Skip to main content
Erschienen in: BMC Gastroenterology 1/2023

Open Access 01.12.2023 | Research

Eradication therapy may decrease the risk of immune thrombocytopenia after Helicobacter pylori infection: a retrospective cohort study in Taiwan

verfasst von: Mitsuhiro Koseki, Ming‑Jen Sheu, Kang-Ting Tsai, Chung-Han Ho, Hsiao-Hua Liu, Hung-Jung Lin, Chien-Liang Lin, Chien-Cheng Huang

Erschienen in: BMC Gastroenterology | Ausgabe 1/2023

Abstract

Background

Helicobacter pylori (HP) eradication therapy (HPE) is recommended for patients with unexplained immune thrombocytopenia (ITP); however, the role of HPE in preventing ITP in patients with HP infection remains unclear. Therefore, this study was designed to clarify it.

Methods

This study was conducted at a tertiary medical center and included all adult patients with HP infection between January 1, 2016 and December 31, 2018. We compared the risk of developing ITP between patients with and without HPE. All patients were followed up until December 31, 2020.

Results

After excluding patients with thrombocytopenia, 1995 adult patients with HP infection, including 1188 patients with HPE and 807 patients without HPE, were included in this study. The mean age of the patients with HPE was 57.9 years, whereas that of those without HPE was 61.6 years. The percentage of males was 56% in patients with HPE and 59% in those without HPE. Patients without HPE had a higher risk of ITP than those with HPE after adjusting for age, sex, the Charlson Comorbidity Index, and comorbidities [adjusted odds ratio (OR) 1.76; 95% confidence interval (CI) 1.16–2.68]. Stratified analyses showed that the higher risk was found only in males (adjusted OR: 1.70; 95% CI 1.03–2.80). In addition to HPE, male sex and anemia were independent predictors of ITP in patients with HP infection.

Conclusion

This study showed that adult patients with HP infection not receiving HPE had a higher risk of developing ITP. We suggest that HPE should be considered, particularly in males and those who have anemia, to prevent ITP.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12876-023-02664-z.
Mitsuhiro Koseki and Ming‑Jen Sheu contributed equally to this work

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
HP
Helicobacter pylori
HPE
Helicobacter pylori eradication therapy
ITP
Immune thrombocytopenia
CCI
Charlson comorbidity index
OR
Odds ratio
CI
Confidence interval
CMMC
Chi Mei Medical Center
μL
Microliter
GERD
Gastroesophageal reflux disease
CAD
Coronary artery disease
IRB
Institutional review board
SD
Standard deviation
CagA
Cytotoxic-associated gene A

Introduction

Helicobacter pylori (HP) is a common and important infective microorganism worldwide, which may contribute to gastritis, peptic ulcer disease, unexplained iron deficiency anemia, gastric atrophy, mucosal-associated lymphoid tissue lymphoma, and gastric cancer [1]. It is estimated that more than half of the world’s population is infected by HP [2]. The prevalence of HP infection varies greatly across countries, with Africa (70.1%) having the highest prevalence, followed by South America (69.4%), Taiwan (53.9%), and Japan (51.7%), and Oceania (24.4%) having the lowest prevalence [2]. Immune thrombocytopenia (ITP) is an autoimmune disease characterized by isolated thrombocytopenia [3]. The major complications of ITP are severe bleeding in 15% of patients and affected patients have twice the risk of venous thromboembolism compared with the general population [3].
Studies showed that HP infection may be associated with ITP, and therefore, HP eradication therapy (HPE) is recommended for patients with unexplained ITP [4]. Some studies even proposed that HPE was the first-line treatment for chronic ITP [5, 6]. All studies focused on HPE for treating existing ITP. To the best of our knowledge, no study focused on the effects of HPE on patients with HP infection without thrombocytopenia. Therefore, this study was designed to clarify whether HPE can prevent ITP in patients with HP infection.

Materials and methods

Study design, setting, and patients

This study was conducted at the Chi Mei Medical Center (CMMC), a tertiary medical center in Southern Taiwan [7]. First, we identified all patients who underwent HP testing at the CMMC between January 1, 2016 and December 31, 2018 for this study (Fig. 1). Second, the exclusion criteria were as follows: (1) patients with negative HP infection; (2) those aged < 20 years old; or (3) those with existing comorbidities related to thrombocytopenia, including hepatitis B, hepatitis C, tuberculosis, human immunodeficiency virus disease, thyroid diseases, neoplasms, hematological malignancies, carcinoma in situ, hemorrhagic disorder due to circulating anticoagulants, immunodeficiency, macroglobulinemia, sarcoidosis, rheumatoid arthritis, systemic lupus erythematosus, polymyositis, dermatomyositis, sicca syndrome, systemic sclerosis, vasculitis, antiphospholipid syndrome (abnormal of anti-cardiolipin IgG, B2-Glycoprotein I IgG, and lupus anticoagulant test), and other autoimmune or diffuse connective tissue diseases [4, 810]. We excluded patients aged < 20 years because we wanted to study adult patients and the adult age was set at 20 years during the study period in Taiwan [11]. The diagnosis of HP infection was made using either the rapid urease test or biopsy with panendoscopy [12]. Third, we excluded patients who had the following criteria: (1) no platelet data before HP (+); (2) platelet < 100,000/μL before HP (+); or (3) no platelet data after HP (+).

Two cohorts: patients with HPE versus patients without HPE

The final identified adult patients with HP infection were divided into patients with HPE and patients without HPE. The standard HPE in the CMMC included antibiotics and proton pump inhibitors, according to the consensus in Taiwan [13]. Patients who had received those drugs beyond 7 days were defined as the study cohort [13]. Others who did not complete the treatment were defined as the comparison cohort. The antibiotics for HPE were clarithromycin, amoxicillin, tetracycline, and metronidazole [13]. The proton pump inhibitors were pantoprazole, dexlansoprazole, esomeprazole, lansoprazole, omeprazole, and rabeprazole. Some patients who had received bismuth subsalicylate were also included.

Variables and data collection

We collected data, including demographic characteristics, comorbidities, the Charlson Comorbidity Index (CCI), and laboratory data, from the electronic medical records at the CMMC for analysis. The comorbidities were diagnosed by the treating physicians, including peptic ulcer disease, hypertension, gastroesophageal reflux disease (GERD), diabetes, stroke, anemia, and coronary artery disease. The comorbidities were counted at the time that the patient was diagnosed with HP infection. Data collection was performed by an experienced researcher who was blinded to the outcomes of the patients. The study was unaffected by coronavirus disease 2019 because there was no pandemic outbreak in Taiwan during the study period. The CCI score was divided into three subgroups: 0, 1–2, and ≥ 3 [14].

Outcome measurements

We compared the risk of developing ITP between the two cohorts by following them up until December 31, 2020. The platelet count was checked every six months during the follow-up. The definition of ITP was as follows: (1) platelets < 100,000 per μL; (2) exclusion of other possible causes of thrombocytopenia; and (3) erythrocytes and leukocytes are within the normal range [8]. The risk of developing severe thrombocytopenia (platelets < 30,000 per μL) [15] between the two cohorts was also investigated. We also analyzed the patients with platelet count between 100,000 and 150,000 per μL for developing ITP, which may be considered an evolving immune patients [16].

Ethical statements

This study was conducted strictly according to the Declaration of Helsinki and approved by the Institutional Review Board (IRB) of the CMMC (IRB serial no. 11103-002). All patients’ data were anonymized. Patient informed consent was waived because of the retrospective and observational nature of the study by the IRB of the CMMC. The welfare of the patients was unaffected by the waiver.

Statistics

We used Pearson’s chi-square test for comparing categorical variables and Student’s t-test for comparing continuous variables. The categorical variables were described as frequencies with percentages. The continuous variables were expressed as means ± standard deviations. Multivariate logistic regression analyses were performed to investigate the risk of developing ITP between the two cohorts. Stratified analyses of sex, age, and comorbidities were performed to investigate the effect modification. Furthermore, we performed multivariate logistic regression analyses to identify independent predictors of ITP in the patients with HP infection. All analyses were performed using SAS, version 9.4 (SAS Institute, Inc., Cary, NC, USA). p-values of less than 0.05 were used to denote statistical significance.

Results

In this study, 1,995 adult patients were included, including 1,188 patients with HPE and 807 patients without HPE (Table 1). The male sex predominated both cohorts (56.0% in patients with HPE vs. 59.0% in patients without HPE; p = 0.183). Patients with HPE were younger than those without HPE (57.9 ± 14.0 years vs. 61.6 ± 14.4 years; p < 0.001). The patients with HPE had a higher prevalence of peptic ulcer disease and GERD than those without HPE; however, they had a lower prevalence of diabetes and stroke. The CCI score was lower in patients with HPE than in those without HPE.
Table 1
Comparison of the baseline characteristics between adult patients with and without HPE by univariate analysis
Variables
With HPE (n = 1,188)
Without HPE (n = 807)
p-value*
Sex, n (%)
 Male
665 (56.0)
476 (59.0)
0.183
 Female
523 (44.0)
331 (41.0)
 
Age, mean ± SD
Age subgroup, n (%)
57.9 ± 14.0
61.6 ± 14.4
< 0.001
 Age < 65
809 (68.1)
471 (58.4)
< 0.001
 Age ≥ 65
379 (31.9)
336 (41.6)
 
Comorbidity, n (%)
 Peptic ulcer disease
492 (41.4)
156 (19.3)
< 0.001
 Hypertension
295 (24.8)
218 (27.0)
0.274
 GERD
230 (19.4)
84 (10.4)
< 0.001
 Diabetes
177 (14.9)
188 (23.3)
< 0.001
 Stroke
49 (4.1)
74 (9.2)
< 0.001
 Anemia
27 (2.3)
24 (3.0)
0.330
 Coronary artery disease
6 (0.5)
5 (0.6)
0.765
CCI score, mean ± SD
1.4 ± 1.3
1.7 ± 1.8
< 0.001
CCI subgroup, n (%)
 0
253 (21.3)
249 (30.9)
< 0.001
 1–2
755 (63.6)
355 (44.0)
 
 ≥ 3
180 (15.2)
203 (25.2)
 
HPE Helicobacter pylori eradication therapy, SD Standard deviation, GERD Gastroesophageal reflux disease, CAD Coronary artery disease, CCI Charlson comorbidity index
*Categorical variables analysis using Fisher’s exact test and continuous variables analysis using the Mann–Whitney U test
Patients without HPE had a higher risk of developing ITP than those with HPE after adjusting for age, sex, the CCI score, and comorbidities, including peptic ulcer disease, hypertension, GERD, diabetes, stroke, and anemia [adjusted odds ratio (OR):1.76; 95% confidence interval (CI) 1.16–2.68; p = 0.008] (Table 2). Stratified analyses showed that male patients without HPE also had a higher risk of ITP (adjusted OR: 1.70; 95% CI 1.03–2.80; p = 0.039). However, in the female population, the difference in the risk of developing ITP between the two cohorts was not statistically significant (adjusted OR: 1.69; 95% CI 0.78–3.69; p = 0.184).
Table 2
Comparison of the risk of ITP between adult patients without and with HPE by multivariate logistic regression analyses
Without HPE versus with HPE (reference)
Patients n
ITP n (%)
Adjusted OR*
p-value
Overall analysis
807
70 (8.7)
1.76 (1.16–2.68)
0.008
Stratified analysis
Sex
 Male
476
51 (10.7)
1.70 (1.03–2.80)
0.039
 Female
331
19 (5.7)
1.69 (0.78–3.69)
0.184
Age subgroup
 Age < 65
471
36 (7.6)
1.78 (1.00–3.15)
0.050
 Age ≥ 65
336
34 (10.1)
1.71 (0.93–3.14)
0.083
Comorbidity
 Peptic ulcer disease
224
17 (7.6)
1.92 (0.96–3.81)
0.064
 Hypertension
218
21 (9.6)
1.84 (0.85–3.97)
0.120
 GERD
84
4 (4.8)
1.97 (0.38–10.36)
0.423
 Diabetes
188
16 (8.5)
1.06 (0.44–2.58)
0.890
 Stroke
74
5 (6.8)
2.90 (0.43–19.47)
0.274
 Anemia
24
6 (25.0)
3.25 (0.40–26.73)
0.273
ITP Immune thrombocytopenia, HPE Helicobacter pylori eradication therapy, OR Odds ratio, CCI Charlson comorbidity index, GERD Gastroesophageal reflux disease
*Adjusted for age, sex, the CCI score, and comorbidities, including peptic ulcer disease, hypertension, GERD, diabetes, stroke, and anemia
In addition to HPE, the male sex (adjusted OR: 2.23; 95% CI 1.45–3.43; p < 0.001) and anemia (adjusted OR: 3.76; 95% CI 1.69–8.38; p = 0.001) were independent predictors of ITP in all adult patients with HP infection (Table 3). Patients without HPE have a higher risk of having a platelet count < 30,000 per μL than those with HPE, after adjusting for age, sex, the CCI score, and comorbidities, including peptic ulcer disease, hypertension, GERD, diabetes, stroke, and anemia (adjusted OR: 8.46; 95% CI 1.74–41.16; p = 0.008) (Additional file 1: Table S1). There were 56 patients with platelet count between 100,000 and 150,000 per μL, including 28 patients with HPE and 28 patients without HPE (Additional file 1: Table S2). Compared with patients without HPE, the risk of developing ITP in the patients with HPE was lower; however, the difference was not statistically significant (47.1% vs. 52.9%; p = 0.771).
Table 3
Independent predictors of ITP in all adult patients with HP infection (n = 1,995) by multivariate logistic regression analyses
Variable
ITP (n = 117)
Crude OR
p-value
Adjusted OR*
p-value
HPE
 Without
70 (8.7)
2.31 (1.58–3.38)
< 0.001
1.74 (1.14–2.65)
0.010
 With
47 (4.0)
Reference
 
Reference
 
Sex
 Male
85 (7.5)
2.07 (1.36–3.14)
0.001
2.23 (1.45–3.43)
< 0.001
 Female
32 (3.8)
Reference
 
Reference
 
Age subgroup
 Age < 65
62 (4.8)
Reference
 
Reference
 
 Age ≥ 65
55 (7.7)
1.64 (1.13–2.38)
0.010
1.45 (0.97–2.17)
0.070
Comorbidity
 Peptic ulcer disease
41 (4.4)
0.60 (0.41–0.89)
0.011
0.65 (0.42–1.01)
0.054
 Hypertension
34 (6.6)
1.20 (0.79–1.81)
0.394
0.94 (0.58–1.51)
0.790
 GERD
9 (2.87)
0.43 (0.22–0.86)
0.017
0.52 (0.26–1.04)
0.065
 Diabetes
27 (7.4)
1.37 (0.88–2.14)
0.169
0.69 (0.38–1.23)
0.206
 Stroke
7 (5.7)
0.97 (0.44–2.12)
0.934
0.56 (0.24–1.29)
0.172
 Anemia
9 (17.7)
3.64 (1.73–7.68)
< 0.001
3.76 (1.69–8.38)
0.001
ITP Immune thrombocytopenia, HP Helicobacter pylori, OR Odds ratio, GERD Gastroesophageal reflux disease
*Adjusted for age, sex, the CCI score, and comorbidities, including peptic ulcer disease, hypertension, GERD, diabetes, stroke, and anemia

Discussion

This study showed that patients without HPE had a higher risk of developing ITP than those with HPE, particularly males. In addition to HPE, the male sex and anemia were independent predictors of subsequent ITP in patients with HP infection. Moreover, patients without HPE also had a higher risk of severe thrombocytopenia with platelet counts < 30,000 per μL than those with HPE.
Immune reaction may explain the association between HP infection and ITP and the finding that HPE decreased the risk of ITP in this study. A study involving adult Japanese patients to investigate the role of molecular mimicry in chronic ITP found that there was HP cytotoxin-associated gene A (CagA) protein in the platelet eluates of the patients with chronic ITP and that HPE decreased the level of anti-CagA antibody [17]. They concluded that CagA contributes to the pathogenesis of ITP [17]. A basic study reported that the HP urease B antibody could cross-react with human platelet glycoprotein IIIa and may inhibit platelet aggregation [18]. This finding suggests that HP urease B is a cause of HP infection involved in the development of ITP [18]. Some studies reported that the interaction between HP infection and surface glycoproteins Ib/IX, von Willebrand factor, and membrane-associated lipoprotein may also be the mechanism of the development of ITP [19]. The aforementioned findings provide us with a promising direction for further investigation of the exact pathogenesis of HP infection-related ITP.
In the male population, the higher risk of ITP was statistically significant; however, the difference was insignificant in the female population in this study. Sex hormones may play a major role in this difference [20]. In ITP, the overall female-to-male ratio is 3–4 to 1, and young women in the third or fourth decade predominate [21]. These findings suggest that sex hormones and other immune diseases, including systemic lupus erythematosus and multiple sclerosis, are responsible for the development of ITP [21]. HP infection is a risk factor for ITP. Women have more risk factors for ITP than men, and therefore, HPE became less influential for the development of ITP. In the female population, the adjusted OR was 1.69 with 95% CI of 0.78–3.69, and the number of ITP cases was only 19. Therefore, another explanation is that the sample size in this study was not large enough to show statistical significance. This study found that male sex was an independent predictor of ITP in all adult patients with HP infection, which may be explained by anti-CagA antibody. A study included 525 participants in Iran reported that the prevalence of serum anti-CagA IgG was statistically higher in males than in females (48.6% vs. 31.6%; p = 0.046) [22]. A further study involving more patients is needed to clarify this issue.
Although no direct evidence that supports the novel findings in this study, an increasing number of studies showed that using HPE as the first-line treatment is beneficial for patients with ITP [5, 6, 2325]. In Japan, a study involving 207 patients with chronic ITP with HP infection reported that the platelet count had a higher response rate in patients with HPE than in those without HPE (63% vs. 33%; p < 0.005) [6]. HPE was even effective in refractory cases of chronic ITP that were unresponsive to splenectomy [6]. Therefore, the authors suggested HPE as the first-line treatment in patients with ITP with HP infection [6]. In Korea, a multicenter and prospective phase-II study was conducted to evaluate the effectiveness of HPE as a first-line treatment in HP-positive patients with chronic ITP and moderate thrombocytopenia [5]. The results showed that the overall response rate was 19.2% at 4 weeks, 57.7% at 3 months, 65.4% at 6 months, 30.8% at 12 months, and 69.2% for the maximal response [5]. They concluded that HPE is an effective first-line treatment in this population [5]. These studies provided us with indirect evidence that HPE may be considered as early as possible to prevent ITP in patients with HP infections, particularly in those at a high risk of bleeding.
Compared with the patients with HPE, patients without HPE had higher CCI, more comorbidities, and older age in Taiwan. This finding is compatible with previous studies, suggesting that older patients with more comorbidities tended not to receive HPE [26]. The reason is that older people who have more comorbidities have difficulty to follow the treatment due to the presence of certain combined medications and declined physical function [26]. Another reason is that clinicians might be reluctant to treat very old patients for the concern of complication [26].
The major study strength is that we found that HPE may decrease the risk of subsequent ITP in patients with HP infection, which provides an important reference for developing prevention strategies in this population. The limitations were as follows. First, some data may have been missed because of the retrospective design of this study. Because of the missed data (particularly platelets), we excluded 2,366 patients from this study, which may have caused a selection bias. Second, the baseline age and CCI were different between patients with and without HPE, which may confound the results. However, we adjusted age and CCI by multivariate logistic regression analyses and found that HPE was associated with lower risk of developing ITP. Third, there was no data about test results for HP in patients after HPE in this study. Therefore, we could not investigate the effect if HP does not turn negative after treatment. Fourth, there was no data about cross-reactive antibodies against platelet antigens by molecular mimicry, which may help explain the pathogenesis of ITP. Fifth, the study size may not be large enough to show the true difference, which is particularly concerning in the stratified analysis in the female population. Sixth, the results are from a medical center in Taiwan, and therefore, its generalization needs external validation in other hospitals or nations. Further studies with more patients, prospective design, data about test results for HP in patients after HPE, and cross-reactive antibodies against platelet antigens may also be warranted.

Conclusion

This is the first cohort study to delineate that adult patient with HP infection not receiving HPE had a higher risk of developing ITP. The possible reason is that HPE may decrease the immune reaction caused by HP infection. The decreased risk was found only in the male population, which may be associated with differences in sex hormones and other immune diseases between the two sexes. Another reason is that the sample size was not large enough to show a statistical difference. We suggest that HPE should be considered in patients with HPE to prevent ITP, particularly in males and those who have a history of anemia. Further studies involving more patients that adopt a prospective study design with external validations from other hospitals and nations are warranted.

Acknowledgements

We thank Yu-Chi Wu (MBA) and Chen-Yun Chang (BS) for their assistance and Enago for the English editing.

Declarations

This study was conducted strictly according to the Declaration of Helsinki and approved by the IRB of the CMMC (IRB serial no. 11103-002). All patients’ data were anonymized. Patient informed consent was waived because of the retrospective and observational nature of the study. The welfare of the patients was unaffected by the waiver.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Chey WD, Leontiadis GI, Howden CW, Moss SF. ACG clinical guideline: treatment of Helicobacter pylori infection. Am J Gastroenterol. 2017;112:212–39.CrossRef Chey WD, Leontiadis GI, Howden CW, Moss SF. ACG clinical guideline: treatment of Helicobacter pylori infection. Am J Gastroenterol. 2017;112:212–39.CrossRef
2.
Zurück zum Zitat Hooi JKY, Lai WY, Ng WK, et al. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology. 2017;153:420–9.CrossRef Hooi JKY, Lai WY, Ng WK, et al. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology. 2017;153:420–9.CrossRef
3.
Zurück zum Zitat Cooper N, Ghanima W. Immune thrombocytopenia. N Engl J Med. 2019;381:945–55.CrossRef Cooper N, Ghanima W. Immune thrombocytopenia. N Engl J Med. 2019;381:945–55.CrossRef
5.
Zurück zum Zitat Kim H, Lee WS, Lee KH, et al. Efficacy of Helicobacter pylori eradication for the 1st line treatment of immune thrombocytopenia patients with moderate thrombocytopenia. Ann Hematol. 2015;94:739–46.CrossRef Kim H, Lee WS, Lee KH, et al. Efficacy of Helicobacter pylori eradication for the 1st line treatment of immune thrombocytopenia patients with moderate thrombocytopenia. Ann Hematol. 2015;94:739–46.CrossRef
6.
Zurück zum Zitat Fujimura K, Kuwana M, Kurata Y, et al. Is eradication therapy useful as the first line of treatment in Helicobacter pylori-positive idiopathic thrombocytopenic purpura? Analysis of 207 eradicated chronic ITP cases in Japan. Int J Hematol. 2005;81:162–8.CrossRef Fujimura K, Kuwana M, Kurata Y, et al. Is eradication therapy useful as the first line of treatment in Helicobacter pylori-positive idiopathic thrombocytopenic purpura? Analysis of 207 eradicated chronic ITP cases in Japan. Int J Hematol. 2005;81:162–8.CrossRef
8.
Zurück zum Zitat Kashiwagi H, Kuwana M, Hato T, et al. Reference guide for management of adult immune thrombocytopenia in Japan: 2019 revision. Int J Hematol. 2020;111:329–51.CrossRef Kashiwagi H, Kuwana M, Hato T, et al. Reference guide for management of adult immune thrombocytopenia in Japan: 2019 revision. Int J Hematol. 2020;111:329–51.CrossRef
9.
Zurück zum Zitat Jang JH, Kim JY, Mun YC, et al. Management of immune thrombocytopenia: Korean experts recommendation in 2017. Blood Res. 2017;52:254–63.CrossRef Jang JH, Kim JY, Mun YC, et al. Management of immune thrombocytopenia: Korean experts recommendation in 2017. Blood Res. 2017;52:254–63.CrossRef
10.
Zurück zum Zitat Park YH, Kim DY, Kim S, et al. Management of immune thrombocytopenia: 2022 update of Korean experts recommendations. Blood Res. 2022;57:20–8.CrossRef Park YH, Kim DY, Kim S, et al. Management of immune thrombocytopenia: 2022 update of Korean experts recommendations. Blood Res. 2022;57:20–8.CrossRef
11.
Zurück zum Zitat Chen YM, Kao Y, Hsu CC, et al. Real-time interactive artificial intelligence of things-based prediction for adverse outcomes in adult patients with pneumonia in the emergency department. Acad Emerg Med. 2021;28:1277–85.CrossRef Chen YM, Kao Y, Hsu CC, et al. Real-time interactive artificial intelligence of things-based prediction for adverse outcomes in adult patients with pneumonia in the emergency department. Acad Emerg Med. 2021;28:1277–85.CrossRef
12.
Zurück zum Zitat Wang YK, Kuo FC, Liu CJ, et al. Diagnosis of Helicobacter pylori infection: Current options and developments. World J Gastroenterol. 2015;21:11221–35.CrossRef Wang YK, Kuo FC, Liu CJ, et al. Diagnosis of Helicobacter pylori infection: Current options and developments. World J Gastroenterol. 2015;21:11221–35.CrossRef
13.
Zurück zum Zitat Sheu BS, Wu MS, Chiu CT, et al. Consensus on the clinical management, screening-to-treat, and surveillance of Helicobacter pylori infection to improve gastric cancer control on a nationwide scale. Helicobacter. 2017;22(3):e12368.CrossRef Sheu BS, Wu MS, Chiu CT, et al. Consensus on the clinical management, screening-to-treat, and surveillance of Helicobacter pylori infection to improve gastric cancer control on a nationwide scale. Helicobacter. 2017;22(3):e12368.CrossRef
14.
Zurück zum Zitat Huang YQ, Gou R, Diao YS, et al. Charlson comorbidity index helps predict the risk of mortality for patients with type 2 diabetic nephropathy. J Zhejiang Univ Sci B. 2014;15:58–66.CrossRef Huang YQ, Gou R, Diao YS, et al. Charlson comorbidity index helps predict the risk of mortality for patients with type 2 diabetic nephropathy. J Zhejiang Univ Sci B. 2014;15:58–66.CrossRef
16.
Zurück zum Zitat Zimmer J, Hentges F, Andres E. Borderline thrombocytopenia or mild idiopathic thrombocytopenic purpura? PLoS Med. 2006;3:e362.CrossRef Zimmer J, Hentges F, Andres E. Borderline thrombocytopenia or mild idiopathic thrombocytopenic purpura? PLoS Med. 2006;3:e362.CrossRef
17.
Zurück zum Zitat Takahashi T, Yujiri T, Shinohara K, et al. Molecular mimicry by Helicobacter pylori CagA protein may be involved in the pathogenesis of H. pylori-associated chronic idiopathic thrombocytopenic purpura. Br J Haematol. 2004;124:91–6.CrossRef Takahashi T, Yujiri T, Shinohara K, et al. Molecular mimicry by Helicobacter pylori CagA protein may be involved in the pathogenesis of H. pylori-associated chronic idiopathic thrombocytopenic purpura. Br J Haematol. 2004;124:91–6.CrossRef
18.
Zurück zum Zitat Bai Y, Wang Z, Bai X, et al. Cross-reaction of antibody against Helicobacter pylori urease B with platelet glycoprotein IIIa and its significance in the pathogenesis of immune thrombocytopenic purpura. Int J Hematol. 2009;89:142–9.CrossRef Bai Y, Wang Z, Bai X, et al. Cross-reaction of antibody against Helicobacter pylori urease B with platelet glycoprotein IIIa and its significance in the pathogenesis of immune thrombocytopenic purpura. Int J Hematol. 2009;89:142–9.CrossRef
19.
Zurück zum Zitat Takeuchi H, Okamoto A. Helicobacter pylori Infection and chronic immune thrombocytopenia. J Clin Med. 2022;11(16):4822.CrossRef Takeuchi H, Okamoto A. Helicobacter pylori Infection and chronic immune thrombocytopenia. J Clin Med. 2022;11(16):4822.CrossRef
20.
Zurück zum Zitat Andres E, Mecili M, Fothergill H, Zimmer J, Vogel T, Maloisel F. Gender-related analysis of the clinical presentation, treatment response and outcome in patients with immune thrombocytopenia. Presse Med. 2012;41:e426–31.CrossRef Andres E, Mecili M, Fothergill H, Zimmer J, Vogel T, Maloisel F. Gender-related analysis of the clinical presentation, treatment response and outcome in patients with immune thrombocytopenia. Presse Med. 2012;41:e426–31.CrossRef
21.
Zurück zum Zitat Andres E. What impact for sex difference on immune thrombocytopenic purpura? Women Health Open J. 2016;2:e1–3.CrossRef Andres E. What impact for sex difference on immune thrombocytopenic purpura? Women Health Open J. 2016;2:e1–3.CrossRef
22.
Zurück zum Zitat Afsharipour S, Nazari R, Douraghi M. Seroprevalence of anti-Helicobacter pylori and anti-cytotoxin-associated gene A antibodies among healthy individuals in center of Iran. Iran J Basic Med Sci. 2014;17:547–52. Afsharipour S, Nazari R, Douraghi M. Seroprevalence of anti-Helicobacter pylori and anti-cytotoxin-associated gene A antibodies among healthy individuals in center of Iran. Iran J Basic Med Sci. 2014;17:547–52.
23.
Zurück zum Zitat Ando T, Tsuzuki T, Mizuno T, et al. Characteristics of Helicobacter pylori-induced gastritis and the effect of H. pylori eradication in patients with chronic idiopathic thrombocytopenic purpura. Helicobacter. 2004;9:443–52.CrossRef Ando T, Tsuzuki T, Mizuno T, et al. Characteristics of Helicobacter pylori-induced gastritis and the effect of H. pylori eradication in patients with chronic idiopathic thrombocytopenic purpura. Helicobacter. 2004;9:443–52.CrossRef
24.
Zurück zum Zitat Chen MJ, Bair MJ, Chen PY, et al. Declining trends of prevalence of Helicobacter pylori infection and incidence of gastric cancer in Taiwan: an updated cross-sectional survey and meta-analysis. Helicobacter. 2022;27(5):e12914.CrossRef Chen MJ, Bair MJ, Chen PY, et al. Declining trends of prevalence of Helicobacter pylori infection and incidence of gastric cancer in Taiwan: an updated cross-sectional survey and meta-analysis. Helicobacter. 2022;27(5):e12914.CrossRef
25.
Zurück zum Zitat Teawtrakul N, Sawadpanich K, Sirijerachai C, Chansung K, Wanitpongpun C. Clinical characteristics and treatment outcomes in patients with Helicobacter pylori-positive chronic immune thrombocytopenic purpura. Platelets. 2014;25:548–51.CrossRef Teawtrakul N, Sawadpanich K, Sirijerachai C, Chansung K, Wanitpongpun C. Clinical characteristics and treatment outcomes in patients with Helicobacter pylori-positive chronic immune thrombocytopenic purpura. Platelets. 2014;25:548–51.CrossRef
26.
Zurück zum Zitat Huang Q, Jia X, Chu Y, Zhang X, Ye H. Helicobacter pylori Infection in geriatric patients: current situation and treatment regimens. Front Med (Lausanne). 2021;8: 713908.CrossRef Huang Q, Jia X, Chu Y, Zhang X, Ye H. Helicobacter pylori Infection in geriatric patients: current situation and treatment regimens. Front Med (Lausanne). 2021;8: 713908.CrossRef
Metadaten
Titel
Eradication therapy may decrease the risk of immune thrombocytopenia after Helicobacter pylori infection: a retrospective cohort study in Taiwan
verfasst von
Mitsuhiro Koseki
Ming‑Jen Sheu
Kang-Ting Tsai
Chung-Han Ho
Hsiao-Hua Liu
Hung-Jung Lin
Chien-Liang Lin
Chien-Cheng Huang
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
BMC Gastroenterology / Ausgabe 1/2023
Elektronische ISSN: 1471-230X
DOI
https://doi.org/10.1186/s12876-023-02664-z

Weitere Artikel der Ausgabe 1/2023

BMC Gastroenterology 1/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.