Skip to main content
Erschienen in: Journal of Neurology 3/2024

Open Access 16.11.2023 | Original Communication

Mechanisms underlying treatment effects of vestibular noise stimulation on postural instability in patients with bilateral vestibulopathy

verfasst von: Max Wuehr, Josefine Eder, Silvy Kellerer, Tamara Amberger, Klaus Jahn

Erschienen in: Journal of Neurology | Ausgabe 3/2024

Abstract

Background

Previous studies indicate that imbalance in patients with bilateral vestibulopathy (BVP) may be reduced by treatment with low-intensity noisy galvanic vestibular stimulation (nGVS).

Objective

To elucidate the potential mechanisms underlying this therapeutic effect. In particular, we determined whether nGVS-induced balance improvements in patients are compatible with stochastic resonance (SR)—a mechanism by which weak noise stimulation can paradoxically enhance sensory signal processing.

Methods

Effects of nGVS of varying intensities (0–0.7 mA) on body sway were examined in 19 patients with BVP standing with eye closed on a posturographic force plate. We assumed a bell-shaped response curve with maximal sway reductions at intermediate nGVS intensities to be indicative of SR. An established SR curve model was fitted on individual patient outcomes, and three experienced human raters had to judge whether responses to nGVS were consistent with the exhibition of SR.

Results

nGVS-induced reductions of body sway compatible with SR were found in 12 patients (63%) with optimal improvements of 31 ± 21%. In 10 patients (53%), nGVS-induced sway reductions exceeded the minimally important clinical difference (optimal improvement: 35 ± 21%), indicative of strong SR. This beneficial effect was more likely in patients with severe vestibular loss (i.e. lower video head impulse test gain; R = 0.663; p = 0.002) and considerable postural imbalance (baseline body sway; R = 0.616; p = 0.005).

Conclusions

More than half of the assessed patients showed robust improvements in postural balance compatible with SR when treated with nGVS. In particular, patients with a higher burden of disease may benefit from the non-invasive and well-tolerated treatment with nGVS.

Introduction

Chronic postural instability during standing and walking, which aggravates in darkness and on uneven ground, is a cardinal symptom in patients with bilateral vestibulopathy (BVP) [13]. Postural deficits may partially ameliorate as patients adapt behavioural strategies that recalibrate multisensory balance and locomotion control [46]. However, deficits typically do not dissipate over time [4, 7], which often results in long-term functional impairment and puts patients at an increased risk for recurrent falling [8, 9].
Therapy of postural deficits in BVP is currently primarily based on vestibular rehabilitation that facilitates behavioural adaptions to chronic vestibular hypofunction [6, 10, 11]. However, treatment by physical therapy yields, if any, only partial compensation for lost vestibular feedback [12]. Patients who cannot compensate centrally via vestibular rehabilitation may in the future benefit from the implantation of a vestibular prosthesis, which has shown first promising effects on postural and other BVP-related symptoms in selected patients [13, 14]. However, benefits of an invasive vestibular implant have to be weighed against the risks and cost associated to surgery.
Based on the fact that a majority of patients with BVP retain residual vestibular excitability and function [15, 16], attempts have been made to augment residual vestibular excitability of patients by means of a non-invasive, low-intensity noise stimulation of the vestibular endorgans using noisy galvanic vestibular stimulation (nGVS) [1719]. Treatment with nGVS has been shown to not only facilitate residual vestibular perceptual and sensorimotor function in patients with BVP [20, 21] but to also stabilise their impaired balance capability during static and dynamic postural tasks [18, 2226]. As of now, the underlying mode of action of nGVS therapy in patients with BVP is poorly understood. Furthermore, as previous studies consistently observed that not all patients equally respond to stimulation and show a clinically meaningful improvement under treatment [18, 2026], patient-related factors that may promote or prevent individual treatment success have to be elucidated.
To overcome these deficits, the current study examined individual treatment effects of nGVS on static postural stability in patients with BVP across a broad range of stimulation intensities. In accordance to previous studies, we hypothesised that nGVS modulates vestibular balance function by means of stochastic resonance (SR)—a phenomenon according to which (pathologically increased) thresholds for sensory information processing can be lowered by application of an appropriate amount of low-intensity sensory noise [27, 28]. Exhibition of SR is typically characterised by a noise-induced modulation of the system's output that follows a bell-shaped performance curve with increasing noise intensity, which peaks at a specific intermediate level of noise intensity that optimally facilitates signal transfer within the system. We applied different previously established quantitative and qualitative criteria [2932] to determine on an individual patient level whether nGVS-induced modulations in balance of patients with BVP are compatible with the exhibition of SR (i.e. display a bell-shaped response curve) or follow other response dynamics. We further examined whether disease-related (aetiology, severity of symptoms, etc.) or demographic factors (age, gender, etc.) may be related to the presence or the absence of treatment responses in individual patients.

Materials and methods

Participants

Nineteen patients with BVP (age 59.9 ± 15.4 years, 9 females) participated in the study and provided written informed consent prior to inclusion. Detailed patient characteristics are provided in Table 1. All patients showed a clinically proven deficit, i.e. a bilateral pathological video head impulse test (vHIT, horizontal gain < 0.6) and/or bilateral reduced or absent caloric responses (sum of maximal peak velocities of the slow-phase nystagmus with cold and warm water < 6 °/s) [33]. Fifteen age-matched healthy controls (age 57.7 ± 4.7 years, 7 females) were included in the study to establish normative data. All participants gave written informed consent prior to study inclusion.
Table 1
Clinical characteristics and global stimulation effects of patients
Patient
Sex
Age
Aetiology
Caloric response, deg/sa
vHIT gain
Optimal nGVS, mA
Exhibition of SR
    
Left
Right
Left
Right
  
P1
M
62
Idiopathic
0.33
0.58
0.2
Weak
P2
F
50
Idiopathic
4.4
1.3
0.18
0.16
0.1
Strong
P3
M
82
Idiopathic
2.3
1.3
0.50
0.26
0.5
Strong
P4
M
37
Idiopathic
13.9
2.8
0.53
0.15
-
None
P5
F
82
Infectious
8.9
21.1
0.51
0.56
None
P6
M
62
Idiopathic
0.64
0.56
0.3
Weak
P7
F
65
Idiopathic
3.8
1.1
0.66
0.34
None
P8
F
32
Autoimmune
4.0
1.5
0.15
0.27
0.3
Strong
P9
F
69
Neuro-degenerative
5.0
3.5
0.29
0.58
0.5
Strong
P10
M
61
Neuro-degenerative
0.9
0.4
0.00
0.02
0.1
Strong
P11
M
58
Idiopathic
13.6
4.9
0.26
0.57
0.3
Strong
P12
F
81
Idiopathic
5.5
3.9
0.45
0.56
0.7
None
P13
F
54
Neuro-degenerative
3.6
2.3
0.22
0.15
0.4
Strong
P14
M
69
Ototoxic
0.39
0.54
0.7
None
P15
M
53
Idiopathic
6.9
1.0
0.73
0.78
None
P16
M
60
Ototoxic
3.0
2.0
0.10
0.10
0.4
Strong
P17
F
28
Autoimmune
0.9
0.9
0.27
0.47
0.4
Strong
P18
M
72
Ototoxic
1.2
0.8
0.28
0.33
0.7
None
P19
F
61
Idiopathic
4.2
1.4
0.30
0.17
0.1
Strong
vHIT video head impulse test, nGVS noisy galvanic vestibular stimulation
aSum of maximal slow-phase eye velocity during warm and cold caloric irrigation

Galvanic vestibular stimulation

Vestibular noise stimulation (i.e. nGVS) was applied via a pair of 4.0 cm × 6.0 cm Ag–AgCl electrodes attached bilaterally over the left and right mastoid process. Zero-mean Gaussian white noise stimulation with a frequency range of 0–30 Hz and varying peak amplitudes of 0–0.7 mA was delivered by a mobile constant current stimulator (neuroConn®, Illmenau, Germany).

Experimental procedures

Body sway was recorded for 30 s on a posturographic force plate (Kistler, 9261A, Kistler Group, Winterthur, Switzerland) at 40 Hz whilst patients were standing with their eyes closed (Fig. 1A). This procedure was repeated eight times, whilst patients were stimulated with a different amplitude of nGVS (ranging from 0 to 0.7 mA, in a randomised order) in each trial. Patients were blinded to the exact stimulation order. Between trials, patients were given a short break to recover.

Data and statistical analysis

For each stance trial, mean sway velocity was calculated as the primary output measure based on the recorded radial centre-of-pressure (CoP) trajectory using the formula \(SV = 1/T \times {\sum }_{i}\left|{r}_{i+1}-{r}_{i}\right|, [\mathrm{mm}/\mathrm{s}]\), where \(T\) is the total trial duration (i.e. 30 s) and \({r}_{i}\) is the radial CoP distance of the \(ith\) sample. For further analysis, sway velocity measures from 8 stance trials were normalised to sway velocity obtained during 0 mA stimulation (i.e. baseline condition).
To determine whether SR-like dynamics were present in the balance responses of patients to varying nGVS levels, we tested three increasingly rigorous criteria built on one another: (1) The first criterion tested whether body sway of patients improved for at least one particular nGVS level compared to baseline condition (i.e. 0 mA nGVS). (2) The second criterion was based on a visual inspection of response dynamics of body sway across increasing nGVS level by three experienced human raters (i.e. MW, JE, and KJ). Each rater had to evaluate whether (in addition to the fulfilment of the first criterion) nGVS-amplitude-dependent changes of body sway in individual patients were further compatible with a bell-shaped response curve with improvements of performance at intermediate stimulation intensities that is indicative of the presence of SR. For this evaluation, each rater was independently provided with a plot of the normalised nGVS-dependent changes in body sway and a superimposed theoretical SR curve that was fit on the data using a goodness-of-fit statistics [29, 30] (see example Fig. 1B). The applied equation fit represents an adapted version of the originally proposed SR model by Benzi [34], including a piecewise, linear masking effect to model cases where nGVS effects at high amplitudes may have detrimental effects on the performance metric [35]. The criterion was met if at least two of the raters identified the presence of SR-like dynamics. (3) The third criterion additionally evaluated whether improvements at intermediate nGVS levels were greater than the minimal clinically important difference (MCID; defined as half the standard deviation for normative data [36]) for changes in body sway velocity. MCID for sway velocity was 2.3 mm/s calculated based on the posturographic recordings of the 15 age-matched healthy individuals standing with eyes closed for 30 s.
Based on the three criteria, patients were classified as showing solely optimal improvement and no SR (criterion 1), exhibiting weak SR (criteria 1 & 2) or showing strong SR (criterion 1, 2, & 3). Potential correlations between SR classification and age, gender, aetiology, vHIT gain, caloric response, and baseline body sway were analysed using Spearman's rank correlation. Results were considered significant at p < 0.05. Statistical analysis was performed using SPSS (Version 26.0, IBM Corp., USA).

Results

Application of nGVS at intensities ranging from 0.1 to 0.7 mA was well tolerated and did not cause apparent disequilibrium in any of the examined patients. In the first step of analysis, we evaluated whether body sway velocity was decreased by at least one particular nGVS intensity compared to sham stimulation (i.e. nGVS at 0 mA). This criterion was met by 15 patients (79%) with an optimal improvement magnitude of in average 29% (range 4–69%) at an average intensity of 0.4 mA (range: 0.1–0.7 mA).
In the second step, an established SR model was fit to the individual modulations of body sway velocity in dependence of nGVS intensity (Fig. 2). Three experts were asked to independently rate for each patient by visual inspection of individual sway velocity modulations and corresponding model fits whether body sway responses follow a bell-shaped performance curve or not. Based on their judgments, SR-like treatment responses to nGVS were present in 12 patients (63%) with optimal improvements of 31% (range 4–69%) at an average intensity of 0.3 mA (range: 0.1–0.5 mA). Analogous bell-shaped performance modulations with optimal improvement at intermediate noise intensities were found on the group average response level of these patients (Fig. 3). In the remaining patients (37%), body sway velocity either randomly fluctuated (3 patients) or was generally increased (4 patients) across the range of tested nGVS intensities.
We subsequently identified those patients that in addition to SR-like response dynamics showed a clinically meaningful improvement of static balance (i.e. a reduction of body sway velocity greater than the MCID, Fig. 2). This criterion for the exhibition of strong SR was met by 10 patients (53%) with an average optimal improvement of 35% (range 10–69%) at an average intensity of 0.3 mA (range: 0.1–0.5 mA). Considerable SR-like performance improvements were also apparent on the group average level of patients exhibiting strong SR (Fig. 3).
In the final step, we explored demographic and disease-related factors that may potentially promote or hamper the exhibition of weak or strong SR in response to nGVS treatment. Correlation analysis revealed a positive association between baseline levels of static body sway (i.e. sway velocity assessed during nGVS at 0 mA; R = 0.616; p = 0.005) and a negative association with the vHIT gain assessed during clinical examination (R = − 0.663; p = 0.002). Hence, patients with profound postural impairments at baseline and a significant vestibulo-ocular reflex deficit were more likely to exhibit SR-like balance improvements at clinically meaningful effects sizes under treatment with nGVS.

Discussion

There is increasing evidence that postural symptoms in patients with BVP may ameliorate in response to a non-invasive, low-intensity noise stimulation of the vestibular endorgans (i.e. nGVS) [18, 2226]. Albeit the mode of action underlying this treatment effect was repeatedly attributed to SR in vestibular sensorimotor and/or perceptual pathways, previous studies failed to provide sufficient evidence for the latter assumption. The reason for this is that these studies typically limited the application and/or analysis of treatment outcomes to one particular noise intensity and could thus not determine whether postural responses follow a SR-like bell-shaped response curve with increasing noise intensity. Since a better understanding of the treatment principle underlying nGVS is important for future therapeutic applications, we here explicitly evaluated nGVS treatment effects to nGVS across a broad range of noise intensities to determine (1) whether nGVS-induced modulations of postural imbalance in individual patients are compatible with the exhibition of SR and to further identify (2) demographic and/or disease-related factors that may qualify patients to particularly benefit from treatment with nGVS.
Our analysis revealed that postural responses in about two thirds of patients closely followed a bell-shape performance curve with optimal balance improvements at intermediate noise intensities—a response rate that is considerably higher than previously reported in young healthy individuals where nGVS-induced balance responses compatible with SR were only rarely observed [30]. Static balance of patients was optimally stabilised at an average intensity of 0.3 mA (range: 0.1 to 0.5 mA), which is compatible to previous reports on nGVS-induced SR in healthy individuals and other clinical cohorts [29, 31] and approximates 60% of the estimated detection threshold of vestibular afferent responses to GVS [37]. We further found that at least half of the patients showed nGVS-induced balance improvements at clinically meaningful effect sizes. In the remaining third of patients, nGVS-induced balance responses did not exhibit SR-like response dynamics. In some of these, balance responses did not show any systematic dependency on nGVS and thus likely reflect variations in the performance metric (i.e. body sway) rather than any therapeutic effect. In others, nGVS treatment degraded balance performance irrespective of stimulation intensity, which might indicate a general intolerance to low-intensity vestibular noise stimulation.
We further explored potential demographic and/or disease-related factors that may influence nGVS treatment response in individual patients. We found that the integrity of vestibulospinal and vestibulo-ocular reflex function was associated with the presence or absence of stimulation benefits. Accordingly, patients with greater postural instability during visual withdrawal—a proxy for impairment of vestibular (and proprioceptive) balance regulation—were more likely to exhibit SR-like balance improvements at clinically meaningful effects sizes under treatment with nGVS. Analogously, we found that patients with a lower gain during vHIT assessment—a proxy for the impairment of vestibulo-ocular reflex function—showed greater benefits from nGVS treatment. This suggests that patients with residual but severely compromised peripheral vestibular function may particularly benefit from treatment with low-intensity vestibular noise stimulation. Similar associations between nGVS treatment response and the capacity or integrity of vestibular function were found in young and healthy elderly adults [38, 39].
Taken together with previous evidence from studies in vestibular animal models and humans, the current results shed light on the presumable mode of action underlying nGVS treatment effects on static balance. Previous studies in frog and chicken demonstrated that low-intensity noise exerted on the vestibular endorgans induces SR-like improvements of vestibular signal transfer at the level of vestibular hair cells and primary vestibular afferents [40, 41]. Subsequent studies in humans indicate that noise-induced improvements in signal processing at the vestibular periphery are conveyed to centrally mediated vestibulospinal and vestibular perceptual functions. Accordingly, both healthy individuals and patients with BVP exhibit a SR-like sensitisation of vestibular motion perception in response to nGVS treatment [21, 29, 42, 43]. Analogously, nGVS was shown to induce SR-like enhancement of vestibulospinal responses in both cohorts [20, 44]. Both of these effects are likely to contribute to the observed SR-like stabilisation of postural imbalance in patients with BVP. Accordingly, previous evidence indicates that vestibular balance control is not confined to vestibulospinal reflex control but also involves the perceptual registration of head and body in space [45, 46]. Our observations further suggest, that nGVS-induced enhancements at the vestibular reflex and perceptual level only manifest in a clinically meaningful postural stabilisation in individuals with significantly compromised balance performance at baseline.
In conclusion, we found evidence that low-intensity noise stimulation ameliorates postural imbalance in about two thirds of the assessed patients with BVP. In particular, patients with severe impairments of peripheral vestibular function are likely to show balanced improvements at clinically meaningful effects sizes under treatment. nGVS-induced balance improvements in these patients are further consistent with the exhibition of SR in vestibular sensorimotor and perceptual pathways. Future studies are required to investigate whether nGVS may analogously target other BVP-related impairments in gaze stabilisation and spatial cognition.

Acknowledgements

The authors thank Lorenz Assländer for providing recourses for data analysis. The study was supported by the German Federal Ministry for Education and Science (BMBF, 01EO1401 & 13GW0490B).

Declarations

Conflicts of interest

MW and KJ received funding from the neuroConn GmbH (DC stimulator).

Ethical standards

The ethics committee of the medical faculty of the University of Munich approved the study protocol, which was conducted in conformity with the Declaration of Helsinki.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Jetzt e.Med zum Sonderpreis bestellen!

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Jetzt bestellen und 100 € sparen!

Neuer Inhalt

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Zingler VC, Cnyrim C, Jahn K et al (2007) Causative factors and epidemiology of bilateral vestibulopathy in 255 patients. Ann Neurol 61:524–532PubMedCrossRef Zingler VC, Cnyrim C, Jahn K et al (2007) Causative factors and epidemiology of bilateral vestibulopathy in 255 patients. Ann Neurol 61:524–532PubMedCrossRef
2.
Zurück zum Zitat Sprenger A, Wojak JF, Jandl NM, Helmchen C (2017) Postural control in bilateral vestibular failure: its relation to visual, proprioceptive, vestibular, and cognitive input. Front Neurol 8:444PubMedPubMedCentralCrossRef Sprenger A, Wojak JF, Jandl NM, Helmchen C (2017) Postural control in bilateral vestibular failure: its relation to visual, proprioceptive, vestibular, and cognitive input. Front Neurol 8:444PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Schniepp R, Mohwald K, Wuehr M (2017) Gait ataxia in humans: vestibular and cerebellar control of dynamic stability. J Neurol 264:87–92PubMedCrossRef Schniepp R, Mohwald K, Wuehr M (2017) Gait ataxia in humans: vestibular and cerebellar control of dynamic stability. J Neurol 264:87–92PubMedCrossRef
4.
Zurück zum Zitat Zingler VC, Weintz E, Jahn K et al (2008) Follow-up of vestibular function in bilateral vestibulopathy. J Neurol Neurosurg Psychiatry 79:284–288PubMedCrossRef Zingler VC, Weintz E, Jahn K et al (2008) Follow-up of vestibular function in bilateral vestibulopathy. J Neurol Neurosurg Psychiatry 79:284–288PubMedCrossRef
6.
Zurück zum Zitat Sulway S, Whitney SL (2019) Advances in vestibular rehabilitation. Adv Otorhinolaryngol 82:164–169PubMed Sulway S, Whitney SL (2019) Advances in vestibular rehabilitation. Adv Otorhinolaryngol 82:164–169PubMed
7.
Zurück zum Zitat Gillespie MB, Minor LB (1999) Prognosis in bilateral vestibular hypofunction. Laryngoscope 109:35–41PubMedCrossRef Gillespie MB, Minor LB (1999) Prognosis in bilateral vestibular hypofunction. Laryngoscope 109:35–41PubMedCrossRef
8.
Zurück zum Zitat Wuehr M, Decker J, Schenkel F, Jahn K, Schniepp R (2022) Impact on daily mobility and risk of falling in bilateral vestibulopathy. J Neurol 269:5746–5754PubMedPubMedCentralCrossRef Wuehr M, Decker J, Schenkel F, Jahn K, Schniepp R (2022) Impact on daily mobility and risk of falling in bilateral vestibulopathy. J Neurol 269:5746–5754PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Herssens N, How D, van de Berg R, McCrum C (2022) Falls among people with bilateral vestibulopathy: a review of causes, incidence, injuries, and methods. JAMA Otolaryngol Head Neck Surg 148:187–192PubMedCrossRef Herssens N, How D, van de Berg R, McCrum C (2022) Falls among people with bilateral vestibulopathy: a review of causes, incidence, injuries, and methods. JAMA Otolaryngol Head Neck Surg 148:187–192PubMedCrossRef
10.
Zurück zum Zitat Tjernström F, Zur O, Jahn K (2016) Current concepts and future approaches to vestibular rehabilitation. J Neurol 263(Suppl 1):S65-70PubMedCrossRef Tjernström F, Zur O, Jahn K (2016) Current concepts and future approaches to vestibular rehabilitation. J Neurol 263(Suppl 1):S65-70PubMedCrossRef
11.
Zurück zum Zitat Jahn K, Saul AK, Elstner M, Sapa K, Kellerer S (2018) Vestibular rehabilitation therapy and Nintendo Wii balance board training both improve postural control in bilateral vestibulopathy. J Neurol 265:70–73PubMedCrossRef Jahn K, Saul AK, Elstner M, Sapa K, Kellerer S (2018) Vestibular rehabilitation therapy and Nintendo Wii balance board training both improve postural control in bilateral vestibulopathy. J Neurol 265:70–73PubMedCrossRef
12.
Zurück zum Zitat Porciuncula F, Johnson CC, Glickman LB (2012) The effect of vestibular rehabilitation on adults with bilateral vestibular hypofunction: a systematic review. J Vestib Res 22:283–298PubMedCrossRef Porciuncula F, Johnson CC, Glickman LB (2012) The effect of vestibular rehabilitation on adults with bilateral vestibular hypofunction: a systematic review. J Vestib Res 22:283–298PubMedCrossRef
13.
14.
Zurück zum Zitat Fornos AP, van de Berg R, Armand S et al (2019) Cervical myogenic potentials and controlled postural responses elicited by a prototype vestibular implant. J Neurol 266:33–41PubMedPubMedCentralCrossRef Fornos AP, van de Berg R, Armand S et al (2019) Cervical myogenic potentials and controlled postural responses elicited by a prototype vestibular implant. J Neurol 266:33–41PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Zingler VC, Weintz E, Jahn K et al (2009) Causative factors, epidemiology, and follow-up of bilateral vestibulopathy. Ann N Y Acad Sci 1164:505–508ADSPubMedCrossRef Zingler VC, Weintz E, Jahn K et al (2009) Causative factors, epidemiology, and follow-up of bilateral vestibulopathy. Ann N Y Acad Sci 1164:505–508ADSPubMedCrossRef
17.
Zurück zum Zitat Wuehr M, Decker J, Schniepp R (2017) Noisy galvanic vestibular stimulation: an emerging treatment option for bilateral vestibulopathy. J Neurol 264:81–86PubMedCrossRef Wuehr M, Decker J, Schniepp R (2017) Noisy galvanic vestibular stimulation: an emerging treatment option for bilateral vestibulopathy. J Neurol 264:81–86PubMedCrossRef
18.
Zurück zum Zitat McLaren R, Smith PF, Taylor RL, Ravindran S, Rashid U, Taylor D (2022) Efficacy of nGVS to improve postural stability in people with bilateral vestibulopathy: A systematic review and meta-analysis. Front Neurosci 16:1010239PubMedPubMedCentralCrossRef McLaren R, Smith PF, Taylor RL, Ravindran S, Rashid U, Taylor D (2022) Efficacy of nGVS to improve postural stability in people with bilateral vestibulopathy: A systematic review and meta-analysis. Front Neurosci 16:1010239PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Dlugaiczyk J, Wuehr M, Straka H (2020) Electrical stimulation of vestibular Endorgans. In: Fritzsch B (ed) The senses: a comprehensive reference, 2nd edn. Elsevier, Oxford, pp 635–671CrossRef Dlugaiczyk J, Wuehr M, Straka H (2020) Electrical stimulation of vestibular Endorgans. In: Fritzsch B (ed) The senses: a comprehensive reference, 2nd edn. Elsevier, Oxford, pp 635–671CrossRef
20.
Zurück zum Zitat Schniepp R, Boerner JC, Decker J, Jahn K, Brandt T, Wuehr M (2018) Noisy vestibular stimulation improves vestibulospinal function in patients with bilateral vestibulopathy. J Neurol 265:57–62PubMedCrossRef Schniepp R, Boerner JC, Decker J, Jahn K, Brandt T, Wuehr M (2018) Noisy vestibular stimulation improves vestibulospinal function in patients with bilateral vestibulopathy. J Neurol 265:57–62PubMedCrossRef
22.
Zurück zum Zitat Iwasaki S, Yamamoto Y, Togo F et al (2014) Noisy vestibular stimulation improves body balance in bilateral vestibulopathy. Neurology 82:969–975PubMedCrossRef Iwasaki S, Yamamoto Y, Togo F et al (2014) Noisy vestibular stimulation improves body balance in bilateral vestibulopathy. Neurology 82:969–975PubMedCrossRef
23.
Zurück zum Zitat Fujimoto C, Egami N, Kawahara T et al (2018) Noisy galvanic vestibular stimulation sustainably improves posture in bilateral vestibulopathy. Front Neurol 9:900PubMedPubMedCentralCrossRef Fujimoto C, Egami N, Kawahara T et al (2018) Noisy galvanic vestibular stimulation sustainably improves posture in bilateral vestibulopathy. Front Neurol 9:900PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Sprenger A, Spliethoff P, Rother M, Machner B, Helmchen C (2020) Effects of perceptible and imperceptible galvanic vestibular stimulation on the postural control of patients with bilateral vestibulopathy. J Neurol 267:2383–2397PubMedCrossRef Sprenger A, Spliethoff P, Rother M, Machner B, Helmchen C (2020) Effects of perceptible and imperceptible galvanic vestibular stimulation on the postural control of patients with bilateral vestibulopathy. J Neurol 267:2383–2397PubMedCrossRef
25.
Zurück zum Zitat Iwasaki S, Fujimoto C, Egami N et al (2018) Noisy vestibular stimulation increases gait speed in normals and in bilateral vestibulopathy. Brain Stimul 11:709–715PubMedCrossRef Iwasaki S, Fujimoto C, Egami N et al (2018) Noisy vestibular stimulation increases gait speed in normals and in bilateral vestibulopathy. Brain Stimul 11:709–715PubMedCrossRef
26.
Zurück zum Zitat Wuehr M, Nusser E, Decker J et al (2016) Noisy vestibular stimulation improves dynamic walking stability in bilateral vestibulopathy. Neurology 86:2196–2202PubMedCrossRef Wuehr M, Nusser E, Decker J et al (2016) Noisy vestibular stimulation improves dynamic walking stability in bilateral vestibulopathy. Neurology 86:2196–2202PubMedCrossRef
27.
28.
Zurück zum Zitat McDonnell MD, Ward LM (2011) The benefits of noise in neural systems: bridging theory and experiment. Nat Rev Neurosci 12:415–426PubMedCrossRef McDonnell MD, Ward LM (2011) The benefits of noise in neural systems: bridging theory and experiment. Nat Rev Neurosci 12:415–426PubMedCrossRef
29.
Zurück zum Zitat Galvan-Garza RC, Clark TK, Mulavara AP, Oman CM (2018) Exhibition of stochastic resonance in vestibular tilt motion perception. Brain Stimul 11:716–722PubMedCrossRef Galvan-Garza RC, Clark TK, Mulavara AP, Oman CM (2018) Exhibition of stochastic resonance in vestibular tilt motion perception. Brain Stimul 11:716–722PubMedCrossRef
30.
Zurück zum Zitat Assländer L, Giboin LS, Gruber M, Schniepp R, Wuehr M (2021) No evidence for stochastic resonance effects on standing balance when applying noisy galvanic vestibular stimulation in young healthy adults. Sci Rep 11:12327PubMedPubMedCentralCrossRef Assländer L, Giboin LS, Gruber M, Schniepp R, Wuehr M (2021) No evidence for stochastic resonance effects on standing balance when applying noisy galvanic vestibular stimulation in young healthy adults. Sci Rep 11:12327PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Wuehr M, Schmidmeier F, Katzdobler S, Fietzek UM, Levin J, Zwergal A (2022) Effects of low-intensity vestibular noise stimulation on postural instability in patients with Parkinson’s disease. J Parkinsons Dis 12:1611–1618PubMedCrossRef Wuehr M, Schmidmeier F, Katzdobler S, Fietzek UM, Levin J, Zwergal A (2022) Effects of low-intensity vestibular noise stimulation on postural instability in patients with Parkinson’s disease. J Parkinsons Dis 12:1611–1618PubMedCrossRef
32.
Zurück zum Zitat Voros JL, Sherman SO, Rise R et al (2021) Galvanic vestibular stimulation produces cross-modal improvements in visual thresholds. Front Neurosci 15:640984PubMedPubMedCentralCrossRef Voros JL, Sherman SO, Rise R et al (2021) Galvanic vestibular stimulation produces cross-modal improvements in visual thresholds. Front Neurosci 15:640984PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Strupp M, Kim JS, Murofushi T et al (2017) Bilateral vestibulopathy: diagnostic criteria consensus document of the classification committee of the Barany Society. J Vestib Res 27:177–189PubMedPubMedCentralCrossRef Strupp M, Kim JS, Murofushi T et al (2017) Bilateral vestibulopathy: diagnostic criteria consensus document of the classification committee of the Barany Society. J Vestib Res 27:177–189PubMedPubMedCentralCrossRef
34.
35.
Zurück zum Zitat Voros J, Rise R, Sherman S, Durell A, Anderson AP, Clark TK (2022) A machine learning approach to identify stochastic resonance in human perceptual thresholds. J Neurosci Methods 374:109559PubMedCrossRef Voros J, Rise R, Sherman S, Durell A, Anderson AP, Clark TK (2022) A machine learning approach to identify stochastic resonance in human perceptual thresholds. J Neurosci Methods 374:109559PubMedCrossRef
36.
Zurück zum Zitat Wright A, Hannon J, Hegedus EJ, Kavchak AE (2012) Clinimetrics corner: a closer look at the minimal clinically important difference (MCID). J Man Manip Ther 20:160–166PubMedPubMedCentralCrossRef Wright A, Hannon J, Hegedus EJ, Kavchak AE (2012) Clinimetrics corner: a closer look at the minimal clinically important difference (MCID). J Man Manip Ther 20:160–166PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Kwan A, Forbes PA, Mitchell DE, Blouin J-S, Cullen KE (2019) Neural substrates, dynamics and thresholds of galvanic vestibular stimulation in the behaving primate. Nat Commun 10:1904ADSPubMedPubMedCentralCrossRef Kwan A, Forbes PA, Mitchell DE, Blouin J-S, Cullen KE (2019) Neural substrates, dynamics and thresholds of galvanic vestibular stimulation in the behaving primate. Nat Commun 10:1904ADSPubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Inukai Y, Otsuru N, Masaki M et al (2018) Effect of noisy galvanic vestibular stimulation on center of pressure sway of static standing posture. Brain Stimul 11:85–93PubMedCrossRef Inukai Y, Otsuru N, Masaki M et al (2018) Effect of noisy galvanic vestibular stimulation on center of pressure sway of static standing posture. Brain Stimul 11:85–93PubMedCrossRef
39.
Zurück zum Zitat Nooristani M, Bigras C, Lafontaine L, Bacon BA, Maheu M, Champoux F (2021) Vestibular function modulates the impact of nGVS on postural control in older adults. J Neurophysiol 125:489–495PubMedCrossRef Nooristani M, Bigras C, Lafontaine L, Bacon BA, Maheu M, Champoux F (2021) Vestibular function modulates the impact of nGVS on postural control in older adults. J Neurophysiol 125:489–495PubMedCrossRef
40.
Zurück zum Zitat Jaramillo F, Wiesenfeld K (1998) Mechanoelectrical transduction assisted by Brownian motion: a role for noise in the auditory system. Nat Neurosci 1:384–388PubMedCrossRef Jaramillo F, Wiesenfeld K (1998) Mechanoelectrical transduction assisted by Brownian motion: a role for noise in the auditory system. Nat Neurosci 1:384–388PubMedCrossRef
41.
Zurück zum Zitat Flores A, Manilla S, Huidobro N et al (2016) Stochastic resonance in the synaptic transmission between hair cells and vestibular primary afferents in development. Neuroscience 322:416–429PubMedCrossRef Flores A, Manilla S, Huidobro N et al (2016) Stochastic resonance in the synaptic transmission between hair cells and vestibular primary afferents in development. Neuroscience 322:416–429PubMedCrossRef
43.
Zurück zum Zitat Keywan A, Jahn K, Wuehr M (2019) Noisy galvanic vestibular stimulation primarily affects otolith-mediated motion perception. Neuroscience 399:161–166PubMedCrossRef Keywan A, Jahn K, Wuehr M (2019) Noisy galvanic vestibular stimulation primarily affects otolith-mediated motion perception. Neuroscience 399:161–166PubMedCrossRef
44.
Zurück zum Zitat Wuehr M, Boerner JC, Pradhan C et al (2018) Stochastic resonance in the human vestibular system—noise-induced facilitation of vestibulospinal reflexes. Brain Stimul 11:261–263PubMedCrossRef Wuehr M, Boerner JC, Pradhan C et al (2018) Stochastic resonance in the human vestibular system—noise-induced facilitation of vestibulospinal reflexes. Brain Stimul 11:261–263PubMedCrossRef
45.
Zurück zum Zitat Bacsi AM, Colebatch JG (2005) Evidence for reflex and perceptual vestibular contributions to postural control. Exp Brain Res 160:22–28PubMedCrossRef Bacsi AM, Colebatch JG (2005) Evidence for reflex and perceptual vestibular contributions to postural control. Exp Brain Res 160:22–28PubMedCrossRef
46.
Zurück zum Zitat Karmali F, Goodworth AD, Valko Y, Leeder T, Peterka RJ, Merfeld DM (2021) The role of vestibular cues in postural sway. J Neurophysiol 125:672–686PubMedPubMedCentralCrossRef Karmali F, Goodworth AD, Valko Y, Leeder T, Peterka RJ, Merfeld DM (2021) The role of vestibular cues in postural sway. J Neurophysiol 125:672–686PubMedPubMedCentralCrossRef
Metadaten
Titel
Mechanisms underlying treatment effects of vestibular noise stimulation on postural instability in patients with bilateral vestibulopathy
verfasst von
Max Wuehr
Josefine Eder
Silvy Kellerer
Tamara Amberger
Klaus Jahn
Publikationsdatum
16.11.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Neurology / Ausgabe 3/2024
Print ISSN: 0340-5354
Elektronische ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-023-12085-3

Weitere Artikel der Ausgabe 3/2024

Journal of Neurology 3/2024 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.