Skip to main content
Erschienen in: Experimental Hematology & Oncology 1/2023

Open Access 01.12.2023 | Research

Molecular correlation of response to pyrotinib in advanced NSCLC with HER2 mutation: biomarker analysis from two phase II trials

verfasst von: Shiqi Mao, Shuo Yang, Xinyu Liu, Xingya Li, Qiming Wang, Yiping Zhang, Jianhua Chen, Yan Wang, Guanghui Gao, Fengying Wu, Tao Jiang, Jiao Zhang, Ying Yang, Xiang Lin, Xiaoyu Zhu, Caicun Zhou, Shengxiang Ren

Erschienen in: Experimental Hematology & Oncology | Ausgabe 1/2023

Abstract

Background

Non-small cell lung cancer (NSCLC) with HER2 mutation has entered into the era of targeted therapy. However, both anti-HER2 antibody–drug conjugates (ADCs) and tyrosine kinase inhibitors (TKIs) showed moderate objective response rate (ORR) and median progression-free survival (PFS). The aim of this study was to investigate the molecular features of responders to pyrotinib in advanced NSCLC with HER2 mutation.

Methods

Patients from our two previous phase II trials were pooled analyzed. Their circulating tumor DNA (ctDNA) were detected by next-generation sequencing (NGS) panels, and the correlation with the efficacy of pyrotinib was investigated.

Results

This pooled analysis included 75 patients, and 50 of them with baseline plasma samples were finally enrolled with a median age of 57 years old. The overall ORR and median PFS were 28% and 7.0 months respectively. Biomarker analysis showed that 5 patients were ctDNA nonshedding. Patients with TP53 wild type were significantly associated with higher disease control rate (97.1%vs. 68.8%, p = 0.010), PFS (median 8.4 vs. 2.8 months, p = 0.001) and overall survival (OS, median 26.7 vs. 10.4 months, p < 0.001) than those with mutations. ctDNA of nonshedding and clearance exhibited significantly longer PFS (median: 10.2 vs. 9.8 vs. 5.6 months, p = 0.036) and a trend of longer OS (median: 35.3 vs. 18.1 vs. 14.6 months, p = 0.357) than those not.

Conclusion

Patients with TP53 wild type, ctDNA nonshedding, or clearance showed superior efficacy of pyrotinib in patients with HER2-mutated advanced NSCLC, which might be helpful to guide the utility of pyrotinib in clinical setting.
Trial registration: The patients were from two registered clinical trials (ClinicalTrials.gov: NCT02535507, NCT02834936).
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s40164-023-00417-y.
Shiqi Mao, Shuo Yang and Xinyu Liu contributed equally to this work.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
NSCLC
Non-small cell lung cancer
ADCs
Antibody–drug conjugates
TKIs
Tyrosine kinase inhibitors
ORR
Objective response rate
PFS
Progression-free survival
ctDNA
Circulating tumor DNA
NGS
Next-generation sequencing
OS
Overall survival
T-DM1
Ado-trastuzumab emtansine
T-DXd
Trastuzumab deruxtecan
CSCO
Chinese society of clinical oncology
FFPE
Formalin-fixed paraffin-embedded
cfDNA
Cell-free DNA
PBL
Peripheral blood lymphocyte
SNV
Single nucleotide variant
SSEs
Sequence-specific errors
VAF
Variant allele frequency
HR
Hazard ratio
CI
Confidence interval
PR
Partial response
SD
Stable disease
PD
Progressive disease
MRD
Minimal residual disease
RFS
Relapse-free survival
ICIs
Immune checkpoint inhibitors

Background

Currently, NSCLC with HER2 mutation entered into the era of targeted therapy [1, 2]. Based on the promising results of phase II trials that investigated the efficacy and side effects of ado-trastuzumab emtansine (T-DM1) [3, 4] and trastuzumab deruxtecan (T-DXd) [5], national comprehensive cancer network guideline has recommended them as options for patients with advanced HER2-mutant NSCLC, and the later got the approval by FDA in later line setting [6]. Meanwhile, TKIs targeting HER2 mutation also achieved a breakthrough, pyrotinib [79] or poziotinib [10] showed an inspiring antitumor activity in this setting in phase II trials, and the former got the recommendation by the Chinese society of clinical oncology (CSCO) guideline. Besides, several other novel TKIs including tarloxotinib (NCT03805841) [11], TAK-788 (NCT02716116) [12] are under development.
However, both the ADCs and TKIs showed moderate efficacy, with an ORR of 31–55% and median PFS of 4.4–8.2 months [35, 7]. As a result, identifying the benefit population or improving the efficacy by combination is essential in the clinical setting. Currently, several strategies, such as combining with anti-angiogenesis [13, 14], immunotherapy [15], were ongoing and reported inspiring preliminary results. In this study, aiming to clarify molecular features of responders in patients of HER2 mutant advanced NSCLC treated with pyrotinib, we collected the ctDNA and performed the biomarker analysis from the pooled analysis of our two previous phase II trials [7, 8].

Methods

Patients and sample collection

Patients were recruited from two phase II clinical trials of pyrotinib (ClinicalTrial.gov: NCT02535507, NCT02834936). Briefly, eligible patients with advanced HER2-mutant NSCLC who previously received systemic treatment were enrolled. All enrolled patients received pyrotinib 400 mg or 320 mg per day, until intolerable toxicity, disease progression, death or withdrawal of consent. Peripheral blood sample collection was performed at baseline, 40 days and 80 days after pyrotinib administration. A total of 50 patients were enrolled in the biomarker analysis. Among them, 21 pretreated tissue samples and 112 serial blood samples were collected. The study protocol was approved by ethics committees and relevant health authorities. All patients signed informed consent forms of our study.

DNA extraction and sequencing

DNA was isolated from formalin-fixed paraffin-embedded (FFPE) tumor specimens with the TIANamp genomic DNA kit (TIANGEN, China) according to the manufacturers’ instructions. Genome DNA is extracted by TGuide S32 magnetic blood genomic DNA kit (TIANGEN, China) from peripheral blood lymphocyte (PBL), and circulating cell-free DNA (cfDNA) is extracted by MagMAX cell-free DNA isolation (ThermoFisher, USA) from the plasma sample. Fragmented DNA libraries were constructed with a KAPA HTP library preparation kit (Illumina Platform) (KAPA Biosystems, Massachusetts, USA) according to the manufacturer’s instructions. All libraries were quantified using AccuGreen high sensitivity dsDNA quantitation kit (Biotium, USA), with library size assessed on agilent bioanalyzer 2100 (Agilent, USA). DNA libraries from baseline tissue samples were captured with Panel 1, which was a designed panel spanning 769 cancer-related genes (Genecast, Wuxi, China), while DNA libraries from plasma samples were captured with panel 2, which covered exon regions of 95 genes (Genecast, Wuxi, China) related to drug resistance. The captured library was sequenced on Illumina Novaseq 6000 with paired end 150 bp mode.

Variant calling

After filtering low quality reads by Trimmomatic(v0.36) [16], clean reads were aligned to the human reference genome (hg19, NCBI Build 37.5) with the Burrows-Wheeler aligner (version 0.7.17) [17]. Then Picard toolkit (version 2.23.0) [18] was applied for making duplicates and genome analysis tool kit (version 3.7) [19] was used for realignment. VarDict (version 1.5.1) [20] was used to call single nucleotide variant (SNV) mutations while compound heterozygous mutations were merged by FreeBayes (version 1.2.0) [21]. Sentieon software (genomics-201911) was also used to improve the detection rate of mutations in plasma samples, and the mutations were annotated through ANNOVAR [22]. Typical QC-filtering such as variant quality and strand bias was applied to the raw variant list. Additionally, variants in low complex repeat and segmental duplication regions that matched to the lowly mappable regions were defined by ENCODE [23], and variants in an internally developed and validated list of recurrent sequence-specific errors (SSEs) were removed.

Somatic mutation filtering of tumor tissues and plasma

After filtering germline or hematopoietic origin mutations by comparing with paired normal sample, somatic mutations met the following criterions were used for the following analysis: (i) The variant allele frequency (VAF) threshold of mutations was 5% in tumor and 1% plasma; (ii) All low-frequency mutations in samples from the same patient in different time points were retained. For plasma samples, we used a pre-defined blacklist to remove false positive variants introduced for special processing of UMI data. These quality cut-offs were predetermined during the analytical validation of the internal NGS panel to optimize the test performance and measured according to sensitivity, specificity, repeatability and reproducibility.

Statistical analysis

Chi-square test or Fisher’s exact test was used to compare the categorical variables. PFS and OS curves were estimated by Kaplan–Meier method and compared by Log-rank test. Cox proportional hazard model was performed for univariate and multivariate survival analyses to calculate the hazard ratio (HR) and 95% confidence interval (CI). Mann–Whitney U tests was introduced to analyze the significant difference of mutation frequency between defined groups. And statistical significance was defined with P-value < 0.05. All of the statistical analyses were performed using R V.3.6.1. and SPSS statistical software (version 22.0; IBM Corporation, Armonk, NY, USA).

Results

Molecular characterization of HER2 mutated NSCLC

This prespecified biomarker analysis was performed on longitudinal samples collected from two phase II clinical trials (NCT02535507: n = 15, NCT02834936: n = 60) which evaluated the efficacy and safety of pyrotinib in HER2-mutant advanced lung adenocarcinoma after platinum-based chemotherapy (Fig. 1a). Baseline tumor tissue samples and serial blood samples were collected and underwent DNA sequencing. 50 patients with baseline plasma samples that were successfully sequenced were finally enrolled, including 21 pretreated tissue samples and 112 serial blood samples (pretreated: n = 50, 40 days post-treatment: n = 37, 80 days post-treatment: n = 25). Baseline characteristics were presented in Table 1. The median PFS and ORR were 7.0 months and 28%, respectively (Fig. 1b, c). The consistency of variants detection between ctDNA and corresponding tissue samples among 21 patients with paired pretreated samples was compared (Fig. 1d), with a Spearman r value of 0.63 (p < 0.0001, Fig. 1e). A positive correlation was observed between mutation count in baseline ctDNA and tumor CT volume (Spearman r = 0.43, p = 0.02, Additional file 1: Fig. S1).
Table 1
Demographic data and clinical characteristics of enrolled patients
Characteristic
Biomarker cohort (n = 50), No (%)
TP53 MUT (n = 16), No (%)
TP53 WT (n = 34), No (%)
p value
Median age, years (range)
57 (40–72)
53 (41–72)
61 (40–69)
0.020
Sex
 Male
21 (42.0)
6 (37.5)
15 (44.1)
0.658
 Female
29 (58.0)
10 (62.5)
19 (55.9)
 
Smoking histology
 Never
35 (70.0)
12 (75.0)
23 (67.6)
1.000
 Former
14 (28.0)
4 (25.0)
10 (29.4)
 
 Current
1 (2.0)
0 (0.0)
1 (2.9)
 
ECOG performance status
 0
7 (14.0)
1 (6.3)
6 (17.6)
0.406
 1
43 (86.0)
15 (93.8)
28 (82.4)
 
Clinical stage
 IIIB
2 (4.0)
0 (0.0)
2 (5.9)
1.000
 IV
48 (96.0)
16 (100.0)
32 (94.1)
 
No. of metastatic organs
  ≤ 2
25 (50.0)
7 (43.8)
18 (52.9)
0.544
  > 2
25 (50.0)
9 (56.3)
16 (47.1)
 
Prior chemotherapy
  < 2 Lines
28 (56.0)
12 (75.0)
16 (47.1)
0.063
  ≥ 2 Lines
22 (44.0)
4 (25.0)
18 (52.9)
 
Previous targeted therapy
 No
38 (76.0)
13 (81.3)
25 (73.5)
0.728
 Yes
12 (24.0)
3 (18.8)
9 (26.5)
 
Previous radiotherapy
 No
35 (70.0)
12 (75.0)
23 (67.6)
0.746
 Yes
15 (30.0)
4 (25.0)
11 (32.4)
 
ECOG PS Eastern Corporation Oncology Group
We listed the SNV and indel landscape of baseline ctDNA in Additional file 1: Fig. S2. TP53, NF1, PIK3CA, RET and MTOR were the top five mutant genes by frequency and were detected in 16 (32%), 10 (20%), 6 (12%), 6 (12%), 5 (10%) patients, respectively. In addition, circulating HER2 variants were detected in 45 of 50 (90%) pretreated plasma samples. The remaining 5 patients with undetectable HER2 variants were categorized as nonshedding tumor, with a trend of higher ORR (60.0% vs 24.4%, p = 0.126) and longer PFS (median: 10.2 vs. 6.8 months, p = 0.131), though not reaching statistical difference due to small sample size of nonshedding tumor. After comparing the clinicopathological characteristics of these two groups, we found that nonshedding tumor had a lower tumor burden (22.4 vs 53.0, p = 0.027), although the other variables were not statistically different (Additional file 2 Table S1).

TP53 wild type associated with superior efficacy

As mentioned above, TP53 was the most frequent concurrent mutation. Therefore, we further demonstrated the impact of concurrent TP53 mutation on pyrotinib efficacy. As result, patients with wild type TP53 were significantly associated with superior disease control rate (DCR, 97.1% vs. 68.8%, p = 0.010, Fig. 2a), PFS (median: 8.4 vs. 2.8 months, p = 0.001, HR = 0.35 95% CI 0.18–0.67, p = 0.002, Fig. 2b) and OS (median: 26.7 vs. 10.4 months, p < 0.001, HR = 0.16, 95% CI 0.07–0.35, p < 0.001, Fig. 2c) than those with TP53 co-mutation, though the improvement of ORR (32.4% vs. 18.8%, p = 0.501) was marginal. Demographic analysis revealed that TP53 co-mutations were more common in younger patients, with no other significant differences identified (Table 1).
To characterize the discrepancy of genomic features between patients with or without TP53 co-mutation, we performed baseline ctDNA mutation landscape in patients stratified according to TP53 co-mutation status (Fig. 2d). Of note, patients without TP53 mutations had lower mutation load than those with TP53 mutations (median [P25–P75]: 3.78 [0.51–7.17] vs. 19.63 [7.32–32.51], p = 0.003, Fig. 2e). Furthermore, the mutation load of HER2 gene was also lower in patients without TP53 mutations (median [P25–P75]: 0.35 [0.15–0.91] vs. 2.48 [0.54–8.04], p = 0.001, Fig. 2f). To assess the predictive capability of TP53 mutation status on treatment efficacy, a multivariable COX regression analysis that included mutation load and various clinical factors was utilized (Fig. 3). The results showed that TP53 co-mutation was an independent risk factor for both PFS (p = 0.003) and OS (p < 0.001), while mutation load was not significantly correlated with treatment outcomes. These findings underscore the importance of considering TP53 mutation status as a prognostic marker when evaluating treatment response.

The association between ctDNA status and clinical outcome

Previous researches have demonstrated that dynamic change of ctDNA was associated with treatment response and survival in solid tumors treated with targeted therapy [24]. In this study, we further evaluated ctDNA clearance as a predictor of pyrotinib response. A total of 34 patients had matched baseline and first evaluation plasma samples with evaluable response data. The individual VAF changes of HER2 mutations were presented in Fig. 4a. Patients who presented partial response (PR) or stable disease (SD) ≥ 12 weeks (defined as responder) exhibited a greater HER2-mutant ctDNA decrease compared with those who presented SD < 12 weeks or progressive disease (PD) (defined as non-responder), not reaching statistical significance (p = 0.056, Fig. 4b). Complete clearance (defined by conversion from ctDNA positive at baseline to ctDNA negative) of HER2-mutant ctDNA was observed at the first radiological evaluation in 17.6% (6/34) patients. These patients with HER2-mutant ctDNA clearance exhibited significantly longer PFS (median: 9.8 vs. 5.6 months, p = 0.032, HR = 0.33, 95% CI 0.12–0.97, p = 0.044, Fig. 4c) than those with HER2-mutant ctDNA remained but with similar OS (median: 18.1 vs. 14.6 months, p = 0.906, HR = 1.06, 95% CI 0.42–2.64, p = 0.906, Fig. 4d). Furthermore, we listed treatment duration and response to pyrotinib of patients with 3 types of ctDNA status (nonshedding ctDNA [n = 5], cleared HER2-mutant ctDNA [n = 6], remained HER2-mutant ctDNA [n = 28]) in Fig. 4e.
We presented here three cases in which ctDNA can be used to monitor patients' response to pyrotinib treatment in different conditions. Patient #12012 had decreased ctDNA VAF for both HER2-mutant gene and total mutant genes at both 40 and 80 days after pyrotinib treatment, and both increased at the time of PD, reflecting changes in ctDNA consistent with the efficacy evaluated by imaging (Fig. 4f). Patient #12001 had a rise in total mutant genes at the time of resistance despite no detectable HER2 mutation, and on imaging this patient presented with stable target lesion but was evaluated as progression due to new liver metastases (Fig. 4g). Patient #05002 had significantly elevated HER2-mutant ctDNA at first evaluation and also showed on imaging an enlarged target lesion and new interstitial hepatogastric lymph node metastases with a PFS of 2.9 months (Fig. 4h).

Discussion

In this study, we firstly presented the up-to-date largest cohort of dynamic ctDNA profiling in HER2 mutant NSCLC on the basis of a prespecified biomarker analysis of two prospectively trials. We found that TP53 wild type at baseline were independently correlated with better clinical outcomes, including superior disease control rate (p = 0.010), longer PFS (p = 0.001) and OS (p < 0.001), than those with mutation. Our study also revealed that nonshedding tumor or ctDNA clearance were associated with superior efficacy. These findings shed light on the individual targeted therapy in patients with HER2 mutation.
Therapeutic landscape has been largely changed in patients of advanced NSCLC with HER2 mutation [25, 26]. Doublet chemotherapy used to be the standard-of-care for HER2-mutated NSCLC, however, previous results including ours showed a discouraging result with the ORR of 10–43.5% and median PFS of 4.3–6 months [27]. Subsequently, it was also found that patients with HER2 mutation were unsuitable for immunotherapy, such as anti-PD-1/PD-L1 monotherapy [15, 28, 29]. Encouragingly, the recent advance of ADCs such as T-DM1 [4] and T-DXd [5, 30], TKIs such as pyrotinib [7, 31] or poziotinib [10] showed inspiring antitumor activity in HER2-mutated NSCLC in phase II trials, which made HER2 mutation a druggable target. However, their moderate efficacy indicated that there’s an urgent need to establish effective predictive biomarkers in the clinical practice.
As far as we know, this is the first study to investigate the predictive role of genomic alternations through the ctDNA detection in HER2 mutant NSCLC, and we found that TP53 mutation was associated with the inferior efficacy of pyrotinib. Previously, several studies revealed that concurrent mutations would deteriorate the anti-cancer effect of EGFR-TKIs in patients with EGFR mutations [32, 33]. Moreover, TP53 mutations was further found to promote genetic evolution and accelerate occurrence of resistance both in patients with ALK fusion and EGFR mutation [34]. Similarly, this study for the first time reported that TP53 mutation was of vital importance in the resistance of pyrotinib treatment in HER2 mutant NSCLC. Taken together, these findings suggested that TP53 mutations played an important role in the resistance of targeted therapy and needed to be considered as a stratification factor in study design in the future.
Moreover, we found that 10% patients had nonshedding ctDNA of lung tumors at baseline and after pyrotinib therapy. Importantly, patients with nonshedding tumors had a higher ORR of 60% and longer median progression free survival of 10.2 months. Recently, it was found that the presence of nonshedding tumors in the minimal residual disease (MRD) detection was associated with longer relapse-free survival (RFS) and higher possibility of cure [35]. Although the nonshedding observation might also be attributed to the insufficient detection sensitivity, the possible underlying mechanisms still needed to be further explored. Our findings showed that nonshedding might also be served as a potential biomarker for the superior prognosis and efficacy of pyrotinib treatment.
Additionally, we also investigated the predictive role of ctDNA dynamics. Previously, several reports including ours consistently demonstrated that ctDNA clearance after 2 cycle of chemotherapy [36] or immune checkpoint inhibitors (ICIs) therapy [37, 38] was associated with a better efficacy in advanced NSCLC, indicating that ctDNA dynamics was a useful marker for systemic therapy in lung cancer. In this study, we also observed that the pyrotinib treatment efficacy was superior in patients with ctDNA clearance after 40 days of treatment. Taken together, this study highlighted the importance of ctDNA detection and found that TP53 wild type, nonshedding tumor and ctDNA clearance could be used to identify the patients benefit from pyrotinib treatment in NSCLC.
Several limitations must be mentioned in this study. First, the number of patients finally enrolled into the analysis was still small even this was a pooled analysis of two phase II trials. Thus, selection bias might be inevitable. Second, only blood samples were used for the biomarker analysis due to the insufficient tissues and difficulty of re-biopsy at the disease progression, some genomic information might be missed in the liquid-based NGS testing. Thirdly, currently pyrotinib was only recommended by CSCO NSCLC guidelines in the later line setting, therefore, these findings might not suitable for a wide generalization.

Conclusions

In conclusion, our study highlighted the potential advantage of ctDNA analysis for precisive treatment of pyrotinib in patients with HER2 mutation. We found that TP53 mutations could accelerate the occurrence of drug resistance during targeted therapy. We also unveiled that ctDNA clearance or nonshedding tumor were associated with superior efficacy of pyrotinib treatment. These findings might be helpful to guide the clinical utility of anti-HER2 targeted therapy, which still requires further validating in the future.

Acknowledgements

We thank the patients and the families of the patients who participated in this study.

Declarations

This study was approved by the Ethics Committee of Shanghai Pulmonary Hospital, Tongji University School of Medicine. The procedures used in this study adhere to the tenets of the Declaration of Helsinki (as revised in 2013).
Not applicable.

Competing interests

Jiao Zhang and Ying Yang are employees of Genecast Biotechnology Co., Ltd. Xiang Lin and Xiaoyu Zhu are employees of Jiangsu Hengrui Pharmaceuticals Co., Ltd. No other disclosures were reported.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Oh DY, Bang YJ. HER2-targeted therapies—a role beyond breast cancer. Nat Rev Clin Oncol. 2020;17(1):33–48.CrossRefPubMed Oh DY, Bang YJ. HER2-targeted therapies—a role beyond breast cancer. Nat Rev Clin Oncol. 2020;17(1):33–48.CrossRefPubMed
2.
Zurück zum Zitat Chen R, Manochakian R, James L, Azzouqa AG, Shi H, Zhang Y, et al. Emerging therapeutic agents for advanced non-small cell lung cancer. J Hematol Oncol. 2020;13(1):58.CrossRefPubMedPubMedCentral Chen R, Manochakian R, James L, Azzouqa AG, Shi H, Zhang Y, et al. Emerging therapeutic agents for advanced non-small cell lung cancer. J Hematol Oncol. 2020;13(1):58.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Hotta K, Aoe K, Kozuki T, Ohashi K, Ninomiya K, Ichihara E, et al. A phase II study of trastuzumab emtansine in HER2-positive non-small cell lung cancer. J Thorac Oncol. 2018;13(2):273–9.CrossRefPubMed Hotta K, Aoe K, Kozuki T, Ohashi K, Ninomiya K, Ichihara E, et al. A phase II study of trastuzumab emtansine in HER2-positive non-small cell lung cancer. J Thorac Oncol. 2018;13(2):273–9.CrossRefPubMed
4.
Zurück zum Zitat Li BT, Shen R, Buonocore D, Olah ZT, Ni A, Ginsberg MS, et al. Ado-Trastuzumab emtansine for patients with HER2-mutant lung cancers: results from a phase II basket trial. J Clin Oncol. 2018;36(24):2532–7.CrossRefPubMedPubMedCentral Li BT, Shen R, Buonocore D, Olah ZT, Ni A, Ginsberg MS, et al. Ado-Trastuzumab emtansine for patients with HER2-mutant lung cancers: results from a phase II basket trial. J Clin Oncol. 2018;36(24):2532–7.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Li BT, Smit EF, Goto Y, Nakagawa K, Udagawa H, Mazières J, et al. Trastuzumab deruxtecan in HER2-mutant non-small-cell lung cancer. N Engl J Med. 2022;386(3):241–51.CrossRefPubMed Li BT, Smit EF, Goto Y, Nakagawa K, Udagawa H, Mazières J, et al. Trastuzumab deruxtecan in HER2-mutant non-small-cell lung cancer. N Engl J Med. 2022;386(3):241–51.CrossRefPubMed
6.
Zurück zum Zitat Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman JR, Bharat A, et al. Non-small cell lung cancer, version 3.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2022;20(5):497–530.CrossRef Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman JR, Bharat A, et al. Non-small cell lung cancer, version 3.2022, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2022;20(5):497–530.CrossRef
7.
Zurück zum Zitat Zhou C, Li X, Wang Q, Gao G, Zhang Y, Chen J, et al. Pyrotinib in HER2-mutant advanced lung adenocarcinoma after platinum-based chemotherapy: a multicenter, open-label, single-arm. Phase II Study J Clin Oncol. 2020;38(24):2753–61.CrossRefPubMed Zhou C, Li X, Wang Q, Gao G, Zhang Y, Chen J, et al. Pyrotinib in HER2-mutant advanced lung adenocarcinoma after platinum-based chemotherapy: a multicenter, open-label, single-arm. Phase II Study J Clin Oncol. 2020;38(24):2753–61.CrossRefPubMed
8.
Zurück zum Zitat Wang Y, Jiang T, Qin Z, Jiang J, Wang Q, Yang S, et al. HER2 exon 20 insertions in non-small-cell lung cancer are sensitive to the irreversible pan-HER receptor tyrosine kinase inhibitor pyrotinib. Ann Oncol. 2019;30(3):447–55.CrossRefPubMedPubMedCentral Wang Y, Jiang T, Qin Z, Jiang J, Wang Q, Yang S, et al. HER2 exon 20 insertions in non-small-cell lung cancer are sensitive to the irreversible pan-HER receptor tyrosine kinase inhibitor pyrotinib. Ann Oncol. 2019;30(3):447–55.CrossRefPubMedPubMedCentral
9.
10.
Zurück zum Zitat Elamin YY, Robichaux JP, Carter BW, Altan M, Gibbons DL, Fossella FV, et al. Poziotinib for patients with HER2 exon 20 mutant non-small-cell lung cancer: results from a phase II trial. J Clin Oncol. 2022;40(7):702–9.CrossRefPubMed Elamin YY, Robichaux JP, Carter BW, Altan M, Gibbons DL, Fossella FV, et al. Poziotinib for patients with HER2 exon 20 mutant non-small-cell lung cancer: results from a phase II trial. J Clin Oncol. 2022;40(7):702–9.CrossRefPubMed
11.
Zurück zum Zitat Liu SV, Villaruz LC, Lee VHF, Zhu VW, Baik CS, Sacher A, et al. LBA61 First analysis of RAIN-701: Study of tarloxotinib in patients with non-small cell lung cancer (NSCLC) EGFR Exon 20 insertion, HER2-activating mutations & other solid tumours with NRG1/ERBB gene fusions. Ann Oncol. 2020;31:S1189.CrossRef Liu SV, Villaruz LC, Lee VHF, Zhu VW, Baik CS, Sacher A, et al. LBA61 First analysis of RAIN-701: Study of tarloxotinib in patients with non-small cell lung cancer (NSCLC) EGFR Exon 20 insertion, HER2-activating mutations & other solid tumours with NRG1/ERBB gene fusions. Ann Oncol. 2020;31:S1189.CrossRef
12.
Zurück zum Zitat Ramalingam SS, Zhou C, Kim TM, Kim S-W, Yang JC-H, Riely GJ, et al. Mobocertinib (TAK-788) in EGFR exon 20 insertion (ex20ins)+ metastatic NSCLC (mNSCLC): Additional results from platinum-pretreated patients (pts) and EXCLAIM cohort of phase 1/2 study. J Clin Oncol. 2021;39((15_suppl)):9014.CrossRef Ramalingam SS, Zhou C, Kim TM, Kim S-W, Yang JC-H, Riely GJ, et al. Mobocertinib (TAK-788) in EGFR exon 20 insertion (ex20ins)+ metastatic NSCLC (mNSCLC): Additional results from platinum-pretreated patients (pts) and EXCLAIM cohort of phase 1/2 study. J Clin Oncol. 2021;39((15_suppl)):9014.CrossRef
13.
Zurück zum Zitat Yang G, Xu H, Xu F, Yang L, Li H, Zhang S, et al. P86.02 pyrotinib combined with apatinib for HER2-mutant non-small cell lung cancer: interim analysis from a phase II clinical study. J Thorac Oncol. 2021;16(3):S672–3. Yang G, Xu H, Xu F, Yang L, Li H, Zhang S, et al. P86.02 pyrotinib combined with apatinib for HER2-mutant non-small cell lung cancer: interim analysis from a phase II clinical study. J Thorac Oncol. 2021;16(3):S672–3.
14.
Zurück zum Zitat Yang G, Xu H, Yang Y, Zhang S, Xu F, Hao X, et al. Pyrotinib combined with apatinib for targeting metastatic non-small cell lung cancer with HER2 alterations: a prospective, open-label, single-arm phase 2 study (PATHER2). BMC Med. 2022;20(1):277.CrossRefPubMedPubMedCentral Yang G, Xu H, Yang Y, Zhang S, Xu F, Hao X, et al. Pyrotinib combined with apatinib for targeting metastatic non-small cell lung cancer with HER2 alterations: a prospective, open-label, single-arm phase 2 study (PATHER2). BMC Med. 2022;20(1):277.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Saalfeld FC, Wenzel C, Christopoulos P, Merkelbach-Bruse S, Reissig TM, Laßmann S, et al. Efficacy of immune checkpoint inhibitors alone or in combination with chemotherapy in NSCLC harboring ERBB2 mutations. J Thorac Oncol. 2021;16(11):1952–8.CrossRefPubMed Saalfeld FC, Wenzel C, Christopoulos P, Merkelbach-Bruse S, Reissig TM, Laßmann S, et al. Efficacy of immune checkpoint inhibitors alone or in combination with chemotherapy in NSCLC harboring ERBB2 mutations. J Thorac Oncol. 2021;16(11):1952–8.CrossRefPubMed
18.
Zurück zum Zitat Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.CrossRefPubMedPubMedCentral Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491–8.CrossRefPubMedPubMedCentral DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491–8.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Lai Z, Markovets A, Ahdesmaki M, Chapman B, Hofmann O, McEwen R, et al. VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic Acids Res. 2016;44(11): e108.CrossRefPubMedPubMedCentral Lai Z, Markovets A, Ahdesmaki M, Chapman B, Hofmann O, McEwen R, et al. VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic Acids Res. 2016;44(11): e108.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16): e164.CrossRefPubMedPubMedCentral Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16): e164.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Rolfo C, Russo A. HER2 mutations in non-small cell lung cancer: a herculean effort to hit the target. Cancer Discov. 2020;10(5):643–5.CrossRefPubMed Rolfo C, Russo A. HER2 mutations in non-small cell lung cancer: a herculean effort to hit the target. Cancer Discov. 2020;10(5):643–5.CrossRefPubMed
26.
Zurück zum Zitat Zhao J, Xia Y. Targeting HER2 alterations in non-small-cell lung cancer: a comprehensive review. JCO Precis Oncol. 2020;4:411–25.CrossRefPubMed Zhao J, Xia Y. Targeting HER2 alterations in non-small-cell lung cancer: a comprehensive review. JCO Precis Oncol. 2020;4:411–25.CrossRefPubMed
27.
Zurück zum Zitat Mazières J, Barlesi F, Filleron T, Besse B, Monnet I, Beau-Faller M, et al. Lung cancer patients with HER2 mutations treated with chemotherapy and HER2-targeted drugs: results from the European EUHER2 cohort. Ann Oncol. 2016;27(2):281–6.CrossRefPubMed Mazières J, Barlesi F, Filleron T, Besse B, Monnet I, Beau-Faller M, et al. Lung cancer patients with HER2 mutations treated with chemotherapy and HER2-targeted drugs: results from the European EUHER2 cohort. Ann Oncol. 2016;27(2):281–6.CrossRefPubMed
28.
Zurück zum Zitat Mazieres J, Drilon A, Lusque A, Mhanna L, Cortot AB, Mezquita L, et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann Oncol. 2019;30(8):1321–8.CrossRefPubMedPubMedCentral Mazieres J, Drilon A, Lusque A, Mhanna L, Cortot AB, Mezquita L, et al. Immune checkpoint inhibitors for patients with advanced lung cancer and oncogenic driver alterations: results from the IMMUNOTARGET registry. Ann Oncol. 2019;30(8):1321–8.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Negrao MV, Skoulidis F, Montesion M, Schulze K, Bara I, Shen V, et al. Oncogene-specific differences in tumor mutational burden, PD-L1 expression, and outcomes from immunotherapy in non-small cell lung cancer. J Immunother Cancer. 2021;9(8):e002891.CrossRefPubMedPubMedCentral Negrao MV, Skoulidis F, Montesion M, Schulze K, Bara I, Shen V, et al. Oncogene-specific differences in tumor mutational burden, PD-L1 expression, and outcomes from immunotherapy in non-small cell lung cancer. J Immunother Cancer. 2021;9(8):e002891.CrossRefPubMedPubMedCentral
30.
31.
Zurück zum Zitat Majeed U, Manochakian R, Zhao Y, Lou Y. Targeted therapy in advanced non-small cell lung cancer: current advances and future trends. J Hematol Oncol. 2021;14(1):108.CrossRefPubMedPubMedCentral Majeed U, Manochakian R, Zhao Y, Lou Y. Targeted therapy in advanced non-small cell lung cancer: current advances and future trends. J Hematol Oncol. 2021;14(1):108.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Vokes NI, Chambers E, Nguyen T, Coolidge A, Lydon CA, Le X, et al. Concurrent TP53 mutations facilitate resistance evolution in EGFR-mutant lung adenocarcinoma. J Thorac Oncol. 2022;17(6):779–92.CrossRefPubMed Vokes NI, Chambers E, Nguyen T, Coolidge A, Lydon CA, Le X, et al. Concurrent TP53 mutations facilitate resistance evolution in EGFR-mutant lung adenocarcinoma. J Thorac Oncol. 2022;17(6):779–92.CrossRefPubMed
33.
Zurück zum Zitat Shi K, Wang G, Pei J, Zhang J, Wang J, Ouyang L, et al. Emerging strategies to overcome resistance to third-generation EGFR inhibitors. J Hematol Oncol. 2022;15(1):94.CrossRefPubMedPubMedCentral Shi K, Wang G, Pei J, Zhang J, Wang J, Ouyang L, et al. Emerging strategies to overcome resistance to third-generation EGFR inhibitors. J Hematol Oncol. 2022;15(1):94.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Yang Y, Huang J, Wang T, Zhou J, Zheng J, Feng J, et al. Decoding the evolutionary response to ensartinib in patients with alk-positive nsclc by dynamic circulating tumor DNA sequencing. J Thorac Oncol. 2021;16(5):827–39.CrossRefPubMed Yang Y, Huang J, Wang T, Zhou J, Zheng J, Feng J, et al. Decoding the evolutionary response to ensartinib in patients with alk-positive nsclc by dynamic circulating tumor DNA sequencing. J Thorac Oncol. 2021;16(5):827–39.CrossRefPubMed
35.
Zurück zum Zitat Zhang JT, Liu SY, Gao W, Liu SM, Yan HH, Ji L, et al. Longitudinal undetectable molecular residual disease defines potentially cured population in localized non-small cell lung cancer. Cancer Discov. 2022;12(7):1690–701.CrossRefPubMedPubMedCentral Zhang JT, Liu SY, Gao W, Liu SM, Yan HH, Ji L, et al. Longitudinal undetectable molecular residual disease defines potentially cured population in localized non-small cell lung cancer. Cancer Discov. 2022;12(7):1690–701.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Jiang T, Jiang L, Dong X, Gu K, Pan Y, Shi Q, et al. Utilization of circulating cell-free DNA profiling to guide first-line chemotherapy in advanced lung squamous cell carcinoma. Theranostics. 2021;11(1):257–67.CrossRefPubMedPubMedCentral Jiang T, Jiang L, Dong X, Gu K, Pan Y, Shi Q, et al. Utilization of circulating cell-free DNA profiling to guide first-line chemotherapy in advanced lung squamous cell carcinoma. Theranostics. 2021;11(1):257–67.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Ren S, Chen J, Xu X, Jiang T, Cheng Y, Chen G, et al. Camrelizumab plus carboplatin and paclitaxel as first-line treatment for advanced squamous NSCLC (CameL-Sq): a phase 3 TRIAL. J Thorac Oncol. 2022;17(4):544–57.CrossRefPubMed Ren S, Chen J, Xu X, Jiang T, Cheng Y, Chen G, et al. Camrelizumab plus carboplatin and paclitaxel as first-line treatment for advanced squamous NSCLC (CameL-Sq): a phase 3 TRIAL. J Thorac Oncol. 2022;17(4):544–57.CrossRefPubMed
38.
Zurück zum Zitat Goldberg SB, Narayan A, Kole AJ, Decker RH, Teysir J, Carriero NJ, et al. Early assessment of lung cancer immunotherapy response via circulating tumor DNA. Clin Cancer Res. 2018;24(8):1872–80.CrossRefPubMedPubMedCentral Goldberg SB, Narayan A, Kole AJ, Decker RH, Teysir J, Carriero NJ, et al. Early assessment of lung cancer immunotherapy response via circulating tumor DNA. Clin Cancer Res. 2018;24(8):1872–80.CrossRefPubMedPubMedCentral
Metadaten
Titel
Molecular correlation of response to pyrotinib in advanced NSCLC with HER2 mutation: biomarker analysis from two phase II trials
verfasst von
Shiqi Mao
Shuo Yang
Xinyu Liu
Xingya Li
Qiming Wang
Yiping Zhang
Jianhua Chen
Yan Wang
Guanghui Gao
Fengying Wu
Tao Jiang
Jiao Zhang
Ying Yang
Xiang Lin
Xiaoyu Zhu
Caicun Zhou
Shengxiang Ren
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
Experimental Hematology & Oncology / Ausgabe 1/2023
Elektronische ISSN: 2162-3619
DOI
https://doi.org/10.1186/s40164-023-00417-y

Weitere Artikel der Ausgabe 1/2023

Experimental Hematology & Oncology 1/2023 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.