabilistic, cluster-stratified sampling technique. School children were classified according to the presence of excess body weight, using sex- and age-specific body mass index (BMI) cutoff points. Z-scores were calculated from height and BMI data. Sexual maturation was self-assessed according to Tanner stages of development. Subjects were ranked based on tertiles of sexual maturation (early, normal and late) for each stage of development. Poisson and linear regression models were used.

Results

Compared to the reference group (normal sexual maturation), early maturing females had higher prevalence of excess weight (adjusted prevalence ratio: 1.70; 95% CI: 1.24 to 2.33) and increased height-for-age (adjusted β: 0.37; 95% CI: 0.14 to 0.59), while late maturing females had lower prevalence of excess weight (adjusted prevalence ratio: 0.57; 95% CI: 0.37 to 0.87) and decreased height-for-age (adjusted β: −0.38; 95% CI: −0.56 to −0.20). In males, early and late sexual maturation were associated with increased (adjusted β: 0.37; 95% CI: 0.14 to 0.59) and decreased (adjusted β: −0.38; 95% CI: −0.56 to −0.20) height-for-age, respectively.

Conclusion

Early sexual maturation is associated with excess body weight in females and with greater height-for-age in both sexes.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1471-2431-14-72) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors participated in the acquisition of data and revision of the manuscript. All authors determined the design, performed the statistical analysis, interpreted the data and drafted the manuscript. All authors read and gave final approval for the version submitted for publication.

Background

Excess body weight in the first two decades of life has been the focus of several studies, due to its consequences for health across the life course. This concern has been justified by the fact that excess weight prevalence is increasing in the United States [1], Europe [2] and Latin America [2, 3]. The worldwide prevalence of childhood obesity increased from 4.2% to 6.7% between 1990 and 2010 [4]. In Brazil, data from nationwide surveys indicate that there was a sharp increase in the prevalence of overweight and obesity among children and adolescents between 1989 and 2009, despite a modest or no increase between 1974 and 1989 in all the country regions [5].
Puberty is a critical period for developing excess body weight, since hormonal changes impact directly on weight gain and linear growth. These changes comprise the chemical maturation of body tissues, including the amount and distribution of adipose tissue, and the increase in bone mass and in fat-free mass. In both sexes, there is a possibility of rapid increments in height and weight [6].
There are apparent differences between males and females in fat content and distribution, especially in adolescence [7]. In females, there is evidence that early sexual maturation is associated with a greater prevalence of overweight and obesity [8, 9]. In males, few studies have been performed and findings are mixed [9, 10].
Studies addressing the influence of early sexual maturation on the height of children and adolescents are scarce. In general, there is evidence that, regardless of the sex, those with early sexual maturation have greater height-for-age, compared to those with normal or late sexual maturation [11, 12].
Thus, it is important to study the influence of sexual maturation on these anthropometric measures, given their relation to the health and development of children and adolescents. The aim of this study was to analyze the potential associations between sexual maturation and excess body weight or height in children and adolescents, aged 8 to 14 years, from the municipality of Florianopolis, in the State of Santa Catarina (SC), Brazil.

Methods

This was a cross-sectional study performed in the city of Florianópolis, in the State of Santa Catarina, South of Brazil, during the months from April 2007 to October 2007.
The sampling procedure is described in detail elsewhere [1315]. Briefly, for sample size calculation, the following parameters were assumed: excess weight prevalence of 22.1% for school children aged 7–10 years [16] and 12.6% for those aged 11–14 years [17]; acceptable error of 3 percentage points; two-tailed test; confidence level of 95%; design effect of 1.5; and an addition of 10% for losses. Subjects were excluded if the parents or primary caregiver did not sign the written informed consent. The sampling procedure was probabilistic, stratified by clusters and performed in two stages (school and children). Schools were grouped in four strata, according to the geographical area and school type: center/continent public schools, center/continent private schools, beaches public and beaches private schools, considering a probability proportional to the size (number of students) of each stratum. In the first stage, schools were randomly selected from each stratum. From a total of 87 schools (33 private and 54 public), 17 schools were selected (6 private and 11 public). In the second stage, school children were randomly selected according to age. For the present study, 7 year old children (n = 421) were excluded, as there was no information on sexual maturation. The final sample consisted of 2412 school children aged 8 to 14 years (1144 males, 47.4%).
Anthropometric measures were taken following the protocol of the World Health Organization [18], as proposed by Lohman [19]. Body weight was measured to the nearest of 50g using an electronic scale (model PP 180, Marte®, Minas Gerais, Brazil), capacity of 180 kg; height was measured to the nearest of 1 mm by Alturexata® stadiometer.
The team responsible for data collection was composed of 10 people previously trained in a workshop in the period of 2006 September to 2007 March. This workshop consisted of a theoretical and practical course in anthropometric measures, as well as of a pilot study in two schools (one private and one public), in which the intra- and inter- observer errors in anthropometric measures were assessed [20]. Both schools were excluded from the sampling of the study.
Sex-specific body mass index (BMI)-for-age growth charts were used to assess excess body weight, according to the World Health Organization criteria [4]. The variable excess body weight comprised the sum of overweight and obesity derived from BMI, in which 0 represents no excess of body weight and 1 represents having excess body weight. Z-scores for height-for-age, weight-for-age and BMI-for-age were also calculated for each sex separately, using LMS values. The LMS sums up the data in smoothed curves that are specific to each stratum, which in this case are the ages and genders. Parameter M is the median value of the index observed inside each stratum; parameter S is the coefficient of variation for each stratum; and parameter L is the Box-Cox coefficient employed for the mathematical transformation of the values of the variable in question in order to obtain a normal distribution in each stratum [21]. The cutoff point for biologically implausible values was 5 z-scores [4]. To calculate the z-score, LMS values were used, by age and gender, according to the following formula:
Z score BMI = BMI / M L 1 / LS
Sexual maturation was determined based on the stages of development proposed by Tanner, comprising 5 stages for genital (males) and breast (females) development [22]. School children were asked to perform a self-evaluation; the instructions were given individually.
For each sex, the age distribution (in decimals) of each sexual maturation stage was used to define tertiles of age. Based on this, individuals were classified in three groups: early sexual maturation (below first tertile of age), late sexual maturation (second tertile or more) and normal sexual maturation or reference group (between the first and the second tertile) [23]. This criterium considers that a younger age at a sexual maturation stage indicates precocious sexual maturation.
The birth weight of school children was reported by the parent or primary caregiver, who was asked to check the child’s health record. The subjects were classified into low (< 2.500 g), normal (≥ 2.500 g - 3.999 g) and high birth weight (≥ 4.000 g).
The weight status of the mother was evaluated by BMI, using self-reported weight and height. Excess body weight classification (≥ 25 kg/m2) followed the recommendation of the World Health Organization [24].
Information on the mode of commuting to school was collected by an illustrated questionnaire and subjects were classified as active (walking and biking) or inactive (car, bus, passenger in motorcycle or bicycle).
Further information (name, date of birth, school grade and type of school) were obtained in documents provided by the school. The type of school refers to public or private.
Given the non-normal distribution of anthropometric data (Shapiro-Wilk test, p < 0.05), quantitative variables (age, BMI Z score, height Z score, weight Z score) were described as median, 25th and 75th percentiles. Qualitative variables (excess body weight, sexual maturation classification, maternal excess body weight, birth weight, active commuting to school, school type) were described by relative frequencies (%). To compare quantitative variables between groups, Mann–Whitney (female vs. male) and Kruskal-Wallis (early, normal or late sexual maturation) tests were used. The associations among qualitative variables were assessed by Rao-Scott test. The relation between the independent variables and excess body weight (0-absence; 1-presence) was tested with univariate and multivariate Poisson regression models, using robust variance and stepwise forward strategy (multivariate model). The association between the independent variables and height was evaluated using a linear regression model (homoscedasticity checked by Breusch-Pagan and Cook-Weisberg test). Stata 11.0® was used in all statistical analysis, including the command svy to allow for sampling weights and stratification [25, 26].
This study was approved by the Ethics Committee on Human Research of the Santa Catarina University (UFSC) (protocol number 028/06).

Results

Seventy-three subjects were excluded from the analysis (loss of 3.03%) for the following reasons: height-for-age Z-score greater than 5 (1 female) and missing or inconsistent data on sexual maturation (36 males and 36 females). This resulted in a final sample of 2339 school children aged 8–14 years (1107 males). There were no statistically significant differences in excess weight prevalence based on BMI, BMI Z-score, height Z-score and the independent variables in the group excluded from the study.
Males comprised 47.7% of the study sample. When compared to females, they had higher values of BMI Z-score (p < 0.001), height Z-score (p = 0.002), greater prevalence of current excess weight (34.4 vs. 24.0%, p < 0.001) and of high birth weight (14.4 vs. 8.1%, p < 0.001). No significant differences were found in the remaining variables (Table 1).
Table 1
Anthropometric characteristic and mode of commuting to school in children aged 8–14 years old from Florianópolis, South of Brazil, 2007
Study variables
Males (47.7%)
Females (52.3%)
p§
 
Median (p25 ; p75)*
 
Age (years)
11 (10; 13)
12 (10; 13)
0.529
BMI Z score
0.51 (−0.22; 1.42)
0.21 (−0.41; 0.96)
<0.001
Height Z score
0.25 (−0.41; 0.99)
0.11 (−0.52; 0.79)
0.002
Weight Z score
0.38 (−0.20; 1.30)
0.23 (−0.55; 0.69)
0.004
 
%
 
Excess body weight
34.4
24.0
<0.001
Sexual maturation classification
  
0.937
Early
33.1
32.5
 
Late
32.2
32.7
 
Maternal excess body weight
31.0
33.4
0.313
Birth weight (grams)
  
<0.001
< 2,500
5.8
8.3
 
≥ 4,000
14.4
8.1
 
Active commuting to school
43.6
45.0
0.558
School type
  
0.975
Public
65.4
65.5
 
Private
34.6
34.5
 
*p25 e p75: 25th and 75th percentiles, respectively;
§Mann–Whitney test (quantitative variables) and Rao-Scott test (qualitative variables).
In males, sexual maturation was associated with significant differences in BMI Z-score (p < 0.001), height Z-score (p < 0.001), weight Z-score (p < 0.001) and excess weight prevalence (p = 0.027). Similar results were found in females (p < 0.001). There was also a trend towards increased BMI Z-score, height Z-score, weight Z-score and excess weight prevalence with the precocity of sexual maturation (p for trend < 0.001) (Table 2).
Table 2
Hypothesis tests and descriptive statistics of anthropometric variables according to sexual maturation of school children aged 8–14 years from Florianópolis, South of Brazil, 2007
 
Sexual maturation classification
  
Sexual maturation classification
  
Variables
Early
Normal
Late
p§
p
Early
Normal
Late
p§
p
 
Males
 
Females
 
 
Median (p25; p75)*
  
Median (p25; p75)*
  
BMI Z score
0.67 (−0.13; 1.56)
0.53 (−0.17; 1.41)
0.26 (−0.37; 1.11)
<0.001
<0.001
0.60 (0.01; 1.33)
0.14 (−0.40; 0.84)
−0.10 (−0.81; 0.54)
<0.001
<0.001
Height Z score
0.44 (−0.23; 1.30)
0.19 (−0.42; 0.90)
0.02 (−0.61; 0.77)
<0.001
<0.001
0.43 (−0.17; 1.07)
0.03 (−0.46; 0.57)
−0.22 (0.89; 0.61)
<0.001
<0.001
Weight Z score
0.57 (−0.09: 1.44)
0.39 (−0.19; 1.32)
0.14 (−0.38; 1.01)
<0.001
<0.001
0.46 (−0.31; 1.03)
0.24 (−0.70; 0.66)
−0.04 (−0.56; 0.49)
<0.001
<0.001
 
%
  
%
  
Excess body weight
37.5
37.8
26.9
0.027
<0.001
31.7
19.4
13.4
<0.001
<0.001
*p25 e p75: 25th and 75th percentiles, respectively;
§Mann–Whitney test (quantitative variables) and Rao-Scott test (qualitative variables).
p for trend.
In both crude and adjusted models (Tables 3 and 4), compared to the reference group (normal sexual maturation), early maturing females had higher prevalence of excess weight (adjusted prevalence ratio: 1.70; 95% CI: 1.24 to 2.33) and increased height-for-age (adjusted β: 0.37; 95% CI: 0.14 to 0.59), while late maturing females had lower prevalence of excess weight (adjusted prevalence ratio: 0.57; 95% CI: 0.37 to 0.87) and decreased height-for-age (adjusted β: −0.38; 95% CI: −0.56 to −0.20).
Table 3
Estimated prevalence ratios from uni- and multivariate Poisson regression models for the prediction of excess body weight according to the sexual maturation of school children aged 8–14 years from Florianópolis, South of Brazil, 2007
Sexual maturation classification
Males
Females
Crude prevalence ratio (95% CI)*
Adjusted prevalence ratio (95% CI)*§
p§
Crude prevalence ratio (95% CI)*
Adjusted prevalence ratio (95% CI)*§
p§
Early
0.99 (0.75;1.32)
0.98 (0.73; 1.32)
0.891
1.63 (1.23; 2.16)
1.70 (1.24; 2.33)
0.004
Normal
1
1
-
1
1
-
Late
0.71 (0.55; 0.93)
0.78 (0.59; 1.02)
0.067
0.69 (0.51; 0.95)
0.57 (0.37; 0.87)
0.014
*95% confidence interval;
§Poisson regression model, adjusted for maternal BMI, active commuting, age, birth weight, school type and interaction between maternal BMI and school type.
Table 4
Estimated beta coefficients from uni- and multivariate Poisson regression models for the prediction of height Z score according to the sexual maturation of school children aged 8–14 years from Florianópolis, South of Brazil, 2007
Sexual maturation classification
Males
Females
Crude beta (95% CI)*
Adjusted beta (95% CI)*§
p§
Crude beta (95% CI)*
Adjusted beta (95% CI)*§
p§
Early
0.33 (0.12; 0.54)
0.46 (0.26; 0.66)
<0.001
0.33 (0.16; 0.50)
0.37 (0.14; 0.59)
0.005
Normal
1
1
-
1
1
-
Late
−0.23 (−0.50; 0.04)
−0.32 (−0.63; −0.02)
0.039
−0.27 (−0.39; −0.16)
−0.38 (−0.56; −0.20)
0.001
Variance homogeneity
0.303
0.367
*95% confidence interval;
§Linear regression model, adjusted for maternal BMI, active commuting, age, birth weight, school type and interaction between maternal BMI and school type.
p value from Breusch-Pagan and Cook-Weisberg test.
In males, early and late sexual maturation were associated with increased (adjusted β: 0.37; 95% CI: 0.14 to 0.59) and decreased (adjusted β: −0.38; 95% CI: −0.56 to −0.20) height-for-age, respectively (Table 4). In contrast with the findings in females, there was no association of excess weight prevalence with early (p = 0.891) or late (p = 0.067) sexual maturation (reference group: normal sexual maturation) (Table 3). The assumption of homoscedasticity was held in the regression models of height (p = 0.303 for males and 0.367 for females, Table 4).
A trend of reduction in excess weight prevalence in males with late sexual maturation was also observed (Figure 1), despite non-significant values. Adjusted prevalence ratios of 1.26 (95% CI: 0.96 to 1.66) and 1.29 (95% CI: 0.99 to 1.67) were found in males with early and normal sexual maturation, respectively, when compared to those with late sexual maturation.

Discussion

The study results indicate that early sexual maturation is associated with a higher prevalence of excess body weight in females and a higher stature in both sexes. The results observed in females are similar to those reported by previous cross-sectional studies [8, 10, 23, 27].
Other cohort studies examined the association between anthropometric measures and sexual maturation in females, adjusted for BMI or adiposity in childhood [2831]. Obesity in adulthood seemed to be more dependent on high BMI or adiposity in childhood and adolescence than on early sexual maturation [2830]. However, such studies measured adiposity at the mean ages of 9 [29], 12 [30] and 14 [28], a period of life during which there is a potential influence of sexual maturation on body fat levels.
In contrast, studies that monitored BMI before sexual maturation showed different results. The study by Pierce and Leon [31] suggested that early sexual maturation is a stronger predictor of high BMI in adulthood than BMI in childhood. BMI was assessed between the ages 4 and 6 years, during which there is no influence of puberty in anthropometric variables. This finding indicated a relationship between early sexual maturation and obesity in adulthood, independent of BMI in childhood. Likewise, Demerath et al. [32] showed that higher BMI appears to be a consequence, not the cause, of puberty onset. The study followed females for 5 years (5 to 9 years old) and differences in weight were observed only after menarche.
The onset of puberty in females is associated with an increase in the amount of fat mass, as a consequence of increased blood concentration of estradiol [33]. Thus, it is plausible that the early onset of puberty in females is associated with a higher amount of adipose tissue, which may lead to a higher prevalence of overweight. It is noteworthy, however, that this relationship may be confounded by levels of adiposity at young ages. BMI in childhood is, therefore, an important confounding variable, given its capacity of predicting BMI in adulthood.
In males, evidence of the association between early sexual maturation and excess body weight is conflicting. In the present study, this association was not statistically significant, despite the fact that lower prevalences were observed in the group with late sexual maturation. In other studies, early sexual maturation was found to be risk factor [10], a protective factor [9] or not associated [23, 28] with excess body weight. Cohort studies showed that males with early maturation have higher total adiposity [34], central adiposity [35] and waist and hip circumferences [12] in adulthood. Although it cannot be clearly stated, the body of evidence indicates that early maturing males can develop excess body weight.
Concerning height, the results showed that, regardless of sex, school children with early sexual maturation had greater height-for-age compared to those with normal or late sexual maturation. An increased height gain during childhood may be related to higher BMI and earlier puberty onset [36]. However, this greater stature is not observed in adulthood [11, 12] and it seems to be restricted to late childhood and early adolescence, both in males [12, 37] and in females [11]. The relationship between short stature in adulthood and early sexual maturation may be linked to the early onset of puberty and the decreased prepuberal period of growth, resulting in a premature gain in stature that does not translate into greater height in adulthood [12].
One possible explanation for the increased height due to early sexual maturation is the increased leptin levels during puberty. Studies have found that plasma leptin concentration in children and adolescents is closely related to the changes in height and body composition during growth [38]. Data from cell culture studies demonstrate that the administration of leptin stimulates the growth of cells from cartilaginous tissue [39], which can result in epiphyseal cartilage growth found at the ends of long bones. Other factors that have been implicated in the accelerated growth of obese children include increased adrenal androgens and insulin-like growth factor (IGF)-1. The highest prevalence of overweight observed among children with early sexual maturation can promote this condition because there is a positive association between levels of IGF-1 and adiposity [40, 41]. In addition, it has been suggested that an increased adipose tissue aromatization of androgens into estrogens represents another important mechanism regulating growth in the context of obesity [6].
Some strengths of the study reduce the possibility of selection bias, measurement bias and confusion, such as small sample loss, the validated instruments, the trained team, and the adjustment for variables known to predict excess body weight. This, in addition to the population-based characteristic of the sample, increases the internal and external validity of the study.
The determination of early sexual maturation used in the present study, although not standardized in the scientific literature, was similar to that used by other authors [10, 23]. One limitation of the study may be related to the use of self-assessed sexual maturation. However, this procedure has been validated in studies with Brazilian adolescents [42] and the results showed a good correlation (r = 0.80) between the self-assessment and experienced-personnel assessment. Data in younger populations with 8 years old or more also point to the validity of the method [43, 44].
Despite the fact that BMI cannot measure body fat, it has been increasingly used to identify obese children and adolescents with high specificity, yielding few false positives [45]. Nevertheless, future studies are needed to assess the association of sexual maturity with body composition and fat distribution.

Conclusion

Early sexual maturation is associated with excess body weight (females only) and height in school children aged 8–14 years. Undoubtedly, knowledge of the association between sexual maturation and overweight in a given population enables the implementation of preventive measures in order to reduce the exposure to these risk factors. These results are of great public health importance considering the relationship between these indicators and some noncommunicable chronic diseases, as well as the evidence that obesity in adulthood is associated with high BMI in childhood and adolescence.

Acknowledgments

FA was supported by Brazilian National Council of Scientific and Technological Development (CNPq). PFH is supported by Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES).
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors participated in the acquisition of data and revision of the manuscript. All authors determined the design, performed the statistical analysis, interpreted the data and drafted the manuscript. All authors read and gave final approval for the version submitted for publication.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Ogden CL, Carroll MD, Kit BK, Flegal KM: Prevalence of obesity in the United States, 2009–2010. NCHS Data Brief. 2012, 82: 1-8.PubMed Ogden CL, Carroll MD, Kit BK, Flegal KM: Prevalence of obesity in the United States, 2009–2010. NCHS Data Brief. 2012, 82: 1-8.PubMed
2.
Zurück zum Zitat Malik VS, Willett WC, Hu FB: Global obesity: trends, risk factors and policy implications. Nat Rev Endocrinol. 2013, 9: 13-27.CrossRefPubMed Malik VS, Willett WC, Hu FB: Global obesity: trends, risk factors and policy implications. Nat Rev Endocrinol. 2013, 9: 13-27.CrossRefPubMed
3.
Zurück zum Zitat Amigo H: Obesidad en el niño en América Latina: situación, criterios de diagnóstico y desafíos. Cad. Saúde Pública. 2003, 19: 163-170.CrossRef Amigo H: Obesidad en el niño en América Latina: situación, criterios de diagnóstico y desafíos. Cad. Saúde Pública. 2003, 19: 163-170.CrossRef
4.
Zurück zum Zitat De Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J: Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007, 85: 660-7. 10.2471/BLT.07.043497.CrossRefPubMedPubMedCentral De Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J: Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007, 85: 660-7. 10.2471/BLT.07.043497.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Brazil: Pesquisa de orçamentos familiares 2008-2009. análise do consumo alimentar pessoal no Brasil/IBGE. 2011, Rio de Janeiro: IBGE: Coordenação de Trabalho e Rendimento Brazil: Pesquisa de orçamentos familiares 2008-2009. análise do consumo alimentar pessoal no Brasil/IBGE. 2011, Rio de Janeiro: IBGE: Coordenação de Trabalho e Rendimento
6.
Zurück zum Zitat Solorzano CMB, McCartney CR: Obesity and the pubertal transition in girls and boys. Reproduction. 2010, 140: 399-410. 10.1530/REP-10-0119.CrossRef Solorzano CMB, McCartney CR: Obesity and the pubertal transition in girls and boys. Reproduction. 2010, 140: 399-410. 10.1530/REP-10-0119.CrossRef
8.
Zurück zum Zitat Himes JH, Obarzanek E, Baranowski T, Wilson DM, Rochon J, Mcclanahan BS: Early sexual maturation, body composition, and obesity in African–American girls. Obes Res. 2004, 12: 64-72S.CrossRef Himes JH, Obarzanek E, Baranowski T, Wilson DM, Rochon J, Mcclanahan BS: Early sexual maturation, body composition, and obesity in African–American girls. Obes Res. 2004, 12: 64-72S.CrossRef
9.
Zurück zum Zitat Wang Y: Is obesity associated with early sexual maturation? A comparison of the association in American boys versus girls. Pediatrics. 2002, 110: 903-10. 10.1542/peds.110.5.903.CrossRefPubMed Wang Y: Is obesity associated with early sexual maturation? A comparison of the association in American boys versus girls. Pediatrics. 2002, 110: 903-10. 10.1542/peds.110.5.903.CrossRefPubMed
10.
Zurück zum Zitat Ribeiro J, Santos P, Duarte J, Mota J: Association between overweight and early sexual maturation in Portuguese boys and girls. Ann Hum Biol. 2006, 33: 55-63. 10.1080/00207390500434135.CrossRefPubMed Ribeiro J, Santos P, Duarte J, Mota J: Association between overweight and early sexual maturation in Portuguese boys and girls. Ann Hum Biol. 2006, 33: 55-63. 10.1080/00207390500434135.CrossRefPubMed
11.
Zurück zum Zitat Onland-Moret NC, Peeters PHM, Van Gils CH, Clavel-Chapelon F, Key T, Tjønneland A, Trichopoulou A, Kaaks R, Manjer J, Panico S, Palli D, Tehard B, Stoikidou M, Bueno-De-Mesquita HB, Boeing H, Overvad K, Lenner P, Quirós JR, Chirlaque MD, Miller AB, Khaw KT, Riboli E: Age at menarche in relation to adult height. Am J Epidemiol. 2005, 162: 623-32. 10.1093/aje/kwi260.CrossRefPubMed Onland-Moret NC, Peeters PHM, Van Gils CH, Clavel-Chapelon F, Key T, Tjønneland A, Trichopoulou A, Kaaks R, Manjer J, Panico S, Palli D, Tehard B, Stoikidou M, Bueno-De-Mesquita HB, Boeing H, Overvad K, Lenner P, Quirós JR, Chirlaque MD, Miller AB, Khaw KT, Riboli E: Age at menarche in relation to adult height. Am J Epidemiol. 2005, 162: 623-32. 10.1093/aje/kwi260.CrossRefPubMed
12.
Zurück zum Zitat Sandhu J, Shlomo YB, Cole TJ, Holly J, Smith GD: The impact of childhood body mass index on timing of puberty, adult stature and obesity: a follow-up study based on adolescent anthropometry recorded at Christ’s Hospital (1936–1964). Int J Obes. 2006, 30: 14-22. 10.1038/sj.ijo.0803156.CrossRef Sandhu J, Shlomo YB, Cole TJ, Holly J, Smith GD: The impact of childhood body mass index on timing of puberty, adult stature and obesity: a follow-up study based on adolescent anthropometry recorded at Christ’s Hospital (1936–1964). Int J Obes. 2006, 30: 14-22. 10.1038/sj.ijo.0803156.CrossRef
13.
Zurück zum Zitat Assis MA, Calvo MC, Kupek , Vasconcelos FAG, Campos VC, Machado M, Costa FF, Andrade DF: Qualitative analysis of the diet of a probabilistic sample of schoolchildren from Florianópolis, Santa Catarina State, Brazil, using the previous day food questionnaire. Cad Saúde Publica. 2010, 26: 1355-65. 10.1590/S0102-311X2010000700014.CrossRefPubMed Assis MA, Calvo MC, Kupek , Vasconcelos FAG, Campos VC, Machado M, Costa FF, Andrade DF: Qualitative analysis of the diet of a probabilistic sample of schoolchildren from Florianópolis, Santa Catarina State, Brazil, using the previous day food questionnaire. Cad Saúde Publica. 2010, 26: 1355-65. 10.1590/S0102-311X2010000700014.CrossRefPubMed
14.
Zurück zum Zitat Bernardo CO, Vasconcelos FAG: Association of parents’ nutritional status, and sociodemographic and dietary factors with overweight/obesity in schoolchildren 7 to 14 years old. Cad. Saúde Pública. 2012, 2: 291-304.CrossRef Bernardo CO, Vasconcelos FAG: Association of parents’ nutritional status, and sociodemographic and dietary factors with overweight/obesity in schoolchildren 7 to 14 years old. Cad. Saúde Pública. 2012, 2: 291-304.CrossRef
15.
Zurück zum Zitat Benedet J, Assis MA, Calvo MC, Andrade DF: Overweight in adolescents: exploring potential risk factors. Rev Paul Pediatr. 2013, 31: 172-81. 10.1590/S0103-05822013000200007.CrossRefPubMed Benedet J, Assis MA, Calvo MC, Andrade DF: Overweight in adolescents: exploring potential risk factors. Rev Paul Pediatr. 2013, 31: 172-81. 10.1590/S0103-05822013000200007.CrossRefPubMed
16.
Zurück zum Zitat Assis MA, Rolland-Cachera MF, Grosseman S, de Vasconcelos FA, Luna ME, Calvo MC, Barros MV, Pires MM, Bellisle F: Obesity, overweight and thinness in schoolchildren of the city of Florianopolis, Southern Brazil. Eur J Clin Nutr. 2005, 59: 1015-1021. 10.1038/sj.ejcn.1602206.CrossRefPubMed Assis MA, Rolland-Cachera MF, Grosseman S, de Vasconcelos FA, Luna ME, Calvo MC, Barros MV, Pires MM, Bellisle F: Obesity, overweight and thinness in schoolchildren of the city of Florianopolis, Southern Brazil. Eur J Clin Nutr. 2005, 59: 1015-1021. 10.1038/sj.ejcn.1602206.CrossRefPubMed
17.
Zurück zum Zitat Wang Y, Monteiro C, Popkin BM: Trends of obesity and underweight in older children and adolescence in the United Sates, Brazil, China, and Russia. Am J Clin Nutr. 2002, 75: 971-977.PubMed Wang Y, Monteiro C, Popkin BM: Trends of obesity and underweight in older children and adolescence in the United Sates, Brazil, China, and Russia. Am J Clin Nutr. 2002, 75: 971-977.PubMed
18.
Zurück zum Zitat World Health Organization: Physical status: the use and interpretation of anthropometry. 1995, Geneva: WHO World Health Organization: Physical status: the use and interpretation of anthropometry. 1995, Geneva: WHO
19.
Zurück zum Zitat Lohman TG, Roche AF, Martorell R: Anthropometric Standardization Reference Manual. 1988, Illinois: Human Kinetics Books Lohman TG, Roche AF, Martorell R: Anthropometric Standardization Reference Manual. 1988, Illinois: Human Kinetics Books
20.
Zurück zum Zitat Frainer DE, Adami F, Vasconcelos FAG, Assis MAA, Calvo MC, Kerpel R: Standardization and reliability of anthropometric measurements for population surveys. Arch Latinoam Nutr. 2007, 57: 335-42.PubMed Frainer DE, Adami F, Vasconcelos FAG, Assis MAA, Calvo MC, Kerpel R: Standardization and reliability of anthropometric measurements for population surveys. Arch Latinoam Nutr. 2007, 57: 335-42.PubMed
21.
Zurück zum Zitat Cole TJ, Bellizzi MC, Flegal KM, Dietz WH: Establishing a standard definition for child overweight and obesity worldwide: international survey. Br Med J. 2000, 320: 1-6. 10.1136/bmj.320.7226.1.CrossRef Cole TJ, Bellizzi MC, Flegal KM, Dietz WH: Establishing a standard definition for child overweight and obesity worldwide: international survey. Br Med J. 2000, 320: 1-6. 10.1136/bmj.320.7226.1.CrossRef
22.
Zurück zum Zitat Malina RM, Bouchard C: Growth, Maturation, And Physical Activity. 1991, Champaign, Illinois: Human Kinetics Books Malina RM, Bouchard C: Growth, Maturation, And Physical Activity. 1991, Champaign, Illinois: Human Kinetics Books
23.
Zurück zum Zitat Adami F, Vasconcelos FAG: Obesidade e maturação sexual precoce em escolares de Florianópolis - SC. Rev Bras Epidemiol. 2008, 11: 549-60. 10.1590/S1415-790X2008000400004.CrossRef Adami F, Vasconcelos FAG: Obesidade e maturação sexual precoce em escolares de Florianópolis - SC. Rev Bras Epidemiol. 2008, 11: 549-60. 10.1590/S1415-790X2008000400004.CrossRef
24.
Zurück zum Zitat World Health Organization: Obesity: Preventing And Managing The Global Epidemic. Report Of A Who Consultation On Obesity. 1998, Geneva: WHO World Health Organization: Obesity: Preventing And Managing The Global Epidemic. Report Of A Who Consultation On Obesity. 1998, Geneva: WHO
25.
Zurück zum Zitat Barros AJ, Hirakata VN: Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio. BMC Med Res Methodo. 2003, 20: 3-21. Barros AJ, Hirakata VN: Alternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio. BMC Med Res Methodo. 2003, 20: 3-21.
26.
Zurück zum Zitat Kleinbaum D, Kupper L, Nizam A, Muller KE: Applied Regression Analysis and Other Multivariable Methods. 2008, Australia: Thomson Brooks/Cole Kleinbaum D, Kupper L, Nizam A, Muller KE: Applied Regression Analysis and Other Multivariable Methods. 2008, Australia: Thomson Brooks/Cole
27.
Zurück zum Zitat Biro FM, Mcmahon RP, Striegel-Moore R, Crawford PB, Obarzanek E, Morrison JA, Barton BA, Falkner F: Impact of timing of pubertal maturation on growth in black and white female adolescents: the national heart, lung, and blood institute growth and health study. J Pediatr. 2001, 138: 636-43. 10.1067/mpd.2001.114476.CrossRefPubMed Biro FM, Mcmahon RP, Striegel-Moore R, Crawford PB, Obarzanek E, Morrison JA, Barton BA, Falkner F: Impact of timing of pubertal maturation on growth in black and white female adolescents: the national heart, lung, and blood institute growth and health study. J Pediatr. 2001, 138: 636-43. 10.1067/mpd.2001.114476.CrossRefPubMed
28.
Zurück zum Zitat Bratberg GH, Nilsen TIL, Holmen TL, Vatten LJ: Early sexual maturation, central adiposity and subsequent overweight in late adolescence. A four-year follow-up of 1605 adolescent Norwegian boys and girls: the Young HUNT study. BMC Public Health. 2007, 7: 54-10.1186/1471-2458-7-54.CrossRefPubMedPubMedCentral Bratberg GH, Nilsen TIL, Holmen TL, Vatten LJ: Early sexual maturation, central adiposity and subsequent overweight in late adolescence. A four-year follow-up of 1605 adolescent Norwegian boys and girls: the Young HUNT study. BMC Public Health. 2007, 7: 54-10.1186/1471-2458-7-54.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Freedman DS, Khan LK, Serdula MK, Dietz WH, Srinivasan SR, Berenson GS: The relation of menarcheal age to obesity in childhood and adulthood: the Bogalusa heart study. BMC Pediatr. 2003, 3: 1-9. 10.1186/1471-2431-3-1.CrossRef Freedman DS, Khan LK, Serdula MK, Dietz WH, Srinivasan SR, Berenson GS: The relation of menarcheal age to obesity in childhood and adulthood: the Bogalusa heart study. BMC Pediatr. 2003, 3: 1-9. 10.1186/1471-2431-3-1.CrossRef
30.
Zurück zum Zitat Must A, Naumova EN, Phillips SM, Blum M, Dawson-Hughes B, Rand WM: Childhood overweight and maturational timing in the development of adult overweight and fatness: the Newton girls study and its follow-up. Pediatrics. 2005, 116: 620-7. 10.1542/peds.2004-1604.CrossRefPubMed Must A, Naumova EN, Phillips SM, Blum M, Dawson-Hughes B, Rand WM: Childhood overweight and maturational timing in the development of adult overweight and fatness: the Newton girls study and its follow-up. Pediatrics. 2005, 116: 620-7. 10.1542/peds.2004-1604.CrossRefPubMed
31.
Zurück zum Zitat Pierce MB, Leon DA: Age at menarche and adult BMI in the Aberdeen Children of the 1950s cohort study. Am J Clin Nutr. 2005, 81: 733-9. Pierce MB, Leon DA: Age at menarche and adult BMI in the Aberdeen Children of the 1950s cohort study. Am J Clin Nutr. 2005, 81: 733-9.
32.
Zurück zum Zitat Demerath EW, Li J, Sun SS, Chumlea WC, Remsberg KE, Czerwinski SA, Towne B, Siervogel RM: Fifty-year trends in serial body mass index during adolescence in girls: the Fels Longitudinal Study. Am J Clin Nutr. 2004, 80: 441-6.PubMed Demerath EW, Li J, Sun SS, Chumlea WC, Remsberg KE, Czerwinski SA, Towne B, Siervogel RM: Fifty-year trends in serial body mass index during adolescence in girls: the Fels Longitudinal Study. Am J Clin Nutr. 2004, 80: 441-6.PubMed
33.
Zurück zum Zitat Rogol AD, Roemmich JN, Clark PA: Growth at puberty. J Adolesc Health. 2002, 32: 192-200.CrossRef Rogol AD, Roemmich JN, Clark PA: Growth at puberty. J Adolesc Health. 2002, 32: 192-200.CrossRef
34.
Zurück zum Zitat Van Lenthe FJ, Kemper HCG, Mechelen WV: Rapid maturation in adolescence results in greater obesity in adulthood: the Amsterdam growth and health study. Am J Clin Nutr. 1996, 64: 18-24.PubMed Van Lenthe FJ, Kemper HCG, Mechelen WV: Rapid maturation in adolescence results in greater obesity in adulthood: the Amsterdam growth and health study. Am J Clin Nutr. 1996, 64: 18-24.PubMed
35.
Zurück zum Zitat Kindblom JM, Lorentzon M, Norjavaara E, Lonn L, Brandberg J, Angelhed JE, Hellqvist A, Nilsson S, Ohlsson C: Pubertal timing is an independent predictor of central adiposity in young adult males: the gothenburg osteoporosis and obesity determinants study. Diabetes. 2006, 55: 3047-52. 10.2337/db06-0192.CrossRefPubMed Kindblom JM, Lorentzon M, Norjavaara E, Lonn L, Brandberg J, Angelhed JE, Hellqvist A, Nilsson S, Ohlsson C: Pubertal timing is an independent predictor of central adiposity in young adult males: the gothenburg osteoporosis and obesity determinants study. Diabetes. 2006, 55: 3047-52. 10.2337/db06-0192.CrossRefPubMed
36.
Zurück zum Zitat He Q, Karlberg J: BMI in childhood and its association with height gain, timing of puberty, and final height. Pediatr Res. 2001, 49: 244-51. 10.1203/00006450-200102000-00019.CrossRefPubMed He Q, Karlberg J: BMI in childhood and its association with height gain, timing of puberty, and final height. Pediatr Res. 2001, 49: 244-51. 10.1203/00006450-200102000-00019.CrossRefPubMed
37.
Zurück zum Zitat Karpati AM, Rubin CH, Kieszak SM, Marcus M, Troiano RP: Stature and pubertal stage assessment in American boys: the 1988–1994 third national health and nutrition examination survey. J Adolesc Health. 1988–1994, 2002 (30): 205-212. Karpati AM, Rubin CH, Kieszak SM, Marcus M, Troiano RP: Stature and pubertal stage assessment in American boys: the 1988–1994 third national health and nutrition examination survey. J Adolesc Health. 1988–1994, 2002 (30): 205-212.
38.
Zurück zum Zitat Thankamony A, Ong KK, Ahmed ML, Ness AR, Holly JM, Dunger DB: Higher levels of IGF-I and adrenal androgens at Age 8 years Are associated with earlier Age at menarche in girls. J Clin Endocrinol Metab. 2012, 97: 786-790. 10.1210/jc.2011-3261.CrossRef Thankamony A, Ong KK, Ahmed ML, Ness AR, Holly JM, Dunger DB: Higher levels of IGF-I and adrenal androgens at Age 8 years Are associated with earlier Age at menarche in girls. J Clin Endocrinol Metab. 2012, 97: 786-790. 10.1210/jc.2011-3261.CrossRef
39.
Zurück zum Zitat Styne DM: The regulation of pubertal growth. Horm Res. 2003, 60 (S1): 22-6.PubMed Styne DM: The regulation of pubertal growth. Horm Res. 2003, 60 (S1): 22-6.PubMed
40.
Zurück zum Zitat Marcovecchio ML, Chiarelli F: Obesity and growth during childhood and puberty. World Rev Nutr Diet. 2013, 106: 135-41.PubMed Marcovecchio ML, Chiarelli F: Obesity and growth during childhood and puberty. World Rev Nutr Diet. 2013, 106: 135-41.PubMed
41.
Zurück zum Zitat Veldhuis JD, Roemmich JN, Richmond EJ, Rogol AD, Lovejoy JC, Sheffield-Moore M, Mauras N, Bowers CY: Endocrine control of body composition in infancy, childhood and puberty. Endocr Rev. 2005, 26: 114-46. 10.1210/er.2003-0038.CrossRefPubMed Veldhuis JD, Roemmich JN, Richmond EJ, Rogol AD, Lovejoy JC, Sheffield-Moore M, Mauras N, Bowers CY: Endocrine control of body composition in infancy, childhood and puberty. Endocr Rev. 2005, 26: 114-46. 10.1210/er.2003-0038.CrossRefPubMed
42.
Zurück zum Zitat Matsudo SM, Matsudo VK: Validade da auto- -avaliação da maturação sexual. Rev Bras Ciênc Mov. 1991, 5: 18-35. Matsudo SM, Matsudo VK: Validade da auto- -avaliação da maturação sexual. Rev Bras Ciênc Mov. 1991, 5: 18-35.
43.
Zurück zum Zitat Chan NP, Sung RY, Kong AP, Goggins WB, So HK, Nelson EA: Reliability of pubertal self-assessment in Hong Kong Chinese children. J Paediatr Child Health. 2008, 44: 353-8. 10.1111/j.1440-1754.2008.01311.x.CrossRefPubMed Chan NP, Sung RY, Kong AP, Goggins WB, So HK, Nelson EA: Reliability of pubertal self-assessment in Hong Kong Chinese children. J Paediatr Child Health. 2008, 44: 353-8. 10.1111/j.1440-1754.2008.01311.x.CrossRefPubMed
44.
Zurück zum Zitat Slora EJ, Bocian AB, Herman-Giddens ME, Harris DL, Pedlow SE, Dowshen SA, Wasserman RC: Assessing inter-rater reliability (IRR) of Tanner staging and orchidometer use with boys: a study from PROS. J Pediatr Endocrinol Metab. 2009, 22: 291-9.CrossRefPubMed Slora EJ, Bocian AB, Herman-Giddens ME, Harris DL, Pedlow SE, Dowshen SA, Wasserman RC: Assessing inter-rater reliability (IRR) of Tanner staging and orchidometer use with boys: a study from PROS. J Pediatr Endocrinol Metab. 2009, 22: 291-9.CrossRefPubMed
45.
Zurück zum Zitat De onis M: Update on the implementation of the WHO child growth standards. World Rev Nutr Diet. 2013, 106: 75-82.PubMed De onis M: Update on the implementation of the WHO child growth standards. World Rev Nutr Diet. 2013, 106: 75-82.PubMed
Metadaten
Titel
Association of sexual maturation with excess body weight and height in children and adolescents
verfasst von
Jucemar Benedet
Adair da Silva Lopes
Fernando Adami
Patrícia de Fragas Hinnig
Francisco de Assis Guedes de Vasconcelos
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
BMC Pediatrics / Ausgabe 1/2014
Elektronische ISSN: 1471-2431
DOI
https://doi.org/10.1186/1471-2431-14-72

Weitere Artikel der Ausgabe 1/2014

BMC Pediatrics 1/2014 Zur Ausgabe

Neuer Typ-1-Diabetes bei Kindern am Wochenende eher übersehen

23.04.2024 Typ-1-Diabetes Nachrichten

Wenn Kinder an Werktagen zum Arzt gehen, werden neu auftretender Typ-1-Diabetes und diabetische Ketoazidosen häufiger erkannt als bei Arztbesuchen an Wochenenden oder Feiertagen.

Neue Studienergebnisse zur Myopiekontrolle mit Atropin

22.04.2024 Fehlsichtigkeit Nachrichten

Augentropfen mit niedrig dosiertem Atropin können helfen, das Fortschreiten einer Kurzsichtigkeit bei Kindern zumindest zu verlangsamen, wie die Ergebnisse einer aktuellen Studie mit verschiedenen Dosierungen zeigen.

Spinale Muskelatrophie: Neugeborenen-Screening lohnt sich

18.04.2024 Spinale Muskelatrophien Nachrichten

Seit 2021 ist die Untersuchung auf spinale Muskelatrophie Teil des Neugeborenen-Screenings in Deutschland. Eine Studie liefert weitere Evidenz für den Nutzen der Maßnahme.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.