Skip to main content
Erschienen in: Lasers in Medical Science 1/2024

01.12.2024 | Original Article

Evaluation of the effects of photodynamic therapy consisted of the blue laser and zinc oxide QDs on MDA-MB-231 cancer cells by inhibiting cancer markers and inducing apoptosis

verfasst von: Fatemeh Javani Jouni, Nima Rastegar-Pouyani, Nabaa Najjar, Mohammad Nasirpour, Atefeh Payez, Giti Kashi, Jaber Zafari

Erschienen in: Lasers in Medical Science | Ausgabe 1/2024

Einloggen, um Zugang zu erhalten

Abstract

The increasing number of cancer patients has cast attention on developing new anti-cancer modalities. Photodynamic therapy is a safe anti-cancer approach, which encompasses (1) local administration of a photosensitizer and (2) light irradiation. Zinc oxide (ZnO) quantum dots (QDs) are photosensitizers that can be utilized for this purpose. In the present study, to better appreciate the likely more efficient cytotoxic effect of the combination of ZnO QDs and the visible 470-nm blue light in comparison to the QDs alone, several assays were to be conducted upon breast cancer MDA-MB 231 cells. MTT assay showed that in certain groups the combination displayed higher cytotoxic effects compared to those following QD treatment alone. LDH leakage and lipid peroxidation rates by the combination were significantly higher than treatment with either the blue laser or QDs. Although the combination managed to meaningfully reduce the number of colonies and CAT activity compared to QD treatment, there were no palpable differences between them. Lastly, the combination was able to increase the apoptotic genes, including BAX, TP53, caspase 3, and caspase 9 compared to QD, while, in the case of Bcl-2, an anti-apoptotic gene, none of the groups managed to make any tangible differences on its expression levels. Our findings propose that there may be synergistic effects between the blue laser and QD that can possibly be adopted in anti-cancer therapy in the future. However, further investigations regarding this matter are of the essence.
Literatur
1.
Zurück zum Zitat Trayes KP, Cokenakes SE (2021) Breast cancer treatment. Am Fam Physician 104(2):171–178PubMed Trayes KP, Cokenakes SE (2021) Breast cancer treatment. Am Fam Physician 104(2):171–178PubMed
2.
Zurück zum Zitat dos Santos AF, de Almeida DQ, Terra LF, Baptista MS, Labriola L (2019) Photodynamic therapy in cancer treatment-an update review. J Cancer Metastasis Treat 5(25):1–20 dos Santos AF, de Almeida DQ, Terra LF, Baptista MS, Labriola L (2019) Photodynamic therapy in cancer treatment-an update review. J Cancer Metastasis Treat 5(25):1–20
3.
Zurück zum Zitat Lucky SS, Soo KC, Zhang Y (2015) Nanoparticles in photodynamic therapy. Chem Rev 115(4):1990–2042CrossRefPubMed Lucky SS, Soo KC, Zhang Y (2015) Nanoparticles in photodynamic therapy. Chem Rev 115(4):1990–2042CrossRefPubMed
4.
Zurück zum Zitat Li X, Lovell JF, Yoon J, Chen X (2020) Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol 17(11):657–674CrossRefPubMed Li X, Lovell JF, Yoon J, Chen X (2020) Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat Rev Clin Oncol 17(11):657–674CrossRefPubMed
5.
Zurück zum Zitat Hayata Y, Kato H, Konaka C, Ono J, Takizawa N (1982) Hematoporphyrin derivative and laser photoradiation in the treatment of lung cancer. Chest 81(3):269–277CrossRefPubMed Hayata Y, Kato H, Konaka C, Ono J, Takizawa N (1982) Hematoporphyrin derivative and laser photoradiation in the treatment of lung cancer. Chest 81(3):269–277CrossRefPubMed
6.
Zurück zum Zitat Laws ER Jr, Cortese DA, Kinsey JH, Lagan RT, Anderson RL (1981) Photoradiation therapy in the treatment of malignant brain tumors: a Phase I (feasibility) study. Neurosurgery 9(6):672–678CrossRefPubMed Laws ER Jr, Cortese DA, Kinsey JH, Lagan RT, Anderson RL (1981) Photoradiation therapy in the treatment of malignant brain tumors: a Phase I (feasibility) study. Neurosurgery 9(6):672–678CrossRefPubMed
7.
Zurück zum Zitat Schweitzer VG (1990) Photodynamic therapy for treatment of head and neck cancer. Otolaryngol-Head Neck Surg 102(3):225–232CrossRefPubMed Schweitzer VG (1990) Photodynamic therapy for treatment of head and neck cancer. Otolaryngol-Head Neck Surg 102(3):225–232CrossRefPubMed
8.
Zurück zum Zitat Zafari J, Zadehmodarres S, Jouni FJ, Bagheri-Hosseinabadi Z, Najjar N, Asnaashari M (2020) Investigation into the effect of photodynamic therapy and cisplatin on the cervical cancer cell line (A2780). J Lasers Med Sci 11(Suppl 1):S85CrossRefPubMedPubMedCentral Zafari J, Zadehmodarres S, Jouni FJ, Bagheri-Hosseinabadi Z, Najjar N, Asnaashari M (2020) Investigation into the effect of photodynamic therapy and cisplatin on the cervical cancer cell line (A2780). J Lasers Med Sci 11(Suppl 1):S85CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Detty MR, Gibson SL, Wagner SJ (2004) Current clinical and preclinical photosensitizers for use in photodynamic therapy. J Med Chem 47(16):3897–3915CrossRefPubMed Detty MR, Gibson SL, Wagner SJ (2004) Current clinical and preclinical photosensitizers for use in photodynamic therapy. J Med Chem 47(16):3897–3915CrossRefPubMed
10.
Zurück zum Zitat Song T, Qu Y, Ren Z, Yu S, Sun M, Yu X, Yu X (2021) Synthesis and characterization of polyvinylpyrrolidone-modified ZnO quantum dots and their in vitro photodynamic tumor suppressive action. Int J Mol Sci 22(15):8106CrossRefPubMedPubMedCentral Song T, Qu Y, Ren Z, Yu S, Sun M, Yu X, Yu X (2021) Synthesis and characterization of polyvinylpyrrolidone-modified ZnO quantum dots and their in vitro photodynamic tumor suppressive action. Int J Mol Sci 22(15):8106CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Fowley C, Nomikou N, McHale AP, McCarron PA, McCaughan B, Callan JF (2012) Water soluble quantum dots as hydrophilic carriers and two-photon excited energy donors in photodynamic therapy. J Mater Chem 22(13):6456–6462CrossRef Fowley C, Nomikou N, McHale AP, McCarron PA, McCaughan B, Callan JF (2012) Water soluble quantum dots as hydrophilic carriers and two-photon excited energy donors in photodynamic therapy. J Mater Chem 22(13):6456–6462CrossRef
12.
Zurück zum Zitat Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21(11):1369–1377CrossRefPubMed Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21(11):1369–1377CrossRefPubMed
13.
Zurück zum Zitat Luengas SLP, Marin GH, Aviles K, Acuna RC, Roque G, Nieto FR et al (2014) Enhanced singlet oxygen production by photodynamic therapy and a novel method for its intracellular measurement. Cancer Biother Radiopharm 29(10):435–443PubMedCentral Luengas SLP, Marin GH, Aviles K, Acuna RC, Roque G, Nieto FR et al (2014) Enhanced singlet oxygen production by photodynamic therapy and a novel method for its intracellular measurement. Cancer Biother Radiopharm 29(10):435–443PubMedCentral
14.
Zurück zum Zitat Mohamed WA, Abd El-Gawad HH, Mekkey SD, Galal HR, Labib AA (2021) Zinc oxide quantum dots: confinement size, photophysical and tunning optical properties effect on photodecontamination of industrial organic pollutants. Opt Mater 118:111242CrossRef Mohamed WA, Abd El-Gawad HH, Mekkey SD, Galal HR, Labib AA (2021) Zinc oxide quantum dots: confinement size, photophysical and tunning optical properties effect on photodecontamination of industrial organic pollutants. Opt Mater 118:111242CrossRef
15.
Zurück zum Zitat Samia AC, Dayal S, Burda C (2006) Quantum dot-based energy transfer: perspectives and potential for applications in photodynamic therapy. Photochem Photobiol 82(3):617–625CrossRefPubMed Samia AC, Dayal S, Burda C (2006) Quantum dot-based energy transfer: perspectives and potential for applications in photodynamic therapy. Photochem Photobiol 82(3):617–625CrossRefPubMed
16.
Zurück zum Zitat Fatima H, Jin ZY, Shao Z, Chen XJ (2022) Recent advances in ZnO-based photosensitizers: Synthesis, modification, and applications in photodynamic cancer therapy. J Colloid Interface Sci 621:440–463CrossRefPubMed Fatima H, Jin ZY, Shao Z, Chen XJ (2022) Recent advances in ZnO-based photosensitizers: Synthesis, modification, and applications in photodynamic cancer therapy. J Colloid Interface Sci 621:440–463CrossRefPubMed
17.
Zurück zum Zitat Javani Jouni F, Abdollahi V, Zadehmodarres S, Abbasinia H, Asnaashari M, Zafari J (2022) Combination of cisplatin treatment and photodynamic therapy attenuates cisplatin-induced cell toxicity in A2780 and A2780-CP cervical cancer cell lines. Lasers Med Sci 37:1175–1180 Javani Jouni F, Abdollahi V, Zadehmodarres S, Abbasinia H, Asnaashari M, Zafari J (2022) Combination of cisplatin treatment and photodynamic therapy attenuates cisplatin-induced cell toxicity in A2780 and A2780-CP cervical cancer cell lines. Lasers Med Sci 37:1175–1180
18.
Zurück zum Zitat Zafari J, Karkehabadi H, Nikzad F, Esmailnasab S, Javan ZA, Jouni FJ (2022) Combination of dental capping agents with low level laser therapy increases the cell viability percent of stem cells from apical papilla (SCAPs). Photobiomodul Photomed Laser Surg 41(1):1–7 Zafari J, Karkehabadi H, Nikzad F, Esmailnasab S, Javan ZA, Jouni FJ (2022) Combination of dental capping agents with low level laser therapy increases the cell viability percent of stem cells from apical papilla (SCAPs). Photobiomodul Photomed Laser Surg 41(1):1–7
19.
Zurück zum Zitat Bhattacharjee S (2010) Sites of generation and physicochemical basis of formation of reactive oxygen species in plant cell. React Oxygen Species Antioxid High Plants 1:1–30 Bhattacharjee S (2010) Sites of generation and physicochemical basis of formation of reactive oxygen species in plant cell. React Oxygen Species Antioxid High Plants 1:1–30
20.
Zurück zum Zitat Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57(5):715S-S725CrossRefPubMed Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57(5):715S-S725CrossRefPubMed
21.
Zurück zum Zitat Zafari J, Abbasinia H, Gharehyazi H, Jouni FJ, Jamali S, Razzaghi M (2021) Evaluation of biological activity of different wavelengths of low-level laser therapy on the cancer prostate cell line compared with cisplatin. J Lasers Med Sci 12:1–5 Zafari J, Abbasinia H, Gharehyazi H, Jouni FJ, Jamali S, Razzaghi M (2021) Evaluation of biological activity of different wavelengths of low-level laser therapy on the cancer prostate cell line compared with cisplatin. J Lasers Med Sci 12:1–5
22.
Zurück zum Zitat Zafari J, Javani Jouni F, Jamali S, Marzoghi S, Zadehmodarres S, Razzaghi M (2022) The effect of cisplatin-low-level laser therapy on cell viability and death of LNCaP prostate cancer cell line. Lasers Med Sci 37(2):1283–1288CrossRefPubMed Zafari J, Javani Jouni F, Jamali S, Marzoghi S, Zadehmodarres S, Razzaghi M (2022) The effect of cisplatin-low-level laser therapy on cell viability and death of LNCaP prostate cancer cell line. Lasers Med Sci 37(2):1283–1288CrossRefPubMed
23.
Zurück zum Zitat Ashkbar A, Rezaei F, Attari F, Ashkevarian S (2020) Treatment of breast cancer in vivo by dual photodynamic and photothermal approaches with the aid of curcumin photosensitizer and magnetic nanoparticles. Sci Rep 10(1):21206CrossRefPubMedPubMedCentral Ashkbar A, Rezaei F, Attari F, Ashkevarian S (2020) Treatment of breast cancer in vivo by dual photodynamic and photothermal approaches with the aid of curcumin photosensitizer and magnetic nanoparticles. Sci Rep 10(1):21206CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Stuchinskaya T, Moreno M, Cook MJ, Edwards DR, Russell DA (2011) Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochem Photobiol Sci 10:822–831CrossRefPubMed Stuchinskaya T, Moreno M, Cook MJ, Edwards DR, Russell DA (2011) Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochem Photobiol Sci 10:822–831CrossRefPubMed
25.
Zurück zum Zitat Guo D, Wu C, Jiang H, Li Q, Wang X, Chen B (2008) Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation. J Photochem Photobiol B 93(3):119–126CrossRefPubMed Guo D, Wu C, Jiang H, Li Q, Wang X, Chen B (2008) Synergistic cytotoxic effect of different sized ZnO nanoparticles and daunorubicin against leukemia cancer cells under UV irradiation. J Photochem Photobiol B 93(3):119–126CrossRefPubMed
26.
Zurück zum Zitat Roshini A, Jagadeesan S, Cho Y-J, Lim J-H, Choi KH (2017) Synthesis and evaluation of the cytotoxic and anti-proliferative properties of ZnO quantum dots against MCF-7 and MDA-MB-231 human breast cancer cells. Mater Sci Eng C 81:551–560CrossRef Roshini A, Jagadeesan S, Cho Y-J, Lim J-H, Choi KH (2017) Synthesis and evaluation of the cytotoxic and anti-proliferative properties of ZnO quantum dots against MCF-7 and MDA-MB-231 human breast cancer cells. Mater Sci Eng C 81:551–560CrossRef
27.
Zurück zum Zitat Chekulayeva LV, Shevchuk IN, Chekulayev VA, Ilmarinen K (2006) Hydrogen peroxide, superoxide, and hydroxyl radicals are involved in the phototoxic action of hematoporphyrin derivative against tumor cells. J Environ Pathol Toxicol Oncol 25(1–2):51–70 Chekulayeva LV, Shevchuk IN, Chekulayev VA, Ilmarinen K (2006) Hydrogen peroxide, superoxide, and hydroxyl radicals are involved in the phototoxic action of hematoporphyrin derivative against tumor cells. J Environ Pathol Toxicol Oncol 25(1–2):51–70
28.
Zurück zum Zitat Miao P, Sheng S, Sun X, Liu J, Huang G (2013) Lactate dehydrogenase A in cancer: a promising target for diagnosis and therapy. IUBMB Life 65(11):904–910CrossRefPubMed Miao P, Sheng S, Sun X, Liu J, Huang G (2013) Lactate dehydrogenase A in cancer: a promising target for diagnosis and therapy. IUBMB Life 65(11):904–910CrossRefPubMed
29.
Zurück zum Zitat Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899CrossRefPubMed Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899CrossRefPubMed
30.
Zurück zum Zitat Reth M (2002) Hydrogen peroxide as second messenger in lymphocyte activation. Nat Immunol 3(12):1129–1134CrossRefPubMed Reth M (2002) Hydrogen peroxide as second messenger in lymphocyte activation. Nat Immunol 3(12):1129–1134CrossRefPubMed
31.
Zurück zum Zitat Sen S, Kawahara B, Chaudhuri G (2012) Maintenance of higher H2O2 levels, and its mechanism of action to induce growth in breast cancer cells: important roles of bioactive catalase and PP2A. Free Radical Biol Med 53(8):1541–1551CrossRef Sen S, Kawahara B, Chaudhuri G (2012) Maintenance of higher H2O2 levels, and its mechanism of action to induce growth in breast cancer cells: important roles of bioactive catalase and PP2A. Free Radical Biol Med 53(8):1541–1551CrossRef
32.
Zurück zum Zitat Braselmann H, Michna A, Heß J, Unger K (2015) CFAssay: statistical analysis of the colony formation assay. Radiat Oncol 10:1–6CrossRef Braselmann H, Michna A, Heß J, Unger K (2015) CFAssay: statistical analysis of the colony formation assay. Radiat Oncol 10:1–6CrossRef
33.
Zurück zum Zitat Olivier M, Hollstein M, Hainaut P (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2(1):a001008CrossRefPubMedPubMedCentral Olivier M, Hollstein M, Hainaut P (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2(1):a001008CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303(5660):1010–1014CrossRefPubMed Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303(5660):1010–1014CrossRefPubMed
35.
36.
Zurück zum Zitat Boland K, Flanagan L, Prehn JH (2013) Paracrine control of tissue regeneration and cell proliferation by Caspase-3. Cell Death Dis 4(e725):1–6 Boland K, Flanagan L, Prehn JH (2013) Paracrine control of tissue regeneration and cell proliferation by Caspase-3. Cell Death Dis 4(e725):1–6
37.
Zurück zum Zitat Luo X, O’Neill KL, Huang K (2020) The third model of Bax/Bak activation: a Bcl-2 family feud finally resolved? F1000Res 9:1–15 Luo X, O’Neill KL, Huang K (2020) The third model of Bax/Bak activation: a Bcl-2 family feud finally resolved? F1000Res 9:1–15
Metadaten
Titel
Evaluation of the effects of photodynamic therapy consisted of the blue laser and zinc oxide QDs on MDA-MB-231 cancer cells by inhibiting cancer markers and inducing apoptosis
verfasst von
Fatemeh Javani Jouni
Nima Rastegar-Pouyani
Nabaa Najjar
Mohammad Nasirpour
Atefeh Payez
Giti Kashi
Jaber Zafari
Publikationsdatum
01.12.2024
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 1/2024
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-024-03977-5

Weitere Artikel der Ausgabe 1/2024

Lasers in Medical Science 1/2024 Zur Ausgabe