Skip to main content
Erschienen in: Journal of Orthopaedic Surgery and Research 1/2019

Open Access 01.12.2019 | Research article

Jigless knotless internal brace technique for acute Achilles tendon rupture: a case series study

verfasst von: Po-Yen Ko, Ming-Tung Huang, Chia-Lung Li, Wei-Ren Su, I-Ming Jou, Po-Ting Wu

Erschienen in: Journal of Orthopaedic Surgery and Research | Ausgabe 1/2019

Abstract

Purpose

To mitigate the risk of poor wound healing and of infection associated with the open repair of Achilles tendon midsubstance ruptures, minimally invasive techniques have been developed. We report our preliminary results after reviewing our “jigless knotless internal brace technique.”

Methods

Patients were placed in prone position and a transverse 3-cm incision was made proximal to the palpable ruptured end. The proximal ruptured end was pulled out, gently debrided, and sutured using Krackow locking loops. Percutaneous sutures were crisscrossed through the distal tendon stump and looped around the Krackow sutures over the proximal stump. The ipsilateral Krackow sutures and the contralateral crisscrossed sutures were subcutaneously passed through two mini-incisions over the posterior calcaneus tuberosity and seated at the tuberosity with two 4.5-mm knotless suture anchors. All patients underwent the same post-operative rehabilitation protocol and regular follow-ups for at least 1 year.

Results

We recruited 10 patients (mean age, 37.3 years) who scored 100 points on the American Orthopaedic Foot and Ankle Society (AOFAS) scale, and who returned to their preoperative exercise levels 1-year post-operatively with no complications.

Conclusion

Our method is simple, effective, and requires no special tools. It might be a reliable option for Achilles tendon repair.

Level of evidence

III
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AOFAS scale
American Orthopaedic Foot and Ankle Society scale
FWB
Full weight bearing
MIS
Minimally invasive surgery

Introduction

Although the Achilles tendon is the human body’s strongest tendon, it is also the tendon most frequently ruptured [1]. Over the past quarter-century, the rupture incidence rate has significantly increased [24]. A Danish national study [3] reported more than 33,000 ruptures (males 47/100,000; females 17/100,000).
Achilles tendon management options have been reported: non-operative management with a short leg-cast, a brace in an equinus position, and surgical repair [46]. There was no consensus on the best option [710]. Some studies have reported lower rerupture rates in operative groups [11, 12], but others have claimed nearly identical rerupture rates in both operative and non-operative groups [13]. For active young athletes who must quickly return to competition, surgery is indicated to avoid muscle atrophy after non-operative management [14]. There are several operative Achilles repair methods: percutaneous and minimally invasive surgery (MIS), and open repair with or without augmentation. One high-quality meta-analysis [15] reported no significant differences in deep infection, rerupture, tissue adhesion, or nerve injury rates between minimally invasive surgery (MIS) and open surgery; MIS, however, has better subjective outcomes and a significantly lower superficial infection rate [15]. Despite these benefits, injuring the sural nerve during MIS is still a risk [1618].
A recent cadaver study reported that the sural nerve would crosses the lateral border of the Achilles tendon 8- to 10-cm proximal to the superior border of the calcaneal tuberosity in most cases [19]. Therefore, a surgeon can avoid injuring the sural nerve by doing all percutaneous procedures within 8 cm proximal to the calcaneal tuberosity. Hence, we have developed a novel Achilles tendon surgical method called the “jigless knotless internal brace technique” to repair the Achilles tendon. We report our preliminary results using this technique.

Materials and methods

Patients

Written informed consent was obtained from all patients. All procedures were approved by the National Cheng Kung University Hospital’s (NCKUH) Institutional Review Board. Consecutive patients treated for acute Achilles tendon injury at NCKUH between January 2015 and July 2017were evaluated. Our inclusion criteria were a positive Simmonds test (aka Thompson test or Simmonds-Thompson test) and a palpable defect in the Achilles tendon corresponding to a midsubstance rupture. Surgery occurred within 2 weeks post-injury. The exclusion criteria were a cutting or penetrating injury, an injury more than 2 weeks old, a neurological or a psychiatric disorder, pregnancy, being less than 18 years old, an incomplete medical record, an inadequate follow-up, autoimmune or connective tissue diseases (e.g., rheumatoid arthritis), radiotherapy or chemotherapy, morbid obesity, and previous Achilles tendon surgery. Finally, 10 patients (men, 9; women, 1; minimum follow-up, 1 year; mean age, 37.3 years; age range, 20–53 years; mean body mass index [BMI], 24.5; BMI range, 22.1–29.7) were enrolled. All enrolled patients had undergone the same post-operative rehabilitation protocol, and all returned to our hospital for clinical follow-ups 2, 4, 6, and 8 weeks, and 3, 4, 6, and 12 months post-surgery.

Surgical technique

After a patient had been spinally anesthetized, they were put on the table in the prone position, and an air tourniquet was placed on the thigh. The tendon gap was palpated to identify the ruptured end. A 3-cm long transverse incision was made 2 cm proximal to the ruptured end. The proximal stump was gently pulled out through the transverse incision with the knee in flexion position after the stump had been freed from the surrounding paratenon and plantaris tendon, if it was present, using a 1-inch ribbon malleable retractor. The hematoma was completely debrided. Krackow locking loops were used on both sides of the soleus muscle and healthy tendon of the proximal stump (Hi-Fi® Suture; CONMED Corporate Headquarters, Utica, NY, USA) (Fig. 1a, d). An Allis clamp (forceps) was subcutaneously inserted through the transverse incision in maximum ankle plantar flexion to maintain the tension of the distal stump, and then the percutaneous suture was crisscrossed through the distal stump (CONMED) (Fig. 1b, d). The end of the distal stump suture was subcutaneously passed through the transverse incision (Fig. 1c) and then looped through the proximal stump Krackow locking loop as the pulley (Fig. 2a, d). Two 0.5-cm long vertical incisions were bilaterally made on the posterior calcaneal tuberosity, and then the bird-beak arthroscopic suture passer was subcutaneously passed from the vertical incision to the transverse incision (Fig. 2b, d). The subcutaneous tunnel must be empty to avoid skin dimpling in the subsequent suture passage. The ipsilateral Krackow suture end and contralateral crisscross suture end were passed down to the distal mini-vertical incision (Fig. 2c). The sutures were seated at the posterior calcaneal tuberosity with two 4.5-mm suture anchors (PopLok® Knotless Suture Anchors; CONMED) (Fig. 3a, d). The tendon rupture gap became smooth and impalpable when the sutures were pulled to symmetrically proper tension in 30° of knee flexion and ankle plantar flexion. The anchors were then locked. A 3-0 absorbable running stitch (Monocryl; Ethicon, Johnson & Johnson Medical N.V., Belgium) was used at the epitenon (Fig. 3b). The wound was irrigated and closed layer by layer with 3-0 and 4-0 monocryl subcutaneous sutures and finally closed with reinforced antimicrobial skin closures (Steri-Strips; 3 M Health Care, St. Paul, MN, USA). The Achilles tendon tension was checked with the leg erect immediately post-surgery (Fig. 3c).

Rehabilitation protocol

Patients were advised to do an active ankle-pumping exercise, to do a non-weight-bearing range of motion exercise for at least 1 h a day, and to walk without a cast or splint protection, all immediately post-surgery. They were also advised to walk full weight bearing (FWB) with crutches and wearing shoes with an added heel wedge (3 cm). One-week post-surgery, patients were allowed to begin walking without ambulatory aids (canes, crutches, walkers, etc.). Two weeks post-surgery, we recommended that they reduce the added heel wedge height by 1 cm per week. Muscle power training with a concurrent heel-raising exercise began 1 month post-surgery, and 6 weeks later, patients were permitted to return to exercise as tolerable.

Results

The mean time between injury and surgery was 4.3 days (range, 1–9 days). The mean surgery duration was 22 min (range, 18–36 min). The transverse incision averaged 6.3 cm (range, 5.5–7 cm) proximal to the calcaneal tuberosity.

Complications

There were no serious complications in the present study. All incisions healed well and without scar adhesions or superficial or deep infections (Fig. 4a). There were no sural nerve injuries, reruptures, deep vein thromboses, or pulmonary embolisms.

Functional outcomes

After 1 post-operative year, all 10 patients scored 100 points on the American Orthopaedic Foot and Ankle Society (AOFAS) scale, and they returned to their preoperative exercise levels. Patients needed a mean of 7.5 days (range, 3–11 days) to walk FWB without crutches and they needed a mean of 24.5 days (range, 21–28 days) to walk with a full ankle-joint range of motion (Fig. 4b, c). To stand with a raised heel without an aid, they needed an average of 35 days (range, 28–42 days) (Fig. 4d). All patients returned to their jobs, which needed an average of 45.5 days (range, 35–63 days), and to their previous athletic exercise level, which needed a mean of 147.5 days (range, 84–210 days).

Discussion

There is still no consensus about the best way to manage acute Achilles tendon ruptures [710]. In active young athletes who want to quickly return to competition, surgery is indicated to avoid muscle atrophy after non-surgical treatments [14]. Because of improvements in surgical techniques, multiple MIS methods have been developed, and laboratory studies have reported that tensile strength in the MIS group was comparable with that in the open surgery group [20]. A retrospective series [21] reported that MIS had returned patients to baseline physical activities significantly sooner than open repair did. However, sural nerve injury continues to be the major concern when the Achilles tendon is repaired using MIS [1618].
A cadaver study [17] reported that the sural nerve crosses the lateral border of the Achilles tendon 8.28–8.96 cm proximal to the calcaneal tuberosity, which means that surgeons can usually avoid injuring the sural nerve if it is less than 8 cm proximal to the calcaneal tuberosity. Thus, our modified MIS used Krackow sutures at the proximal stump and percutaneous sutures at the distal stump.
In our series, the mean transverse incision was 6.3 cm (range, 5.5–7 cm) proximal to the calcaneal tuberosity, which corresponded with the common rupture sites and prevented iatrogenic injury of the sural nerve. Furthermore, one study [22] reported that the posterior longitudinal incision was in a less vascularized zone of the skin that covers the Achilles tendon. In our technique, the incisions were transversely proximal to the rupture site to prevent wounds located in less vascularized zones if the incisions are posterolongitudinal. Our patients had no incision complications. The transverse incisions were 2 cm proximal to the ruptured end; thus, we were able to gently pull out the proximal stump in the knee flexion position. The pulled-out stump with the healthy tendon part was long enough to let us use Krackow sutures, which are simple, commonly used, and strong enough to permit early post-operative rehabilitation [23].
Two other studies [10, 24] described the internal brace concepts in Achilles tendon repair and reported excellent outcomes. To preserve the proximal stump blood supply, these two studies made additional incisions at the gastrocnemius myotendinous junction. We, however, used Krackow sutures at the healthy tendon and additional soleus muscle. There were no reruptures in our case series; thus, the blood supply was not obstructed for tendon healing. Other internal brace techniques have been reported [25, 26], but those studies required specially designed suture jigs, which we did not.
Early ankle range-of-motion improved after early post-operative FWB walking [27]. Another study [28] reported a greater risk of ankle stiffness in the non-weight-bearing group. A recent meta-analysis [29] claimed that early functional rehabilitation improved patient satisfaction and facilitated an earlier return to normal everyday activity after Achilles tendon rupture repair than post-operative immobilization did. Furthermore, there were no significant differences in major complications between the two groups [29]. These findings, which agree with ours, indicate that early stretching and stressing of the repaired tendon improve functional outcomes. Variability in rehabilitation protocols, surgical repair techniques, and adopted functional outcome parameters yielded a variety of differing outcomes and complications (Table 1). However, more studies now emphasize early weight-bearing and ankle range-of-motion after adequate repair [10, 14, 25, 27]. Despite differences in the protocols in the above studies, there are no significant differences between our results.
Table 1
Literature review on post operation rehabilitation protocol and functional outcome in Achilles tendon rupture
Study
Year
Study type
Surgical method
Rehabilitation protocol
Functional outcome
Complication
Valkering KP et al. [27]
2016
Randomized control FWB [mobilized full weight bearing group] (n = 27) compared with IMM [immobilized non-weight-bearing group] (n = 29)
Longitudinal open incision; end to end repair with Kessler sutures
FWB:
0–2nd week: FWB with adjustable orthosis and crutch; 15–30° range of motion in plantar flexion
3rd–6th weeks: 5–45°range of motion in plantar flexion
IMM:
0–2nd week: non-weight-bearing with crutch; ankle immobilized in 30°of equinus position.
3rd–6th weeks: FWB with crutch and wearing the heel added orthosis.
Improved early ankle range of motion (6 months); no difference in following 1 year
One patient in IMM group had traumatic rerupture.
Olsson N et al. [14]
2013
Randomized control
Surgical group (longitudinal wound incision, end to end repair with a modified Kessler technique) (n = 43) compared with non-surgical group (n = 45)
Surgical group: 0–2nd week: ankle immobilized in a pneumatic walker brace with heel pads producing a plantarflexion approximately 20°. FWB with crutch was allowed.
3rd week~: Early active range of motion and strength training.
Non-surgical group:
0–2nd week: The same as the surgical group.
3rd–8th weeks: Immobilized in the brace for 8 weeks.
Surgical group was significantly superior in the drop counter movement jump and hopping in following 1 year. No significant differences between the groups in symptoms, physical activity level, or quality of life.
Six superficial infections in the surgical group.
Sarman H et al. [24]
2016
Retrospective analysis.
Semi-invasive internal splinting (SIIS group, n = 24) compared with open end to end repair with Krackow sutures (open group, n = 21)
Ankle immobilized in 30° plantar flexion with dorsal splint after operation. No further rehabilitation protocol was available in this article.
No significant differences between the groups in functional outcome in 1 year following.
One sural nerve injury in SIIS group (recovered 6 months later).
Two deep wound infection in open surgery; one underwent debridement, and another one required additional soft tissue coverage.
Bevoni R et al. [8]
2014
Case series
Longitudinal open incision; triple-bundle technique (n = 66)
0–2nd week: non-weight-bearing with walking boot.
3rd week: partial weight bearing with boot locked in neutral position
4th–5th weeks: partial weight bearing with boot unlocked in in 20–30°of plantar flexion.
6th week: partial weight bearing without boot
8th week: full weight bearing
The mean American Orthopaedic Foot and Ankle Society scale score (AOFAS) at 36 months was 93.9 ± 5.9
One patient had a significant amount of scar adhesion.
McWilliam JR et al. [25]
2016
Case series
Internal brace (IB) with percutaneous Achilles repair system
(PARS; Arthrex Inc., Naples, FL) (n = 34)
0–1st week: Crutch-aided FWB with walking boot with heel wedge; 1/4 wedge removed every two weeks.
2nd–3rd weeks: FWB with boot only, active dorsiflexion of the ankle is allowed without passive dorsiflexion.
4th–5th weeks: Passive dorsiflexion is allowed to neutral.
6th–7th weeks: Remove boot
8th week: Passive dorsiflexion beyond neutral.
The Achilles tendon total rupture score was 94 ± 14 in following range: 24–36 months
Nil
Yin L et al. [10]
2017
Case series
Panda rope bridge technique (n = 11)
0–1st week: Active range of motion without weight-bearing.
2nd–6th weeks: FWB walking without crutches while wearing a 30-mm-height heel, which decreased 5 mm once a week.
7th–8th weeks: muscle strengthening exercises.
9th week: advised to take part in athletic exercises gradually
The mean AOFAS score at 12 months was 100.
Nil
Current study
2019
Case series
Jigless knotless internal brace technique (n = 10)
0–1st week: FWB with crutches and wearing shoes with an added heel wedge (3 cm); non-weight-bearing range of motion exercise at least 1 h a day.
2nd week: walking without ambulatory aids was allowed.
3rd–5th weeks: reducing the added heel wedge height by 1 cm per week.
5th–6th weeks: heel-raising exercise
7th week: exercise as tolerable
The mean AOFAS score at 12 months was 100.
Nil
The present study appears to be the first to report using a jigless knotless internal brace to repair acute Achilles tendon ruptures. We found, after 1 year of follow-ups, that this simple technique was efficacious.

Limitations

Our study has limitations. First, our sample was small: only 10 cases. Second, we did not compare our sample with a control group that had been treated using another repair technique. Third, the follow-up duration was short. Fourth, the number of complications might not be realistically representative because the analyzed sample was small. Further studies with larger samples, longer follow-ups, and a control group are needed to confirm our findings.

Conclusion

Our jigless knotless internal brace technique is simple and was efficacious. Specially designed tools were unnecessary. There were few soft tissue complications. Functional recovery was facilitated because the blood supply to the Achilles tendon was preserved, and because of the strong suture structure. Thus, this technique might be a reliable option for repairing ruptured Achilles tendons.

Acknowledgements

We are grateful to Skeleton Materials and Bio-compatibility Core Lab, Research Center of Clinical Medicine, National Cheng Kung University Hospital, for the assistance of this study. We thank the Taiwan National Science Council (grants: MOST 107-2314-B-006-065-MY3, MOST-107-2622-E-006-019-CC2, MOST 106-2314-B-006-004, and MOST 108-2314-B-006-011-MY2) and National Cheng Kung University Hospital (grants: NCKUH-107-02-024 and NCKUH-106-03-030) for funding this work. We are grateful to Ying-Chiu Lin and Yu-Ying Chen for their excellent assistance.
All procedures were approved by our hospital’s Institutional Review Board.
IRB: Human Experiment and Ethics Committee (HEEC) of National Cheng Kung University Hospital (NCKUH)
IRB No.: B-ER-106-256
Not applicable

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Suchak AA, Bostick G, Reid D, et al. The incidence of Achilles tendon ruptures in Edmonton, Canada. Foot Ankle Int. 2005;26(11):932–6.PubMedCrossRef Suchak AA, Bostick G, Reid D, et al. The incidence of Achilles tendon ruptures in Edmonton, Canada. Foot Ankle Int. 2005;26(11):932–6.PubMedCrossRef
2.
Zurück zum Zitat Lantto I, Heikkinen J, Flinkkila T, et al. Epidemiology of Achilles tendon ruptures: increasing incidence over a 33-year period. Scand J Med Sci Sports. 2015;25(1):e133–8.PubMedCrossRef Lantto I, Heikkinen J, Flinkkila T, et al. Epidemiology of Achilles tendon ruptures: increasing incidence over a 33-year period. Scand J Med Sci Sports. 2015;25(1):e133–8.PubMedCrossRef
3.
Zurück zum Zitat Ganestam A, Kallemose T, Troelsen A, et al. Increasing incidence of acute Achilles tendon rupture and a noticeable decline in surgical treatment from 1994 to 2013. A nationwide registry study of 33,160 patients. Knee Surg Sports Traumatol Arthrosc. 2016;24(12):3730–7.PubMedCrossRef Ganestam A, Kallemose T, Troelsen A, et al. Increasing incidence of acute Achilles tendon rupture and a noticeable decline in surgical treatment from 1994 to 2013. A nationwide registry study of 33,160 patients. Knee Surg Sports Traumatol Arthrosc. 2016;24(12):3730–7.PubMedCrossRef
4.
Zurück zum Zitat Huttunen TT, Kannus P, Rolf C, et al. Acute Achilles tendon ruptures: incidence of injury and surgery in Sweden between 2001 and 2012. Am J Sports Med. 2014;42(10):2419–23.PubMedCrossRef Huttunen TT, Kannus P, Rolf C, et al. Acute Achilles tendon ruptures: incidence of injury and surgery in Sweden between 2001 and 2012. Am J Sports Med. 2014;42(10):2419–23.PubMedCrossRef
5.
Zurück zum Zitat Khan RJ, Fick D, Keogh A, et al. Treatment of acute Achilles tendon ruptures. A meta-analysis of randomized, controlled trials. J Bone Joint Surg Am. 2005;87(10):2202–10.PubMed Khan RJ, Fick D, Keogh A, et al. Treatment of acute Achilles tendon ruptures. A meta-analysis of randomized, controlled trials. J Bone Joint Surg Am. 2005;87(10):2202–10.PubMed
6.
Zurück zum Zitat Carmont MR, Rossi R, Scheffler S, et al. Percutaneous & mini invasive Achilles tendon repair. Sports Med Arthrosc Rehabil Ther Technol. 2011;3:28.PubMedPubMedCentralCrossRef Carmont MR, Rossi R, Scheffler S, et al. Percutaneous & mini invasive Achilles tendon repair. Sports Med Arthrosc Rehabil Ther Technol. 2011;3:28.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Uquillas CA, Guss MS, Ryan DJ, et al. Everything Achilles: knowledge update and current concepts in management: AAOS Exhibit Selection. J Bone Joint Surg Am. 2015;97(14):1187–95.PubMedCrossRef Uquillas CA, Guss MS, Ryan DJ, et al. Everything Achilles: knowledge update and current concepts in management: AAOS Exhibit Selection. J Bone Joint Surg Am. 2015;97(14):1187–95.PubMedCrossRef
8.
Zurück zum Zitat Bevoni R, Angelini A, D’Apote G, et al. Long term results of acute Achilles repair with triple-bundle technique and early rehabilitation protocol. Injury. 2014;45(8):1268–74.PubMedCrossRef Bevoni R, Angelini A, D’Apote G, et al. Long term results of acute Achilles repair with triple-bundle technique and early rehabilitation protocol. Injury. 2014;45(8):1268–74.PubMedCrossRef
9.
Zurück zum Zitat Avina Valencia JA, Guillen Alcala MA. Repair of acute Achilles tendon rupture. Comparative study of two surgical techniques. Acta Ortop Mex. 2009;23(3):125–9.PubMed Avina Valencia JA, Guillen Alcala MA. Repair of acute Achilles tendon rupture. Comparative study of two surgical techniques. Acta Ortop Mex. 2009;23(3):125–9.PubMed
10.
Zurück zum Zitat Yin L, Wu Y, Ren C, et al. Treatment of acute Achilles tendon rupture with the panda rope bridge technique. Injury. 2018;49(3):726–9.PubMedCrossRef Yin L, Wu Y, Ren C, et al. Treatment of acute Achilles tendon rupture with the panda rope bridge technique. Injury. 2018;49(3):726–9.PubMedCrossRef
11.
Zurück zum Zitat Keating JF, Will EM. Operative versus non-operative treatment of acute rupture of tendo Achillis: a prospective randomised evaluation of functional outcome. J Bone Joint Surg Br. 2011;93(8):1071–8.PubMedCrossRef Keating JF, Will EM. Operative versus non-operative treatment of acute rupture of tendo Achillis: a prospective randomised evaluation of functional outcome. J Bone Joint Surg Br. 2011;93(8):1071–8.PubMedCrossRef
12.
Zurück zum Zitat Huang J, Wang C, Ma X, et al. Rehabilitation regimen after surgical treatment of acute Achilles tendon ruptures: a systematic review with meta-analysis. Am J Sports Med. 2015;43(4):1008–16.PubMedCrossRef Huang J, Wang C, Ma X, et al. Rehabilitation regimen after surgical treatment of acute Achilles tendon ruptures: a systematic review with meta-analysis. Am J Sports Med. 2015;43(4):1008–16.PubMedCrossRef
13.
Zurück zum Zitat Soroceanu A, Sidhwa F, Aarabi S, et al. Surgical versus nonsurgical treatment of acute Achilles tendon rupture: a meta-analysis of randomized trials. J Bone Joint Surg Am. 2012;94(23):2136–43.PubMedPubMedCentralCrossRef Soroceanu A, Sidhwa F, Aarabi S, et al. Surgical versus nonsurgical treatment of acute Achilles tendon rupture: a meta-analysis of randomized trials. J Bone Joint Surg Am. 2012;94(23):2136–43.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Olsson N, Silbernagel KG, Eriksson BI, et al. Stable surgical repair with accelerated rehabilitation versus nonsurgical treatment for acute Achilles tendon ruptures: a randomized controlled study. Am J Sports Med. 2013;41(12):2867–76.PubMedCrossRef Olsson N, Silbernagel KG, Eriksson BI, et al. Stable surgical repair with accelerated rehabilitation versus nonsurgical treatment for acute Achilles tendon ruptures: a randomized controlled study. Am J Sports Med. 2013;41(12):2867–76.PubMedCrossRef
15.
Zurück zum Zitat McMahon SE, Smith TO, Hing CB. A meta-analysis of randomised controlled trials comparing conventional to minimally invasive approaches for repair of an Achilles tendon rupture. Foot Ankle Surg. 2011;17(4):211–7.PubMedCrossRef McMahon SE, Smith TO, Hing CB. A meta-analysis of randomised controlled trials comparing conventional to minimally invasive approaches for repair of an Achilles tendon rupture. Foot Ankle Surg. 2011;17(4):211–7.PubMedCrossRef
16.
Zurück zum Zitat Paavola M, Orava S, Leppilahti J, et al. Chronic Achilles tendon overuse injury: complications after surgical treatment. An analysis of 432 consecutive patients. Am J Sports Med. 2000;28(1):77–82.PubMedCrossRef Paavola M, Orava S, Leppilahti J, et al. Chronic Achilles tendon overuse injury: complications after surgical treatment. An analysis of 432 consecutive patients. Am J Sports Med. 2000;28(1):77–82.PubMedCrossRef
17.
Zurück zum Zitat Citak M, Knobloch K, Albrecht K, et al. Anatomy of the sural nerve in a computer-assisted model: implications for surgical minimal-invasive Achilles tendon repair. Br J Sports Med. 2007;41(7):456–8 discussion 8.PubMedPubMedCentralCrossRef Citak M, Knobloch K, Albrecht K, et al. Anatomy of the sural nerve in a computer-assisted model: implications for surgical minimal-invasive Achilles tendon repair. Br J Sports Med. 2007;41(7):456–8 discussion 8.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Klein W, Lang DM, Saleh M. The use of the Ma-Griffith technique for percutaneous repair of fresh ruptured tendo Achillis. Chir Organi Mov. 1991;76(3):223–8.PubMed Klein W, Lang DM, Saleh M. The use of the Ma-Griffith technique for percutaneous repair of fresh ruptured tendo Achillis. Chir Organi Mov. 1991;76(3):223–8.PubMed
19.
Zurück zum Zitat Blackmon JA, Atsas S, Clarkson MJ, et al. Locating the sural nerve during calcaneal (Achilles) tendon repair with confidence: a cadaveric study with clinical applications. J Foot Ankle Surg. 2013;52(1):42–7.PubMedCrossRef Blackmon JA, Atsas S, Clarkson MJ, et al. Locating the sural nerve during calcaneal (Achilles) tendon repair with confidence: a cadaveric study with clinical applications. J Foot Ankle Surg. 2013;52(1):42–7.PubMedCrossRef
20.
Zurück zum Zitat Ismail M, Karim A, Shulman R, et al. The Achillon Achilles tendon repair: is it strong enough? Foot Ankle Int. 2008;29(8):808–13.PubMedCrossRef Ismail M, Karim A, Shulman R, et al. The Achillon Achilles tendon repair: is it strong enough? Foot Ankle Int. 2008;29(8):808–13.PubMedCrossRef
21.
Zurück zum Zitat Hsu AR, Jones CP, Cohen BE, et al. Clinical outcomes and complications of percutaneous Achilles repair system versus open technique for acute Achilles tendon ruptures. Foot Ankle Int. 2015;36(11):1279–86.PubMedCrossRef Hsu AR, Jones CP, Cohen BE, et al. Clinical outcomes and complications of percutaneous Achilles repair system versus open technique for acute Achilles tendon ruptures. Foot Ankle Int. 2015;36(11):1279–86.PubMedCrossRef
22.
Zurück zum Zitat Yepes H, Tang M, Geddes C, et al. Digital vascular mapping of the integument about the Achilles tendon. J Bone Joint Surg Am. 2010;92(5):1215–20.PubMedCrossRef Yepes H, Tang M, Geddes C, et al. Digital vascular mapping of the integument about the Achilles tendon. J Bone Joint Surg Am. 2010;92(5):1215–20.PubMedCrossRef
23.
Zurück zum Zitat Maffulli N, Longo UG, Oliva F, et al. Minimally invasive surgery of the Achilles tendon. Orthop Clin North Am. 2009;40(4):491–8 viii-ix.PubMedCrossRef Maffulli N, Longo UG, Oliva F, et al. Minimally invasive surgery of the Achilles tendon. Orthop Clin North Am. 2009;40(4):491–8 viii-ix.PubMedCrossRef
24.
Zurück zum Zitat Sarman H, Muezzinoglu US, Memisoglu K, et al. Comparison of semi-invasive “internal splinting” and open suturing techniques in Achilles tendon rupture surgery. J Foot Ankle Surg. 2016;55(5):965–70.PubMedCrossRef Sarman H, Muezzinoglu US, Memisoglu K, et al. Comparison of semi-invasive “internal splinting” and open suturing techniques in Achilles tendon rupture surgery. J Foot Ankle Surg. 2016;55(5):965–70.PubMedCrossRef
25.
Zurück zum Zitat McWilliam JR, Mackay G. The internal brace for midsubstance Achilles ruptures. Foot Ankle Int. 2016;37(7):794–800.PubMedCrossRef McWilliam JR, Mackay G. The internal brace for midsubstance Achilles ruptures. Foot Ankle Int. 2016;37(7):794–800.PubMedCrossRef
26.
Zurück zum Zitat Liechti DJ, Moatshe G, Backus JD, et al. A percutaneous knotless technique for acute Achilles tendon ruptures. Arthrosc Tech. 2018;7(2):e171–e8.PubMedPubMedCentralCrossRef Liechti DJ, Moatshe G, Backus JD, et al. A percutaneous knotless technique for acute Achilles tendon ruptures. Arthrosc Tech. 2018;7(2):e171–e8.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Valkering KP, Aufwerber S, Ranuccio F, et al. Functional weight-bearing mobilization after Achilles tendon rupture enhances early healing response: a single-blinded randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. 2017;25(6):1807–16.PubMedCrossRef Valkering KP, Aufwerber S, Ranuccio F, et al. Functional weight-bearing mobilization after Achilles tendon rupture enhances early healing response: a single-blinded randomized controlled trial. Knee Surg Sports Traumatol Arthrosc. 2017;25(6):1807–16.PubMedCrossRef
28.
Zurück zum Zitat Barfod KW, Bencke J, Lauridsen HB, et al. Nonoperative, dynamic treatment of acute Achilles tendon rupture: influence of early weightbearing on biomechanical properties of the plantar flexor muscle-tendon complex-a blinded, randomized, controlled trial. J Foot Ankle Surg. 2015;54(2):220–6.PubMedCrossRef Barfod KW, Bencke J, Lauridsen HB, et al. Nonoperative, dynamic treatment of acute Achilles tendon rupture: influence of early weightbearing on biomechanical properties of the plantar flexor muscle-tendon complex-a blinded, randomized, controlled trial. J Foot Ankle Surg. 2015;54(2):220–6.PubMedCrossRef
29.
Zurück zum Zitat McCormack R, Bovard J. Early functional rehabilitation or cast immobilisation for the postoperative management of acute Achilles tendon rupture? A systematic review and meta-analysis of randomised controlled trials. Br J Sports Med. 2015;49(20):1329–35.PubMedCrossRef McCormack R, Bovard J. Early functional rehabilitation or cast immobilisation for the postoperative management of acute Achilles tendon rupture? A systematic review and meta-analysis of randomised controlled trials. Br J Sports Med. 2015;49(20):1329–35.PubMedCrossRef
Metadaten
Titel
Jigless knotless internal brace technique for acute Achilles tendon rupture: a case series study
verfasst von
Po-Yen Ko
Ming-Tung Huang
Chia-Lung Li
Wei-Ren Su
I-Ming Jou
Po-Ting Wu
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
Journal of Orthopaedic Surgery and Research / Ausgabe 1/2019
Elektronische ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-019-1471-8

Weitere Artikel der Ausgabe 1/2019

Journal of Orthopaedic Surgery and Research 1/2019 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

TEP mit Roboterhilfe führt nicht zu größerer Zufriedenheit

15.05.2024 Knie-TEP Nachrichten

Der Einsatz von Operationsrobotern für den Einbau von Totalendoprothesen des Kniegelenks hat die Präzision der Eingriffe erhöht. Für die postoperative Zufriedenheit der Patienten scheint das aber unerheblich zu sein, wie eine Studie zeigt.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.