Skip to main content
Erschienen in: European Radiology 8/2022

15.03.2022 | Cardiac

Automatic coronary plaque detection, classification, and stenosis grading using deep learning and radiomics on computed tomography angiography images: a multi-center multi-vendor study

verfasst von: Xin Jin, Yuze Li, Fei Yan, Ye Liu, Xinghua Zhang, Tao Li, Li Yang, Huijun Chen

Erschienen in: European Radiology | Ausgabe 8/2022

Einloggen, um Zugang zu erhalten

Abstract

Objectives

An automatic system utilizing both the advantages of the neural network and the radiomics was proposed for coronary plaque detection, classification, and stenosis grading.

Methods

This study retrospectively included 505 patients with 127,763 computed tomography angiography (CTA) images from 5 medical center. A convolutional neural network (CNN) model was used to segment the coronary artery, detect the plaque candidate, and extract the image patch with high computation efficiency. The manually designed radiomics feature extractor was utilized to collect plaque patterns, followed by the different classifiers to perform the plaque classification and stenosis grading.

Results

The CNN model achieved 100% of sensitivity and the highest positive predictive value (83.9%) than U-Net and baseline model in plaque candidate detection. Twenty-six representative radiomics features were selected to construct the classifiers. Among different models, the gradient-boosting decision tree (GBDT) achieved the best performance in plaque classification (accuracy: 87.0%, sensitivity: 83.2%, specificity: 91.4%) and stenosis grading (accuracy: 90.9%, sensitivity: 84.1%, specificity: 95.7%). GBDT also achieved the highest AUC of 0.873 in plaque classification and 0.910 in stenosis grading. The computation time of processing one patient was 56.2 ± 5.7 s which was significantly less than radiologist manual analysis (285.6 ± 134.5 s, p = 0.0001).

Conclusions

In this study, an automatic workflow was proposed to detect and analyze coronary plaques with high accuracy and efficiency, showing the potential in clinical application.

Key Points

• The proposed automatic system integrated deep learning and radiomics to perform the coronary plaque analysis.
• The proposed automatic system achieved high accuracy in both plaque classification and stenosis grading.
• The proposed automatic system was five times more efficient than radiologist manual analysis.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat GBD 2013 Mortality and Causes of Death Collaborator (2015) Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385:117–171CrossRef GBD 2013 Mortality and Causes of Death Collaborator (2015) Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385:117–171CrossRef
2.
Zurück zum Zitat Otsuka K, Fukuda S, Tanaka A et al (2013) Napkin-ring sign on coronary CT angiography for the prediction of acute coronary syndrome. JACC Cardiovasc Imaging 6:448–457CrossRef Otsuka K, Fukuda S, Tanaka A et al (2013) Napkin-ring sign on coronary CT angiography for the prediction of acute coronary syndrome. JACC Cardiovasc Imaging 6:448–457CrossRef
3.
Zurück zum Zitat Khan A, Arbab-Zadeh A, Kiani AN, Magder LS, Petri M (2017) Progression of noncalcified and calcified coronary plaque by CT angiography in SLE. Rheumatol Int 37:59–65CrossRef Khan A, Arbab-Zadeh A, Kiani AN, Magder LS, Petri M (2017) Progression of noncalcified and calcified coronary plaque by CT angiography in SLE. Rheumatol Int 37:59–65CrossRef
4.
Zurück zum Zitat Mughal MM, Khan MK, DeMarco JK, Majid A, Shamoun F, Abela GS (2011) Symptomatic and asymptomatic carotid artery plaque. Expert Rev Cardiovasc Ther 9:1315–1330CrossRef Mughal MM, Khan MK, DeMarco JK, Majid A, Shamoun F, Abela GS (2011) Symptomatic and asymptomatic carotid artery plaque. Expert Rev Cardiovasc Ther 9:1315–1330CrossRef
5.
Zurück zum Zitat Pavitt CW, Harron K, Lindsay AC et al (2014) Deriving coronary artery calcium scores from CT coronary angiography: a proposed algorithm for evaluating stable chest pain. Int J Cardiovasc Imaging 30:1135–1143CrossRef Pavitt CW, Harron K, Lindsay AC et al (2014) Deriving coronary artery calcium scores from CT coronary angiography: a proposed algorithm for evaluating stable chest pain. Int J Cardiovasc Imaging 30:1135–1143CrossRef
6.
Zurück zum Zitat Messenger B, Li D, Nasir K, Carr JJ, Blankstein R, Budoff MJ (2016) Coronary calcium scans and radiation exposure in the multi-ethnic study of atherosclerosis. Int J Cardiovasc Imaging 32:525–529CrossRef Messenger B, Li D, Nasir K, Carr JJ, Blankstein R, Budoff MJ (2016) Coronary calcium scans and radiation exposure in the multi-ethnic study of atherosclerosis. Int J Cardiovasc Imaging 32:525–529CrossRef
7.
Zurück zum Zitat Cury RC, Abbara S, Achenbach S et al (2016) CAD-RADS(TM) coronary artery disease - reporting and data system. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Radiology (ACR) and the North American Society for Cardiovascular Imaging (NASCI). Endorsed by the American College of Cardiology. J Cardiovasc Comput Tomogr 10:269–281CrossRef Cury RC, Abbara S, Achenbach S et al (2016) CAD-RADS(TM) coronary artery disease - reporting and data system. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Radiology (ACR) and the North American Society for Cardiovascular Imaging (NASCI). Endorsed by the American College of Cardiology. J Cardiovasc Comput Tomogr 10:269–281CrossRef
8.
Zurück zum Zitat Kirişli HA, Schaap M, Metz CT et al (2013) Standardized evaluation framework for evaluating coronary artery stenosis detection, stenosis quantification and lumen segmentation algorithms in computed tomography angiography. Med Image Anal 17:859–876CrossRef Kirişli HA, Schaap M, Metz CT et al (2013) Standardized evaluation framework for evaluating coronary artery stenosis detection, stenosis quantification and lumen segmentation algorithms in computed tomography angiography. Med Image Anal 17:859–876CrossRef
9.
Zurück zum Zitat Arbab-Zadeh A, Hoe J (2011) Quantification of coronary arterial stenoses by multidetector CT angiography in comparison with conventional angiography methods, caveats, and implications. JACC Cardiovasc Imaging 4:191–202CrossRef Arbab-Zadeh A, Hoe J (2011) Quantification of coronary arterial stenoses by multidetector CT angiography in comparison with conventional angiography methods, caveats, and implications. JACC Cardiovasc Imaging 4:191–202CrossRef
10.
Zurück zum Zitat Saur SC, Alkadhi H, Desbiolles L, Szekely G, Cattin PC (2008) Automatic detection of calcified coronary plaques in computed tomography data sets. Med Image Comput Comput Assist Interv 11:170–177PubMed Saur SC, Alkadhi H, Desbiolles L, Szekely G, Cattin PC (2008) Automatic detection of calcified coronary plaques in computed tomography data sets. Med Image Comput Comput Assist Interv 11:170–177PubMed
11.
Zurück zum Zitat Brunner G, Kurkure U, Chittajallu DR, Yalamanchili RP, Kakadiaris IA (2008) Toward unsupervised classification of calcified arterial lesions. Med Image Comput Comput Assist Interv 11:144–152PubMed Brunner G, Kurkure U, Chittajallu DR, Yalamanchili RP, Kakadiaris IA (2008) Toward unsupervised classification of calcified arterial lesions. Med Image Comput Comput Assist Interv 11:144–152PubMed
12.
Zurück zum Zitat Dey D, Cheng VY, Slomka PJ et al (2009) Automated 3-dimensional quantification of noncalcified and calcified coronary plaque from coronary CT angiography. J Cardiovasc Comput Tomogr 3:372–382CrossRef Dey D, Cheng VY, Slomka PJ et al (2009) Automated 3-dimensional quantification of noncalcified and calcified coronary plaque from coronary CT angiography. J Cardiovasc Comput Tomogr 3:372–382CrossRef
13.
Zurück zum Zitat Wesarg S, Khan MF, Firle EA (2006) Localizing calcifications in cardiac CT data sets using a new vessel segmentation approach. J Digit Imaging 19:249–257CrossRef Wesarg S, Khan MF, Firle EA (2006) Localizing calcifications in cardiac CT data sets using a new vessel segmentation approach. J Digit Imaging 19:249–257CrossRef
14.
Zurück zum Zitat Litjens G, Kooi T, Bejnordi BE et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRef Litjens G, Kooi T, Bejnordi BE et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88CrossRef
15.
Zurück zum Zitat Wolterink JM, Leiner T, de Vos BD, van Hamersvelt RW, Viergever MA, Išgum I (2016) Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med Image Anal 34:123–136CrossRef Wolterink JM, Leiner T, de Vos BD, van Hamersvelt RW, Viergever MA, Išgum I (2016) Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med Image Anal 34:123–136CrossRef
16.
Zurück zum Zitat Zreik M, van Hamersvelt RW, Wolterink JM, Leiner T, Viergever MA, Isgum I (2019) A recurrent CNN for automatic detection and classification of coronary artery plaque and stenosis in coronary CT angiography. IEEE Trans Med Imaging 38:1588–1598CrossRef Zreik M, van Hamersvelt RW, Wolterink JM, Leiner T, Viergever MA, Isgum I (2019) A recurrent CNN for automatic detection and classification of coronary artery plaque and stenosis in coronary CT angiography. IEEE Trans Med Imaging 38:1588–1598CrossRef
17.
Zurück zum Zitat Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006CrossRef Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006CrossRef
18.
Zurück zum Zitat Kickingereder P, Gotz M, Muschelli J et al (2016) Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response. Clin Cancer Res 22:5765–5771CrossRef Kickingereder P, Gotz M, Muschelli J et al (2016) Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response. Clin Cancer Res 22:5765–5771CrossRef
19.
Zurück zum Zitat Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577CrossRef Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577CrossRef
20.
Zurück zum Zitat Huang Y, Liu Z, He L et al (2016) Radiomics signature: a potential biomarker for the prediction of disease-free survival in early- stage (I or II) non-small cell lung cancer. Radiology 281:947–957CrossRef Huang Y, Liu Z, He L et al (2016) Radiomics signature: a potential biomarker for the prediction of disease-free survival in early- stage (I or II) non-small cell lung cancer. Radiology 281:947–957CrossRef
21.
Zurück zum Zitat Wei J, Jiang H, Gu D et al (2020) Radiomics in liver diseases: current progress and future opportunities. Liver Int 40:2050–2063CrossRef Wei J, Jiang H, Gu D et al (2020) Radiomics in liver diseases: current progress and future opportunities. Liver Int 40:2050–2063CrossRef
22.
Zurück zum Zitat Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16:641–647CrossRef Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16:641–647CrossRef
23.
Zurück zum Zitat Kopp AF, Schroeder S, Baumbach A et al (2001) Non-invasive characterisation of coronary lesion morphology and composition by multislice CT: first results in comparison with intracoronary ultrasound. Eur Radiol 11:1607–1611CrossRef Kopp AF, Schroeder S, Baumbach A et al (2001) Non-invasive characterisation of coronary lesion morphology and composition by multislice CT: first results in comparison with intracoronary ultrasound. Eur Radiol 11:1607–1611CrossRef
24.
Zurück zum Zitat Cademartiri F, Mollet NR, Runza G et al (2005) Influence of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: observations in an ex vivo model of coronary computed tomography angiography. Eur Radiol 15:1426–1431CrossRef Cademartiri F, Mollet NR, Runza G et al (2005) Influence of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: observations in an ex vivo model of coronary computed tomography angiography. Eur Radiol 15:1426–1431CrossRef
25.
Zurück zum Zitat Cademartiri F, La Grutta L, Runza G et al (2007) Influence of convolution filtering on coronary plaque attenuation values: observations in an ex vivo model of multislice computed tomography coronary angiography. Eur Radiol 17:1842–1849CrossRef Cademartiri F, La Grutta L, Runza G et al (2007) Influence of convolution filtering on coronary plaque attenuation values: observations in an ex vivo model of multislice computed tomography coronary angiography. Eur Radiol 17:1842–1849CrossRef
26.
Zurück zum Zitat He K, Gkioxari G, Dollár P, Girshick R (2020) Mask R-CNN. IEEE Trans Pattern Anal Mach Intell 42:386–397CrossRef He K, Gkioxari G, Dollár P, Girshick R (2020) Mask R-CNN. IEEE Trans Pattern Anal Mach Intell 42:386–397CrossRef
27.
Zurück zum Zitat Abu-Ain W, Abdullah SNHS, Bataineh B, Abu-Ain T, Omar K (2013) Skeletonization algorithm for binary images. Procedia Technology 11:704–709CrossRef Abu-Ain W, Abdullah SNHS, Bataineh B, Abu-Ain T, Omar K (2013) Skeletonization algorithm for binary images. Procedia Technology 11:704–709CrossRef
28.
Zurück zum Zitat Xin-rong LV, Xin-bo GAO, Hua ZOU (2009) Multi-planar reformation of medical imaging volume data. Journal of System Simulation 21(166-169):173 Xin-rong LV, Xin-bo GAO, Hua ZOU (2009) Multi-planar reformation of medical imaging volume data. Journal of System Simulation 21(166-169):173
29.
Zurück zum Zitat Mark DB, Nelson CL, Califf RM et al (2015) Continuing evolution of therapy for coronary artery disease. Initial results from the era of coronary angioplasty. Circulation 89:2015–2025CrossRef Mark DB, Nelson CL, Califf RM et al (2015) Continuing evolution of therapy for coronary artery disease. Initial results from the era of coronary angioplasty. Circulation 89:2015–2025CrossRef
31.
Zurück zum Zitat Kolossváry M, De Cecco CN, Feuchtner G, Maurovich-Horvat P (2019) Advanced atherosclerosis imaging by CT: radiomics, machine learning and deep learning. J Cardiovasc Comput Tomogr 13:274–280CrossRef Kolossváry M, De Cecco CN, Feuchtner G, Maurovich-Horvat P (2019) Advanced atherosclerosis imaging by CT: radiomics, machine learning and deep learning. J Cardiovasc Comput Tomogr 13:274–280CrossRef
32.
Zurück zum Zitat Shahzad R, Kirişli H, Metz C et al (2013) Automatic segmentation, detection and quantification of coronary artery stenoses on CTA. Int J Cardiovasc Imaging 29:1847–1859CrossRef Shahzad R, Kirişli H, Metz C et al (2013) Automatic segmentation, detection and quantification of coronary artery stenoses on CTA. Int J Cardiovasc Imaging 29:1847–1859CrossRef
33.
Zurück zum Zitat Wang C, Frimmel H, Smedby Ö (2014) Fast level-set based image segmentation using coherent propagation. Med Phys 41:073501CrossRef Wang C, Frimmel H, Smedby Ö (2014) Fast level-set based image segmentation using coherent propagation. Med Phys 41:073501CrossRef
34.
Zurück zum Zitat Peng F, Yuan K, Feng S, Chen W (2008) Pre-processing of CT brain images for content-based image retrieval. BMEI 2:208–212 Peng F, Yuan K, Feng S, Chen W (2008) Pre-processing of CT brain images for content-based image retrieval. BMEI 2:208–212
Metadaten
Titel
Automatic coronary plaque detection, classification, and stenosis grading using deep learning and radiomics on computed tomography angiography images: a multi-center multi-vendor study
verfasst von
Xin Jin
Yuze Li
Fei Yan
Ye Liu
Xinghua Zhang
Tao Li
Li Yang
Huijun Chen
Publikationsdatum
15.03.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 8/2022
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-022-08664-z

Weitere Artikel der Ausgabe 8/2022

European Radiology 8/2022 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.