Skip to main content
Erschienen in: Cardiovascular Drugs and Therapy 6/2022

26.08.2021 | Original Article

Colchicine-Containing Nanoparticles Attenuates Acute Myocardial Infarction Injury by Inhibiting Inflammation

verfasst von: Li Wang, Yunfan Peng, Lijun Song, Dasheng Xia, Chao Li, Zhuqing Li, Qi Li, Ao Yu, Chengzhi Lu, Yongjian Wang

Erschienen in: Cardiovascular Drugs and Therapy | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Anti-inflammatory therapy is important for reducing myocardial injury after acute myocardial infarction (MI). New anti-inflammatory drugs and their mechanism are necessary to be explored to improve clinical efficacy. We aimed to improve the efficacy of colchicine on attenuating MI injury by nano-drug delivery systems and to investigate the mechanism of anti-inflammatory.

Methods

A colchicine-containing delivery system based on calcium carbonate nanoparticles (ColCaNPs) was synthesized. The protection against MI by ColCaNPs was evaluated using an in vivo rat model established by ligating the left anterior descending coronary artery. Macrophage polarization and the levels of inflammatory cytokines were determined using immunohistochemistry, Western blot, and ELISA analysis.

Results

ColCaNP treatment showed about a 45% reduction in myocardial infarct size and attenuating myocardial fibrosis compared with groups without drug intervention after MI. Furthermore, ColCaNPs significantly decreased the levels of CRP, TNF-α, and IL-1β in serum and the expression of proinflammatory cytokine in myocardial tissues after MI (p < 0.05). We also found that ColCaNPs notably restrained pyroptosis and inhibited inflammatory response by modulating on M1/M2 macrophage polarization and suppressing TLR4/NFκB/NLRP3 signal pathway.

Conclusion

Colchicine-containing nanoparticles can protect against MI injury in a clinically relevant rat model by reducing inflammation. In addition, calcium carbonate nanoparticles can increase the cardioprotective effects of colchicine.
Literatur
1.
Zurück zum Zitat Zhang X, Du Q, Yang Y, et al. The protective effect of Luteolin on myocardial ischemia/reperfusion (I/R) injury through TLR4/NF-κB/NLRP3 inflammasome pathway. Biomed Pharmacother. 2017;91:1042–52.PubMedCrossRef Zhang X, Du Q, Yang Y, et al. The protective effect of Luteolin on myocardial ischemia/reperfusion (I/R) injury through TLR4/NF-κB/NLRP3 inflammasome pathway. Biomed Pharmacother. 2017;91:1042–52.PubMedCrossRef
2.
Zurück zum Zitat Bian Y, Li X, Pang P, et al. Kanglexin, a novel anthraquinone compound, protects against myocardial ischemic injury in mice by suppressing NLRP3 and pyroptosis. Acta Pharmacol Sin. 2020;41:319–27.PubMedCrossRef Bian Y, Li X, Pang P, et al. Kanglexin, a novel anthraquinone compound, protects against myocardial ischemic injury in mice by suppressing NLRP3 and pyroptosis. Acta Pharmacol Sin. 2020;41:319–27.PubMedCrossRef
3.
Zurück zum Zitat Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31.PubMedCrossRef Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31.PubMedCrossRef
4.
Zurück zum Zitat Seferovic PM, Ponikowski P, Anker SD, et al. Clinical practice update on heart failure 2019: pharmacotherapy, procedures, devices and patient management. An expert consensus meeting report of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2019;21:1169–86. Seferovic PM, Ponikowski P, Anker SD, et al. Clinical practice update on heart failure 2019: pharmacotherapy, procedures, devices and patient management. An expert consensus meeting report of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2019;21:1169–86.
5.
Zurück zum Zitat Ridker PM, Everett BM, Pradhan A, et al. Low-dose methotrexate for the prevention of atherosclerotic events. N Engl J Med. 2019;380:752–62.PubMedCrossRef Ridker PM, Everett BM, Pradhan A, et al. Low-dose methotrexate for the prevention of atherosclerotic events. N Engl J Med. 2019;380:752–62.PubMedCrossRef
6.
Zurück zum Zitat Tardif JC, Kouz S, Waters DD, et al. Efficacy and safety of low-dose colchicine after myocardial Infarction. N Engl J Med. 2019;381:2497–505.PubMedCrossRef Tardif JC, Kouz S, Waters DD, et al. Efficacy and safety of low-dose colchicine after myocardial Infarction. N Engl J Med. 2019;381:2497–505.PubMedCrossRef
7.
Zurück zum Zitat Bouabdallaoui N, Tardif JC, Waters DD, et al. Time-to-treatment initiation of colchicine and cardiovascular outcomes after myocardial infarction in the Colchicine Cardiovascular Outcomes Trial (COLCOT). Eur Heart J. 2020;41:4092–7.PubMedPubMedCentralCrossRef Bouabdallaoui N, Tardif JC, Waters DD, et al. Time-to-treatment initiation of colchicine and cardiovascular outcomes after myocardial infarction in the Colchicine Cardiovascular Outcomes Trial (COLCOT). Eur Heart J. 2020;41:4092–7.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Yang M, Lv H, Liu Q, et al. Colchicine alleviates cholesterol crystal-induced endothelial cell pyroptosis through activating AMPK/SIRT1 pathway. Oxid Med Cell Longev. 2020;9173530. Yang M, Lv H, Liu Q, et al. Colchicine alleviates cholesterol crystal-induced endothelial cell pyroptosis through activating AMPK/SIRT1 pathway. Oxid Med Cell Longev. 2020;9173530.
9.
Zurück zum Zitat Barenholz Y. Doxil® - The first FDA-approved nano-drug: Lessons learned. J Control Release. 2012;160:117–34.PubMedCrossRef Barenholz Y. Doxil® - The first FDA-approved nano-drug: Lessons learned. J Control Release. 2012;160:117–34.PubMedCrossRef
10.
Zurück zum Zitat Gabizon A, Catane R, Uziely B, et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res. 1994;54:987–92.PubMed Gabizon A, Catane R, Uziely B, et al. Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res. 1994;54:987–92.PubMed
11.
Zurück zum Zitat Gordon AN, Fleagle JT, Guthrie D, et al. Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. J Clin Oncol. 2001;19:3312–22.PubMedCrossRef Gordon AN, Fleagle JT, Guthrie D, et al. Recurrent epithelial ovarian carcinoma: a randomized phase III study of pegylated liposomal doxorubicin versus topotecan. J Clin Oncol. 2001;19:3312–22.PubMedCrossRef
12.
Zurück zum Zitat Andreopoulou E, Gaiotti D, Kim E, et al. Pegylated liposomal doxorubicin HCL (PLD; Caelyx/Doxil®): experience with long-term maintenance in responding patients with recurrent epithelial ovarian cancer. Ann Oncol. 2007;18:716–21.PubMedCrossRef Andreopoulou E, Gaiotti D, Kim E, et al. Pegylated liposomal doxorubicin HCL (PLD; Caelyx/Doxil®): experience with long-term maintenance in responding patients with recurrent epithelial ovarian cancer. Ann Oncol. 2007;18:716–21.PubMedCrossRef
13.
Zurück zum Zitat Randon G, Nicoletto MO, Milite N, et al. Squamous cell carcinoma of the oral cavity in a woman with a 9-year history of ovarian cancer: Is exposure to pegylated liposomal doxorubicin a factor? Oncologist. 2014;19:429.PubMedPubMedCentralCrossRef Randon G, Nicoletto MO, Milite N, et al. Squamous cell carcinoma of the oral cavity in a woman with a 9-year history of ovarian cancer: Is exposure to pegylated liposomal doxorubicin a factor? Oncologist. 2014;19:429.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Ben-David Y, Leiser Y, Kachta O, et al. Does long-term treatment with Doxil(A (R)) predispose patients to oral cancer? Int J Clin Oncol. 2013;18:554–5.PubMedCrossRef Ben-David Y, Leiser Y, Kachta O, et al. Does long-term treatment with Doxil(A (R)) predispose patients to oral cancer? Int J Clin Oncol. 2013;18:554–5.PubMedCrossRef
15.
Zurück zum Zitat Toldo S, Mauro AG, Cutter Z, Abbate A. Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 201;315: H1553-H1568. Toldo S, Mauro AG, Cutter Z, Abbate A. Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 201;315: H1553-H1568.
16.
Zurück zum Zitat Deftereos S, Giannopoulos G, Angelidis C, et al. Anti-Inflammatory treatment with colchicine in acute myocardial infarction: a pilot study. Circulation. 2015;132:1395–403.PubMedCrossRef Deftereos S, Giannopoulos G, Angelidis C, et al. Anti-Inflammatory treatment with colchicine in acute myocardial infarction: a pilot study. Circulation. 2015;132:1395–403.PubMedCrossRef
17.
Zurück zum Zitat Nidorf SM, Fiolet A, Mosterd A, et al. Colchicine in Patients with chronic coronary disease. N Engl J Med. 2020;383:1838–47.PubMedCrossRef Nidorf SM, Fiolet A, Mosterd A, et al. Colchicine in Patients with chronic coronary disease. N Engl J Med. 2020;383:1838–47.PubMedCrossRef
18.
Zurück zum Zitat Robertson S, Martínez GJ, Payet CA, et al. Colchicine therapy in acute coronary syndrome patients acts on caspase-1 to suppress NLRP3 inflammasome monocyte activation. Clin Sci (Lond). 2016;130:1237–46.CrossRef Robertson S, Martínez GJ, Payet CA, et al. Colchicine therapy in acute coronary syndrome patients acts on caspase-1 to suppress NLRP3 inflammasome monocyte activation. Clin Sci (Lond). 2016;130:1237–46.CrossRef
19.
Zurück zum Zitat Chen Y, Shi J, Zhang Y, et al. An injectable thermosensitive hydrogel loaded with an ancient natural drug colchicine for myocardial repair after infarction. J Mater Chem B. 2020;8:980–92.PubMedCrossRef Chen Y, Shi J, Zhang Y, et al. An injectable thermosensitive hydrogel loaded with an ancient natural drug colchicine for myocardial repair after infarction. J Mater Chem B. 2020;8:980–92.PubMedCrossRef
20.
Zurück zum Zitat Almeida MSD, Susnik E, Drasler B, et al. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev. 2021;50:5397–434.CrossRef Almeida MSD, Susnik E, Drasler B, et al. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine. Chem Soc Rev. 2021;50:5397–434.CrossRef
21.
Zurück zum Zitat Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11:673–92.PubMedPubMedCentralCrossRef Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine. 2016;11:673–92.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Li Y, Chen X, Jin RH, et al. Injectable hydrogel with MSNs/microRNA-21–5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs. Sci Adv. 2021;7: eabd6740. Li Y, Chen X, Jin RH, et al. Injectable hydrogel with MSNs/microRNA-21–5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs. Sci Adv. 2021;7: eabd6740.
24.
Zurück zum Zitat Bejarano J, Navarro-Marquez M, Morales-Zavala F, et al. Nanoparticles for diagnosis and therapy of atherosclerosis and myocardial infarction: evolution toward prospective theranostic approaches. Theranostics. 2018;8:4710–32.PubMedPubMedCentralCrossRef Bejarano J, Navarro-Marquez M, Morales-Zavala F, et al. Nanoparticles for diagnosis and therapy of atherosclerosis and myocardial infarction: evolution toward prospective theranostic approaches. Theranostics. 2018;8:4710–32.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Hajipour MJ, Mehrani M, Abbasi SH, et al. Nanoscale technologies for prevention and treatment of heart failure: challenges and opportunities. Chem Rev. 2019;119:11352–90.PubMedPubMedCentralCrossRef Hajipour MJ, Mehrani M, Abbasi SH, et al. Nanoscale technologies for prevention and treatment of heart failure: challenges and opportunities. Chem Rev. 2019;119:11352–90.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Park JH, Dehaini D, Zhou J, et al. Biomimetic nanoparticle technology for cardiovascular disease detection and treatment. Nanoscale Horiz. 2020;5:25–42.PubMedCrossRef Park JH, Dehaini D, Zhou J, et al. Biomimetic nanoparticle technology for cardiovascular disease detection and treatment. Nanoscale Horiz. 2020;5:25–42.PubMedCrossRef
27.
28.
Zurück zum Zitat Duivenvoorden R, Tang J, Cormode DP, et al. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nat Commun. 2014;5:3065–76.PubMedCrossRef Duivenvoorden R, Tang J, Cormode DP, et al. A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nat Commun. 2014;5:3065–76.PubMedCrossRef
29.
Zurück zum Zitat Giacalone G, Tsapis N, Mousnier L, et al. PLA-PEG nanoparticles improve the anti-inflammatory effect of rosiglitazone on macrophages by enhancing drug uptake compared to free rosiglitazone. Materials. 2018;11:1845–56.PubMedCentralCrossRef Giacalone G, Tsapis N, Mousnier L, et al. PLA-PEG nanoparticles improve the anti-inflammatory effect of rosiglitazone on macrophages by enhancing drug uptake compared to free rosiglitazone. Materials. 2018;11:1845–56.PubMedCentralCrossRef
30.
31.
Zurück zum Zitat Zhang C, Li S, Yu A, Wang Y. Nano CaCO3 “lysosomal bombs” enhance chemotherapy drug efficacy via rebalancing tumor intracellular pH. ACS Biomater Sci Eng. 2019;5:3398–408.PubMedCrossRef Zhang C, Li S, Yu A, Wang Y. Nano CaCO3 “lysosomal bombs” enhance chemotherapy drug efficacy via rebalancing tumor intracellular pH. ACS Biomater Sci Eng. 2019;5:3398–408.PubMedCrossRef
32.
Zurück zum Zitat Akodad M, Fauconnier J, Sicard P, et al. Interest of colchicine in the treatment of acute myocardial infarct responsible for heart failure in a mouse model. Int J Cardiol. 2017;240:347–53.PubMedCrossRef Akodad M, Fauconnier J, Sicard P, et al. Interest of colchicine in the treatment of acute myocardial infarct responsible for heart failure in a mouse model. Int J Cardiol. 2017;240:347–53.PubMedCrossRef
33.
Zurück zum Zitat Fujisue K, Sugamura K, Kurokawa H, et al. Colchicine improves survival, left ventricular femodeling, and chronic cardiac function after acute myocardial infarction. Circ J. 2017;81:1174–82.PubMedCrossRef Fujisue K, Sugamura K, Kurokawa H, et al. Colchicine improves survival, left ventricular femodeling, and chronic cardiac function after acute myocardial infarction. Circ J. 2017;81:1174–82.PubMedCrossRef
34.
Zurück zum Zitat Jung M, Ma Y, Iyer RP, et al. IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation. Basic Res Cardiol. 2017;112:33.PubMedPubMedCentralCrossRef Jung M, Ma Y, Iyer RP, et al. IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 macrophage polarization and fibroblast activation. Basic Res Cardiol. 2017;112:33.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Kim R, Song BW, Kim M, et al. Regulation of alternative macrophage activation by MSCs derived hypoxic conditioned medium, via the TGF-β1/Smad3 pathway. BMB Rep. 2020;53:600–4.PubMedPubMedCentralCrossRef Kim R, Song BW, Kim M, et al. Regulation of alternative macrophage activation by MSCs derived hypoxic conditioned medium, via the TGF-β1/Smad3 pathway. BMB Rep. 2020;53:600–4.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Zeng Z, Li G, Wu S, Wang Z. Role of pyroptosis in cardiovascular disease. Cell Prolif. 2019;52:e12563. Zeng Z, Li G, Wu S, Wang Z. Role of pyroptosis in cardiovascular disease. Cell Prolif. 2019;52:e12563.
38.
Zurück zum Zitat Kayagaki N, Dixit VM. Rescue from a fiery death: a therapeutic endeavor. Science. 2019;366:688–9.PubMedCrossRef Kayagaki N, Dixit VM. Rescue from a fiery death: a therapeutic endeavor. Science. 2019;366:688–9.PubMedCrossRef
39.
40.
Zurück zum Zitat Rathkey JK, Zhao J, Liu Z, et al. Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis. Sci. Immunol. 2018;3:eaat2738. Rathkey JK, Zhao J, Liu Z, et al. Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis. Sci. Immunol. 2018;3:eaat2738.
41.
Zurück zum Zitat Zheng Z, Li G. Mechanisms and therapeutic regulation of pyroptosis in inflammatory diseases and cancer. Int J Mol Sci. 2020;21:1456.PubMedCentralCrossRef Zheng Z, Li G. Mechanisms and therapeutic regulation of pyroptosis in inflammatory diseases and cancer. Int J Mol Sci. 2020;21:1456.PubMedCentralCrossRef
42.
Zurück zum Zitat Ding S, Liu D, Wang L, Wang G, Zhu Y. Inhibiting microRNA-29a protects myocardial ischemia-reperfusion injury by targeting SIRT1 and suppressing oxidative stress and NLRP3-mediated pyroptosis pathway. J Pharmacol Exp Ther. 2020;372:128–35.PubMedCrossRef Ding S, Liu D, Wang L, Wang G, Zhu Y. Inhibiting microRNA-29a protects myocardial ischemia-reperfusion injury by targeting SIRT1 and suppressing oxidative stress and NLRP3-mediated pyroptosis pathway. J Pharmacol Exp Ther. 2020;372:128–35.PubMedCrossRef
43.
Zurück zum Zitat Tang J, Jin L, Liu Y, et al. Exosomes derived from mesenchymal stem cells protect the myocardium against ischemia/reperfusion injury through inhibiting pyroptosis. Drug Des Devel Ther. 2020;14:3765–75.PubMedPubMedCentralCrossRef Tang J, Jin L, Liu Y, et al. Exosomes derived from mesenchymal stem cells protect the myocardium against ischemia/reperfusion injury through inhibiting pyroptosis. Drug Des Devel Ther. 2020;14:3765–75.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Zhong Y, Li YP, Yin YQ, Hu BL, Gao H. Dexmedetomidine inhibits pyroptosis by down-regulating miR-29b in myocardial ischemia reperfusion injury in rats. Int Immunopharmacol. 2020;86:106768. Zhong Y, Li YP, Yin YQ, Hu BL, Gao H. Dexmedetomidine inhibits pyroptosis by down-regulating miR-29b in myocardial ischemia reperfusion injury in rats. Int Immunopharmacol. 2020;86:106768.
45.
Zurück zum Zitat Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res. 2016;119:91–112.PubMedPubMedCentralCrossRef Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res. 2016;119:91–112.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Wang Y, Liu X, Shi H, et al. NLRP3 inflammasome, an immune-inflammatory target in pathogenesis and treatment of cardiovascular diseases. Clin Transl Med. 2020;10:91–106.PubMedPubMedCentralCrossRef Wang Y, Liu X, Shi H, et al. NLRP3 inflammasome, an immune-inflammatory target in pathogenesis and treatment of cardiovascular diseases. Clin Transl Med. 2020;10:91–106.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Liu D, Zeng X, Li X, Mehta JL, Wang X. Role of NLRP3 inflammasome in the pathogenesis of cardiovascular diseases. Basic Res Cardiol. 2018;113:5.PubMedCrossRef Liu D, Zeng X, Li X, Mehta JL, Wang X. Role of NLRP3 inflammasome in the pathogenesis of cardiovascular diseases. Basic Res Cardiol. 2018;113:5.PubMedCrossRef
48.
Zurück zum Zitat Toldo S, Abbate A. The NLRP3 inflammasome in acute myocardial infarction. Nat Rev Cardiol. 2018;15:203–14.PubMedCrossRef Toldo S, Abbate A. The NLRP3 inflammasome in acute myocardial infarction. Nat Rev Cardiol. 2018;15:203–14.PubMedCrossRef
49.
Zurück zum Zitat Dai Y, Wang S, Chang S, et al. M2 macrophage-derived exosomes carry microRNA-148a to alleviate myocardial ischemia/reperfusion injury via inhibiting TXNIP and the TLR4/NF-κB/NLRP3 inflammasome signaling pathway. J Mol Cell Cardiol. 2020;142:65–79.PubMedCrossRef Dai Y, Wang S, Chang S, et al. M2 macrophage-derived exosomes carry microRNA-148a to alleviate myocardial ischemia/reperfusion injury via inhibiting TXNIP and the TLR4/NF-κB/NLRP3 inflammasome signaling pathway. J Mol Cell Cardiol. 2020;142:65–79.PubMedCrossRef
50.
Zurück zum Zitat Zhaolin Z, Guohua L, Shiyuan W, Zuo W. Role of pyroptosis in cardiovascular disease. Cell Prolif. 2019;52:e12563. Zhaolin Z, Guohua L, Shiyuan W, Zuo W. Role of pyroptosis in cardiovascular disease. Cell Prolif. 2019;52:e12563.
51.
Zurück zum Zitat Yap J, Cabrera-Fuentes HA, Irei J, Hausenloy DJ, Boisvert WA. Role of macrophages in cardioprotection. Int J Mol Sci. 2019;20:2474.PubMedCentralCrossRef Yap J, Cabrera-Fuentes HA, Irei J, Hausenloy DJ, Boisvert WA. Role of macrophages in cardioprotection. Int J Mol Sci. 2019;20:2474.PubMedCentralCrossRef
52.
Zurück zum Zitat Nidorf SM, Thompson PL. Why colchicine should be considered for secondary prevention of atherosclerosis: an overview. Clin Ther. 2019;41:41–8.PubMedCrossRef Nidorf SM, Thompson PL. Why colchicine should be considered for secondary prevention of atherosclerosis: an overview. Clin Ther. 2019;41:41–8.PubMedCrossRef
53.
Zurück zum Zitat Liu M, Yin L, Li W, et al. C1q/TNF-related protein-9 promotes macrophage polarization and improves cardiac dysfunction after myocardial infarction. J Cell Physiol. 2019;234:18731–47.PubMedPubMedCentralCrossRef Liu M, Yin L, Li W, et al. C1q/TNF-related protein-9 promotes macrophage polarization and improves cardiac dysfunction after myocardial infarction. J Cell Physiol. 2019;234:18731–47.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Wang Y, Viollet B, Terkeltaub R, Liu-Bryan R. AMP-activated protein kinase suppresses urate crystal-induced inflammation and transduces colchicine effects in macrophages. Ann Rheum Dis. 2016;75:286–94.PubMedCrossRef Wang Y, Viollet B, Terkeltaub R, Liu-Bryan R. AMP-activated protein kinase suppresses urate crystal-induced inflammation and transduces colchicine effects in macrophages. Ann Rheum Dis. 2016;75:286–94.PubMedCrossRef
Metadaten
Titel
Colchicine-Containing Nanoparticles Attenuates Acute Myocardial Infarction Injury by Inhibiting Inflammation
verfasst von
Li Wang
Yunfan Peng
Lijun Song
Dasheng Xia
Chao Li
Zhuqing Li
Qi Li
Ao Yu
Chengzhi Lu
Yongjian Wang
Publikationsdatum
26.08.2021
Verlag
Springer US
Erschienen in
Cardiovascular Drugs and Therapy / Ausgabe 6/2022
Print ISSN: 0920-3206
Elektronische ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-021-07239-2

Weitere Artikel der Ausgabe 6/2022

Cardiovascular Drugs and Therapy 6/2022 Zur Ausgabe

So beeinflussen Herzinfarkte auf lange Sicht die Sterblichkeit

20.06.2024 ST-Hebungsinfarkt Nachrichten

Wie hoch ist bei Patienten, die nach einem ST-Hebungs-Myokardinfarkt die initiale Hochrisikophase überleben, auf lange Sicht das Sterberisiko? Eine Studie aus Dänemark liefert dazu nun aufschlussreiche Daten.

Protonenpumpenhemmer stoppt Arrhythmie

20.06.2024 Protonenpumpenhemmstoffe Nachrichten

Wenn Nervenfasern aus dem Magen und dem Herzen im Gehirn dicht beieinander liegen, kann auch mal etwas schiefgehen: So lässt sich erklären, weshalb Schmerzen durch einen Magentumor bei einem Mann eine ventrikuläre Extrasystolie auslösen – und PPI diese beenden.

Ob Apixaban nützt oder schadet, entscheidet der CHA2DS2-VASc-Score

20.06.2024 Therapie des Vorhofflimmerns Nachrichten

Patienten mit subklinischem Vorhofflimmern tragen ein erhöhtes Risiko für Schlaganfälle. Da stellt sich die Frage nach einer medikamentösen Antikoagulation. Offenbar hängt es aber vom CHA2DS2-VASc-Score ab, ob die Gabe von Apixaban von Vorteil ist.

Wie SGLT2-Hemmer es schaffen, die Mortalität zu reduzieren

20.06.2024 Kardiologische Therapie Nachrichten

SGLT2-Hemmer verhindern keine Herzinfarkte oder Schlaganfälle. Aber sie reduzieren die kardiovaskuläre Mortalität bei einem breiten Spektrum von Patienten. Wie sie das schaffen, verdeutlicht eine Metaanalyse von Daten aus elf randomisierten Studien.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.