Skip to main content
Erschienen in: Odontology 2/2024

17.11.2023 | Original Article

Mechanical properties of simulated dentin caries treated with metal cations and l-ascorbic acid 2-phosphate

verfasst von: Mohammad Ali Saghiri, Julia Vakhnovetsky, Amir Abdolmaleki, Elham Samadi, Fatereh Samadi, Salvatore Napoli, Michael Conte, Steven M. Morgano

Erschienen in: Odontology | Ausgabe 2/2024

Einloggen, um Zugang zu erhalten

Abstract

This pH cycling study aimed to investigate the effects of l-Ascorbic acid 2-phosphate (AA2P) salts of Mg, Zn, Mn, Sr, and Ba on the surface microhardness, compressive strength, diametral tensile strength (DTS), and solubility of root canal dentin. 186 cylindrical dentin specimens from 93 teeth were fortified with optimal concentrations of AA2P salts of Mg (0.18 mM), Zn (5.3 µM), Mn (2.2 × 10–8 M), Sr (1.8 µM), and Ba (1.9 µM). Saline was used as the control group. These dentin specimens underwent a 3-day cycling process simulating dentin caries formation through repeated sequences of demineralization and remineralization. Surface microhardness at 100 and 500 µm depths (n = 10/subgroup), scanning electron microscopy (n = 3/group), compressive strength (n = 10/group), DTS (n = 6/group), and solubility (n = 5/group) tests were performed to analyze the dentin specimens. Data were analyzed using Kolmogorov–Smirnov, one-way ANOVA, and Post Hoc Tukey tests (p < 0.05). The control group had significantly lower microhardness at both depths (p < 0.001), reduced DTS (p = 0.001), decreased compressive strength (p < 0.001), and higher weight loss (p < 0.001) than all other groups. The Sr group had the highest compressive strength and microhardness among all the groups. The microhardness was significantly higher for the 500 µm depth than the 100 µm depth (p < 0.001), but the difference in microhardness between depths across groups was not significant (p = 0.211). All fortifying solutions provided some protection against artificial caries lesions. Therefore, these elements might have penetrated and reinforced the demineralized dentin against acid dissolution.
Literatur
1.
Zurück zum Zitat Tjäderhane L, Carrilho MR, Breschi L, et al. Dentin basic structure and composition—an overview. Endod Topics. 2009;20(1):3–29.CrossRef Tjäderhane L, Carrilho MR, Breschi L, et al. Dentin basic structure and composition—an overview. Endod Topics. 2009;20(1):3–29.CrossRef
2.
Zurück zum Zitat Goldberg M, Kulkarni AB, Young M, et al. Dentin: structure, composition and mineralization: the role of dentin ECM in dentin formation and mineralization. Front Biosci (Elite Ed). 2011;3:711.PubMedCrossRef Goldberg M, Kulkarni AB, Young M, et al. Dentin: structure, composition and mineralization: the role of dentin ECM in dentin formation and mineralization. Front Biosci (Elite Ed). 2011;3:711.PubMedCrossRef
3.
Zurück zum Zitat Purk JH. 8 - Morphologic and structural analysis of material-tissue interfaces relevant to dental reconstruction. In: Spencer P, Misra A, editors. Material-tissue interfacial phenomena. Woodhead Publishing; 2017. p. 205–29.CrossRef Purk JH. 8 - Morphologic and structural analysis of material-tissue interfaces relevant to dental reconstruction. In: Spencer P, Misra A, editors. Material-tissue interfacial phenomena. Woodhead Publishing; 2017. p. 205–29.CrossRef
4.
Zurück zum Zitat Lester K. Some preliminary observations in caries (“ remineralization”) crystals in enamel and dentine by surface electron microscopy. Virchows Arch Abt A Path Anat. 1968;344:196–212.CrossRef Lester K. Some preliminary observations in caries (“ remineralization”) crystals in enamel and dentine by surface electron microscopy. Virchows Arch Abt A Path Anat. 1968;344:196–212.CrossRef
5.
Zurück zum Zitat Kassebaum N, Bernabé E, Dahiya M, Bhandari B, Murray C, Marcenes W. Global burden of untreated caries: a systematic review and metaregression. J Dent Res. 2015;94(5):650–8.PubMedCrossRef Kassebaum N, Bernabé E, Dahiya M, Bhandari B, Murray C, Marcenes W. Global burden of untreated caries: a systematic review and metaregression. J Dent Res. 2015;94(5):650–8.PubMedCrossRef
9.
Zurück zum Zitat Spencer P, Wang Y, Katz JL, Misra A. Physicochemical interactions at the dentin/adhesive interface using FTIR chemical imaging. J Biomed Opt. 2005;10(3):031104–11.PubMedCrossRef Spencer P, Wang Y, Katz JL, Misra A. Physicochemical interactions at the dentin/adhesive interface using FTIR chemical imaging. J Biomed Opt. 2005;10(3):031104–11.PubMedCrossRef
10.
Zurück zum Zitat Tjäderhane L, Hietala E-L, Larmas M. Mineral element analysis of carious and sound rat dentin by electron probe microanalyzer combined with back-scattered electron image. J Dent Res. 1995;74(11):1770–4.PubMedCrossRef Tjäderhane L, Hietala E-L, Larmas M. Mineral element analysis of carious and sound rat dentin by electron probe microanalyzer combined with back-scattered electron image. J Dent Res. 1995;74(11):1770–4.PubMedCrossRef
11.
Zurück zum Zitat Zheng L, Nakajima M, Higashi T, Foxton RM, Tagami J. Hardness and Young’s modulus of transparent dentin associated with aging and carious disease. Dent Mater J. 2005;24(4):648–53.PubMedCrossRef Zheng L, Nakajima M, Higashi T, Foxton RM, Tagami J. Hardness and Young’s modulus of transparent dentin associated with aging and carious disease. Dent Mater J. 2005;24(4):648–53.PubMedCrossRef
12.
Zurück zum Zitat Yoshiyama M, Tay F, Doi J, Nishitani Y, Yamada T, Itou K, et al. Bonding of self-etch and total-etch adhesives to carious dentin. J Dent Res. 2002;81(8):556–60.PubMedCrossRef Yoshiyama M, Tay F, Doi J, Nishitani Y, Yamada T, Itou K, et al. Bonding of self-etch and total-etch adhesives to carious dentin. J Dent Res. 2002;81(8):556–60.PubMedCrossRef
13.
Zurück zum Zitat Zheng L, Hilton JF, Habelitz S, Marshall SJ, Marshall GW. Dentin caries activity status related to hardness and elasticity. Eur J Oral Sci. 2003;111(3):243–52.PubMedCrossRef Zheng L, Hilton JF, Habelitz S, Marshall SJ, Marshall GW. Dentin caries activity status related to hardness and elasticity. Eur J Oral Sci. 2003;111(3):243–52.PubMedCrossRef
14.
Zurück zum Zitat Erhardt MCG, Toledano M, Osorio R, Pimenta LA. Histomorphologic characterization and bond strength evaluation of caries-affected dentin/resin interfaces: effects of long-term water exposure. Dent Mater. 2008;24(6):786–98.PubMedCrossRef Erhardt MCG, Toledano M, Osorio R, Pimenta LA. Histomorphologic characterization and bond strength evaluation of caries-affected dentin/resin interfaces: effects of long-term water exposure. Dent Mater. 2008;24(6):786–98.PubMedCrossRef
15.
Zurück zum Zitat Wang Y, Spencer P, Walker MP. Chemical profile of adhesive/caries-affected dentin interfaces using Raman microspectroscopy. J Biomed Mater Res Part A: Off J Soci Biomater, Japan Soc Biomater, Aust Soc Biomater Korean Soc Biomater. 2007;81(2):279–86.CrossRef Wang Y, Spencer P, Walker MP. Chemical profile of adhesive/caries-affected dentin interfaces using Raman microspectroscopy. J Biomed Mater Res Part A: Off J Soci Biomater, Japan Soc Biomater, Aust Soc Biomater Korean Soc Biomater. 2007;81(2):279–86.CrossRef
17.
Zurück zum Zitat Saghiri MA, Vakhnovetsky J, Vakhnovetsky A, et al. Functional role of inorganic trace elements in dentin apatite tissue—part 1: Mg, Sr, Zn, and Fe. J Trace Elem Med Biol. 2022;71:126932.PubMedCrossRef Saghiri MA, Vakhnovetsky J, Vakhnovetsky A, et al. Functional role of inorganic trace elements in dentin apatite tissue—part 1: Mg, Sr, Zn, and Fe. J Trace Elem Med Biol. 2022;71:126932.PubMedCrossRef
22.
Zurück zum Zitat Liu X, Ma Y, Chen M, Ji J, Zhu Y, Zhu Q, et al. Ba/Mg co-doped hydroxyapatite/PLGA composites enhance X-ray imaging and bone defect regeneration. J Mater Chem B. 2021;9(33):6691–702.PubMedCrossRef Liu X, Ma Y, Chen M, Ji J, Zhu Y, Zhu Q, et al. Ba/Mg co-doped hydroxyapatite/PLGA composites enhance X-ray imaging and bone defect regeneration. J Mater Chem B. 2021;9(33):6691–702.PubMedCrossRef
23.
Zurück zum Zitat Zdanowicz JA, Featherstone JD, Espeland MA, Curzon ME. Inhibitory effect of barium on human caries prevalence. Commun Dent Oral Epidemiol. 1987;15(1):6–9.CrossRef Zdanowicz JA, Featherstone JD, Espeland MA, Curzon ME. Inhibitory effect of barium on human caries prevalence. Commun Dent Oral Epidemiol. 1987;15(1):6–9.CrossRef
24.
Zurück zum Zitat Ren F, Xin R, Ge X, Leng Y. Characterization and structural analysis of zinc-substituted hydroxyapatites. Acta Biomater. 2009;5(8):3141–9.PubMedCrossRef Ren F, Xin R, Ge X, Leng Y. Characterization and structural analysis of zinc-substituted hydroxyapatites. Acta Biomater. 2009;5(8):3141–9.PubMedCrossRef
25.
Zurück zum Zitat Tang Y, Chappell HF, Dove MT, Reeder RJ, Lee YJ. Zinc incorporation into hydroxylapatite. Biomaterials. 2009;30(15):2864–72.PubMedCrossRef Tang Y, Chappell HF, Dove MT, Reeder RJ, Lee YJ. Zinc incorporation into hydroxylapatite. Biomaterials. 2009;30(15):2864–72.PubMedCrossRef
26.
Zurück zum Zitat Jayasree R, Kumar T, Mahalaxmi S, Abburi S, Rubaiya Y, Doble M. Dentin remineralizing ability and enhanced antibacterial activity of strontium and hydroxyl ion co-releasing radiopaque hydroxyapatite cement. J Mater Sci - Mater Med. 2017;28(6):1–12.CrossRef Jayasree R, Kumar T, Mahalaxmi S, Abburi S, Rubaiya Y, Doble M. Dentin remineralizing ability and enhanced antibacterial activity of strontium and hydroxyl ion co-releasing radiopaque hydroxyapatite cement. J Mater Sci - Mater Med. 2017;28(6):1–12.CrossRef
27.
Zurück zum Zitat Jelaca-Tavakoli M, Gerlach RF, Djuric M. Manganese (Mn) in human teeth. FASEB J. 2016;30:778–83.CrossRef Jelaca-Tavakoli M, Gerlach RF, Djuric M. Manganese (Mn) in human teeth. FASEB J. 2016;30:778–83.CrossRef
29.
Zurück zum Zitat Mayer I, Jacobsohn O, Niazov T, Werckmann J, Iliescu M, Richard-Plouet M, et al. Manganese in precipitated hydroxyapatites. Eur J Inorg Chem. 2003;2003(7):1445–51.CrossRef Mayer I, Jacobsohn O, Niazov T, Werckmann J, Iliescu M, Richard-Plouet M, et al. Manganese in precipitated hydroxyapatites. Eur J Inorg Chem. 2003;2003(7):1445–51.CrossRef
30.
Zurück zum Zitat Ghosh ANB, Kumar V, Nayan K. Role of minerals and trace elements in oral health - a review. J Oral Dent Health. 2016;2:1–2. Ghosh ANB, Kumar V, Nayan K. Role of minerals and trace elements in oral health - a review. J Oral Dent Health. 2016;2:1–2.
31.
Zurück zum Zitat Pereira P, Inokoshi S, Yamada T, Tagami J. Microhardness of in vitro caries inhibition zone adjacent to conventional and resin-modified glass ionomer cements. Dent Mater. 1998;14(3):179–85.PubMedCrossRef Pereira P, Inokoshi S, Yamada T, Tagami J. Microhardness of in vitro caries inhibition zone adjacent to conventional and resin-modified glass ionomer cements. Dent Mater. 1998;14(3):179–85.PubMedCrossRef
34.
Zurück zum Zitat Ban S, Anusavice K. Influence of test method on failure stress of brittle dental materials. J Dent Res. 1990;69(12):1791–9.PubMedCrossRef Ban S, Anusavice K. Influence of test method on failure stress of brittle dental materials. J Dent Res. 1990;69(12):1791–9.PubMedCrossRef
35.
Zurück zum Zitat Davari A, Kazemi AD, Mousavinasab M, Yassaei S, Alavi A. Evaluation the compressive and diametric tensile strength of nano and hybrid composites. Dent Res J (Isfahan). 2012;9(6):827–8.PubMed Davari A, Kazemi AD, Mousavinasab M, Yassaei S, Alavi A. Evaluation the compressive and diametric tensile strength of nano and hybrid composites. Dent Res J (Isfahan). 2012;9(6):827–8.PubMed
36.
Zurück zum Zitat Talal A, Hamid SK, Khan M, et al. Structure of biological apatite: bone and tooth. In: Khan AS, Chaudhry AA, editors., et al., Handbook of ionic substituted hydroxyapatites. Cambridge: Woodhead Publishing; 2020. p. 1–19. Talal A, Hamid SK, Khan M, et al. Structure of biological apatite: bone and tooth. In: Khan AS, Chaudhry AA, editors., et al., Handbook of ionic substituted hydroxyapatites. Cambridge: Woodhead Publishing; 2020. p. 1–19.
37.
Zurück zum Zitat Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev. 2008;108(11):4754–83.PubMedPubMedCentralCrossRef Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev. 2008;108(11):4754–83.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Tite T, Popa A-C, Balescu LM, Bogdan IM, Pasuk I, Ferreira JM, et al. Cationic substitutions in hydroxyapatite: current status of the derived biofunctional effects and their in vitro interrogation methods. Materials. 2018;11(11):2081.PubMedPubMedCentralCrossRefADS Tite T, Popa A-C, Balescu LM, Bogdan IM, Pasuk I, Ferreira JM, et al. Cationic substitutions in hydroxyapatite: current status of the derived biofunctional effects and their in vitro interrogation methods. Materials. 2018;11(11):2081.PubMedPubMedCentralCrossRefADS
39.
40.
Zurück zum Zitat Elliott J. Hydroxyapatite and nonstoichiometric apatites. Structure and chemistry of the apatites and other calcium orthophosphates. 1994;18:111-89 Elliott J. Hydroxyapatite and nonstoichiometric apatites. Structure and chemistry of the apatites and other calcium orthophosphates. 1994;18:111-89
41.
Zurück zum Zitat Šupová M. Substituted hydroxyapatites for biomedical applications: a review. Ceram Int. 2015;41(8):9203–31.CrossRef Šupová M. Substituted hydroxyapatites for biomedical applications: a review. Ceram Int. 2015;41(8):9203–31.CrossRef
46.
Zurück zum Zitat Shimbo K, Nagato N, Taguch I. Resonac Holdings Corp, Process for purifying L-ascorbic acid 2-phosphate, US06/892,013. 1988. Shimbo K, Nagato N, Taguch I. Resonac Holdings Corp, Process for purifying L-ascorbic acid 2-phosphate, US06/892,013. 1988.
47.
Zurück zum Zitat Saghiri MA, Delvarani A, Mehrvarzfar P, Malganji G, Lotfi M, Dadresanfar B, et al. A study of the relation between erosion and microhardness of root canal dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2009;108(6):e29–34.CrossRef Saghiri MA, Delvarani A, Mehrvarzfar P, Malganji G, Lotfi M, Dadresanfar B, et al. A study of the relation between erosion and microhardness of root canal dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol. 2009;108(6):e29–34.CrossRef
55.
Zurück zum Zitat Hülsmann M, Rödig T, Nordmeyer S. Complications during root canal irrigation. Endod Top. 2007;16(1):27–63.CrossRef Hülsmann M, Rödig T, Nordmeyer S. Complications during root canal irrigation. Endod Top. 2007;16(1):27–63.CrossRef
57.
Zurück zum Zitat Ressler A, Žužić A, Ivanišević I, Kamboj N, Ivanković H. Ionic substituted hydroxyapatite for bone regeneration applications: a review. Open Ceram. 2021;6: 100122.CrossRef Ressler A, Žužić A, Ivanišević I, Kamboj N, Ivanković H. Ionic substituted hydroxyapatite for bone regeneration applications: a review. Open Ceram. 2021;6: 100122.CrossRef
58.
Zurück zum Zitat Uskoković V. Ion-doped hydroxyapatite: an impasse or the road to follow? Ceram Int. 2020;46(8):11443–65.CrossRef Uskoković V. Ion-doped hydroxyapatite: an impasse or the road to follow? Ceram Int. 2020;46(8):11443–65.CrossRef
59.
Zurück zum Zitat Cacciotti I. Cationic and anionic substitutions in hydroxyapatite. In: Antoniac IV, editor. Handbook of bioceramics and biocomposites. Cham: Springer International Publishing; 2016. p. 145–211.CrossRef Cacciotti I. Cationic and anionic substitutions in hydroxyapatite. In: Antoniac IV, editor. Handbook of bioceramics and biocomposites. Cham: Springer International Publishing; 2016. p. 145–211.CrossRef
68.
Zurück zum Zitat Creanor S, Awawdeh L, Saunders W, Foye R, Gilmour W. The effect of a resin-modified glass ionomer restorative material on artificially demineralised dentine caries in vitro. J Dent. 1998;26(5–6):527–31.PubMedCrossRef Creanor S, Awawdeh L, Saunders W, Foye R, Gilmour W. The effect of a resin-modified glass ionomer restorative material on artificially demineralised dentine caries in vitro. J Dent. 1998;26(5–6):527–31.PubMedCrossRef
69.
Zurück zum Zitat Serra MC, Cury JA. The in vitro effect of glass-ionomer cement restoration on enamel subjected. Quintessence Int. 1992;23:143–7.PubMed Serra MC, Cury JA. The in vitro effect of glass-ionomer cement restoration on enamel subjected. Quintessence Int. 1992;23:143–7.PubMed
70.
Zurück zum Zitat Featherstone J, Ten Cate J, Shariati M, Arends J. Comparison of artificial caries-like lesions by quantitative microradiography and microhardness profiles. Caries Res. 1983;17(5):385–91.PubMedCrossRef Featherstone J, Ten Cate J, Shariati M, Arends J. Comparison of artificial caries-like lesions by quantitative microradiography and microhardness profiles. Caries Res. 1983;17(5):385–91.PubMedCrossRef
71.
Zurück zum Zitat Lo E, Zhi Q, Itthagarun A. Comparing two quantitative methods for studying remineralization of artificial caries. J Dent. 2010;38(4):352–9.PubMedCrossRef Lo E, Zhi Q, Itthagarun A. Comparing two quantitative methods for studying remineralization of artificial caries. J Dent. 2010;38(4):352–9.PubMedCrossRef
73.
Zurück zum Zitat Heijnsbroek M, Paraskevas S, Van der Weijden G (2007) Fluoride interventions for root caries: a review. Oral health & preventive dentistry 5(2):145–152. Heijnsbroek M, Paraskevas S, Van der Weijden G (2007) Fluoride interventions for root caries: a review. Oral health & preventive dentistry 5(2):145–152.
74.
Zurück zum Zitat Abou Neel EA, Aljabo A, Strange A, Ibrahim S, Coathup M, Young AM, et al. Demineralization–remineralization dynamics in teeth and bone. Int J Nanomed. 2016;11:4743.CrossRef Abou Neel EA, Aljabo A, Strange A, Ibrahim S, Coathup M, Young AM, et al. Demineralization–remineralization dynamics in teeth and bone. Int J Nanomed. 2016;11:4743.CrossRef
76.
Zurück zum Zitat Ito S, Iijima M, Hashimoto M, Tsukamoto N, Mizoguchi I, Saito T. Effects of surface pre-reacted glass-ionomer fillers on mineral induction by phosphoprotein. J Dent. 2011;39(1):72–9.PubMedCrossRef Ito S, Iijima M, Hashimoto M, Tsukamoto N, Mizoguchi I, Saito T. Effects of surface pre-reacted glass-ionomer fillers on mineral induction by phosphoprotein. J Dent. 2011;39(1):72–9.PubMedCrossRef
77.
Zurück zum Zitat Dai LL, Mei ML, Chu CH, Lo ECM. Remineralizing effect of a new strontium-doped bioactive glass and fluoride on demineralized enamel and dentine. J Dent. 2021;108: 103633.PubMedCrossRef Dai LL, Mei ML, Chu CH, Lo ECM. Remineralizing effect of a new strontium-doped bioactive glass and fluoride on demineralized enamel and dentine. J Dent. 2021;108: 103633.PubMedCrossRef
79.
Zurück zum Zitat Bigi A, Boanini E, Gazzano M (2016) Ion substitution in biological and synthetic apatites. Biomineralization and Biomaterials 235–66 Bigi A, Boanini E, Gazzano M (2016) Ion substitution in biological and synthetic apatites. Biomineralization and Biomaterials 235–66
80.
Zurück zum Zitat Osorio R, Osorio E, Cabello I, Toledano M. Zinc induces apatite and scholzite formation during dentin remineralization. Caries Res. 2014;48(4):276–90.PubMedCrossRef Osorio R, Osorio E, Cabello I, Toledano M. Zinc induces apatite and scholzite formation during dentin remineralization. Caries Res. 2014;48(4):276–90.PubMedCrossRef
81.
Zurück zum Zitat Tonetti M, Cavallero A, Botta GA, Niederman R, Eftimiadi C. Intracellular pH regulates the production of different oxygen metabolites in neutrophils: effects of organic acids produced by anaerobic bacteria. J Leukoc Biol. 1991;49(2):180–8.PubMedCrossRef Tonetti M, Cavallero A, Botta GA, Niederman R, Eftimiadi C. Intracellular pH regulates the production of different oxygen metabolites in neutrophils: effects of organic acids produced by anaerobic bacteria. J Leukoc Biol. 1991;49(2):180–8.PubMedCrossRef
84.
Zurück zum Zitat Andrés NC, D’Elía NL, Ruso JM, AnE C, Massheimer VL, Messina PV. Manipulation of Mg2+–Ca2+ switch on the development of bone mimetic hydroxyapatite. ACS Appl Mater Interfaces. 2017;9(18):15698–710.PubMedCrossRef Andrés NC, D’Elía NL, Ruso JM, AnE C, Massheimer VL, Messina PV. Manipulation of Mg2+–Ca2+ switch on the development of bone mimetic hydroxyapatite. ACS Appl Mater Interfaces. 2017;9(18):15698–710.PubMedCrossRef
Metadaten
Titel
Mechanical properties of simulated dentin caries treated with metal cations and l-ascorbic acid 2-phosphate
verfasst von
Mohammad Ali Saghiri
Julia Vakhnovetsky
Amir Abdolmaleki
Elham Samadi
Fatereh Samadi
Salvatore Napoli
Michael Conte
Steven M. Morgano
Publikationsdatum
17.11.2023
Verlag
Springer Nature Singapore
Erschienen in
Odontology / Ausgabe 2/2024
Print ISSN: 1618-1247
Elektronische ISSN: 1618-1255
DOI
https://doi.org/10.1007/s10266-023-00868-z

Weitere Artikel der Ausgabe 2/2024

Odontology 2/2024 Zur Ausgabe

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Parodontalbehandlung verbessert Prognose bei Katheterablation

19.04.2024 Vorhofflimmern Nachrichten

Werden Personen mit Vorhofflimmern in der Blanking-Periode nach einer Katheterablation gegen eine bestehende Parodontitis behandelt, verbessert dies die Erfolgsaussichten. Dafür sprechen die Resultate einer prospektiven Untersuchung.

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Zahnmedizin und bleiben Sie gut informiert – ganz bequem per eMail.