Skip to main content
Erschienen in: BMC Public Health 1/2024

Open Access 01.12.2024 | Review

Molecular docking as a tool for the discovery of novel insight about the role of acid sphingomyelinase inhibitors in SARS- CoV-2 infectivity

verfasst von: Samar Sami Alkafaas, Abanoub Mosaad Abdallah, Mai H. Hassan, Aya Misbah Hussien, Sara Samy Elkafas, Samah A. Loutfy, Abanoub Mikhail, Omnia G. Murad, Mohamed I. Elsalahaty, Mohamed Hessien, Rami M. Elshazli, Fatimah A. Alsaeed, Ahmed Ezzat Ahmed, Hani K. Kamal, Wael Hafez, Mohamed T. El-Saadony, Khaled A. El-Tarabily, Soumya Ghosh

Erschienen in: BMC Public Health | Ausgabe 1/2024

Abstract

Recently, COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants, caused > 6 million deaths. Symptoms included respiratory strain and complications, leading to severe pneumonia. SARS-CoV-2 attaches to the ACE-2 receptor of the host cell membrane to enter. Targeting the SARS-CoV-2 entry may effectively inhibit infection. Acid sphingomyelinase (ASMase) is a lysosomal protein that catalyzes the conversion of sphingolipid (sphingomyelin) to ceramide. Ceramide molecules aggregate/assemble on the plasma membrane to form “platforms” that facilitate the viral intake into the cell. Impairing the ASMase activity will eventually disrupt viral entry into the cell. In this review, we identified the metabolism of sphingolipids, sphingolipids' role in cell signal transduction cascades, and viral infection mechanisms. Also, we outlined ASMase structure and underlying mechanisms inhibiting viral entry 40 with the aid of inhibitors of acid sphingomyelinase (FIASMAs). In silico molecular docking analyses of FIASMAs with inhibitors revealed that dilazep (S = − 12.58 kcal/mol), emetine (S = − 11.65 kcal/mol), pimozide (S = − 11.29 kcal/mol), carvedilol (S = − 11.28 kcal/mol), mebeverine (S = − 11.14 kcal/mol), cepharanthine (S = − 11.06 kcal/mol), hydroxyzin (S = − 10.96 kcal/mol), astemizole (S = − 10.81 kcal/mol), sertindole (S = − 10.55 kcal/mol), and bepridil (S = − 10.47 kcal/mol) have higher inhibition activity than the candidate drug amiodarone (S = − 10.43 kcal/mol), making them better options for inhibition.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Recently, the world and public health organizations directed resources to curb the outbreak of coronavirus disease (COVID-19) caused by SARS-CoV-2 and its mutated strains [16]. Symptoms of COVID-19 infection included respiratory system complications and severe pneumonia, where patients needed intensive medical care and ventilator treatment [5, 7, 8]. The death rate from COVID-19 is about 0.66%, which rises sharply to 7.8% in patients over 80 years old [9]. Severe cases are characterized by a high incidence of cytokine storms and excessive inflammation with high levels of interleukin (IL)-6, IL-8, IL-10, IL-2R, and tumor necrosis factor (TNF)-alpha. The SARS-CoV-2 infects cells by attachment to its particular cellular receptor ACE-2 via a surface unit (S1) of the viral spike glycoprotein [8, 10]. Transmembrane serine protease 2 (TMPRSS2) or cathepsin L cleaves the viral spike protein after entry. When a virus enters host cells, SARS-CoV-2 RNA is released, translation of viral RNA genome into polyproteins is followed by viral release, and then replicate-transcriptase complex is brought together following protein cleavage to promote viral transcription and replication [11].
Previous membrane and cellular changes facilitating SARS-CoV-2 entry may be a promising target to minimize and inhibit viral infection. Lysosomal acid sphingomyelinase is one of the significant signalling molecules in the outer cell membrane and lysosomes [12]. This review focused on sphingomyelinase (ASMase), which converts the sphingolipid (sphingomyelin) into ceramide, which substantially affects the biophysical characteristics of the plasma membrane [13].
Acid sphingomyelinase and ceramide are essential in receptor signalling and infection biology. The acid sphingomyelinase is a glycoprotein lysosomal hydrolase enzyme that catalyzes the degradation of sphingomyelin to phosphorylcholine and ceramide. Although acid sphingomyelinase is found in lysosomes, it is recycled to the plasma membrane because these compartments constantly recycle to the plasma membrane. The activity of acid sphingomyelinase induces ceramide formation in the outer leaflet of the cell membrane. Ceramide molecules generation within the outer leaflet alters the biophysical properties of the plasma membrane because the very hydrophobic ceramide molecules spontaneously associate with each other to form small ceramide-enriched membrane domains that fuse and form large, highly hydrophobic, tightly packed, gel-like ceramide-enriched membrane domains [14].
The conversion of the sphingomyelin in rafts to ceramide can result in raft enlargement, receptor clustering, membrane invagination, and macropinosome formation, all of which promote the uptake of particles, including viruses, into cells and increase viral infectivity. Furthermore, ceramide-enriched membrane domains can bind to proteins and promote viral infectivity. SARS-CoV-2 docks onto ACE2, which is a lipid raft protein. After binding to ACE2, the S protein in the viral envelope undergoes enzymatic activation by TMPRSS2 or furin, likely located in lipid rafts. Subsequent endocytosis of SARS-CoV-2 occurs using a raft-dependent endocytic pathway.
SARS-CoV-2 induces the activity of ASMase and releases the ceramide content in lipid rafts, resulting in the virus's attachment to its receptors and increasing the concentration of virus attachment in lipid rafts domains and viral infectivity. Several reports show that the ASMase/ceramide system controls viral infection. Viruses including Rhinovirus, Ebola, and measles encephalitis [1517], and bacteria like Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi, and Neisseria gonorrhoeae [1823], stimulate the viral ASMase/ceramide system inducing the development of platform domains rich in ceramide, which facilitate viral entry and host cell infection. As with other viruses, SARS-CoV-2 activates the ASMase/ceramide system, inducing ceramide-enriched-platform formation and facilitating viral entry by clustering ACE-2, resulting in host cell infection [24]. Since 1970, research has shown that weak bases constrain ASMase activity [25]. Weak bases are protonated and diffused into lysosomes, where they are trapped, accumulating intra-lysosomal weakly basic molecules [26]. 
FIASMA are weak bases and accumulate in acidic compartments like the lysosome because they become protonated at the acidic pH. Due to the positive charge, they can no longer cross the membrane (acidic trapping). Consequently, lysosomal ASMase is displaced from the inner lysosomal membrane, and ASMase is proteolyzed. The ASMase/ceramide system is considered a treatment option in patients with respiratory COVID-19 or mutated strains [27]. This review demonstrates the metabolism and importance of sphingolipids responsible for viral infection. The function of ASMase in viral entry and infection is clarified. Accordingly, this review categorizes types of ASMase inhibitors, the functional inhibitors of acid sphingomyelinase (FIASMA) that potentially block viral entry. Additionally, molecular docking in silico of ASMase/ceramide system inhibitors is performed to predict the prospective efficacy of inhibitors as anti-SARS-CoV-2 medication.

Structure of Sphingomyelinase

Human acid sphingomyelinase is a cellular phosphodiesterase or phospholipase C (PLC), which causes sphingomyelin to hydrolyze into ceramide and phosphocholine by cleavage of the phosphodiester bond. The SMPD1 gene encodes human ASMase in the chromosomal region 11p15.4 with 6 exons, as shown in Fig. 1 (1). The 1890 bp open reading frame of the whole cDNA for ASMASE codes for 629 amino acids. A monomeric glycoprotein with a protein core of 64 kDa makes up the mature ASMase enzyme. The ASMase enzyme contains 8 disulfide bridges, 5 N-glycosylation sites are occupied, and one N-glycosylation site is not occupied [28, 29], as shown in Figs. 1 (2) and (3).
According to the UniProt blast site, mature ASMase has numerous active domains, including a signal peptide (amino acids 1–46), a Sap-domain (amino acids 89–165), a proline-rich linker domain (amino acids 166–198), the catalytic metallo-phosphatase domain (amino acids 199–461), and the C-terminal domain (amino acids 462–629) [30]. Even in the absence of exogenous sphingolipid activator proteins, the basic sphingomyelinase cleaving activity of the ASMase polypeptide is maintained by its N-terminal Sap-domain [31]. Sphingomyelin attaches to the active site of the catalytic metallo-phosphatase domain, which has a binuclear zinc core, to activate the hydrolysis process and cleave the phosphodiester bond. The ASMase activity depends on the Sap-domain [30, 32, 33].
Human sphingomyelinase is produced in the endoplasmic reticulum as a pre-pro-enzyme with a core protein of 75 kDa, which is quickly cleaved into 72 kDa pro-ASMase in the endoplasmic reticulum-Golgi complex. After cleavage, the pro-ASM is transmitted by the secretory pathway to the extracellular space or endolysosomal compartments. ASMase and numerous other lysosomal hydrolases are transported from the trans-Golgi network (TGN) to late endosomes and lysosomes by the mannose-6-phosphate receptor (M6PR). The ASM lipid-binding proteins, prosaposin, and GM2AP have an alternative route depending on sortilin [3436].

Sphingolipid Metabolism

Sphingoid bases are the basic structure of sphingolipids, including sphingosine, an 18-carbon unsaturated amino alcohol, the most common among mammals, amid links fatty acids to sphingosine, resulting in ceramide [37]. Sphingomyelin is produced when ceramide is phosphocholine esterified, while glycosylceramides are produced when ceramide is glycolyzed. Sialic acid residues result in ganglioside synthesis, as shown in Fig. 2. These are important cell membrane molecules, and the pathway intermediates for sphingolipid production and breakdown modify processes like apoptosis and T-cell trafficking [37, 38].
Sphingosine, phytosphingosine, and digydrosphingosine represent the first step in creating complex molecules. Sphingosine 1-phosphate, phytosphingosine 1-phosphate, and dihydrosphingosine-1-phosphate are three crucial signalling molecules broken down by phosphorylation of the C1 hydroxyl group. The glycosphingolipids contain a wide range of sphingolipids that differ by the type and arrangement of sugar residues linked to their head groups.
The sphingolipid metabolic pathway is a vital cellular process where ceramide plays an important role in other molecules' metabolism, catabolism, and biosynthesis. Through de novo synthesis, sphingolipids are produced via serine and palmitoyl CoA condensation. This process is catalyzed by serine palmitoyl transferase, which results in 3-keto-dihydrosphingosine [39]. Hydrolysis of sphingomyelin by sphingomyelinase into ceramide keeps the membranes in homeostasis conditions. Thus, sphingolipid metabolism is complicated but involves the de novo biosynthesis of ceramide in the endoplasmic reticulum. Ceramide is the key product in the breakdown of sphingomyelin or their de novo synthesis, which is the process by which sphingolipids are metabolically processed. The de novo synthesis could begin with serine palmitoyl-transferase, serine condensation, and palmitoyl–coenzyme A to 3-keto di hydrosphingosine [37]. Then, the reduction of 3-ketodihydrosphingosine into sphinganine is carried out by 3-ketodihydrosphingosine reductase.
Ceramide synthase adds acyl fatty acids to sphinganine, leading to dihydroceramide production. In the endoplasmic reticulum, dihydroceramide D4 saturates and desaturates into ceramide. A ceramide transfer protein transports ceramide from the endoplasmic reticulum to the Golgi apparatus. Sphingosine (2 amino-4-trans-octadecene-1,3-diol) is produced from ceramide by ceramidase enzymes. Ceramide synthase is responsible for the production of ceramide in a way opposite to ceramidase enzymes. Sphingosine kinase 1 (SPhK1) or sphingosine kinase 2 (SPhK 2) phosphorylate sphingosine to produce sphingosine 1-phosphate (S1P). Sphingosine is phosphorylated into sphingosine 1-phosphate (S1P) by either sphingosine kinase 1 (SPhK1) or sphingosine kinase 2 (SPhK 2). The S1P phosphatases transform S1P back to sphingosine, or the S1P lyase enzyme breaks down S1P into hexadecanal and phosphoryl ethanolamine [37]. Sphingolipids are generated from ceramides by sphingomyelin synthase, while sphingomyelin is converted to ceramide via sphingomyelinase. The sphingolipid metabolism pathway is illustrated in Fig. 2.

Sphingolipid Transport and Uptake

Bioactive sphingolipids interact with mediators to produce functional responses. Sphingolipids include sphingomyelin, ceramides, sphingosine, and S1P [40]. Sphingosine contains one aliphatic chain that usually has 18 carbon atoms along its length, enabling easy passage between distinct membranes. Sphingosine 1 phosphate is generated in the inner cell plasma membrane in response to tumor necrosis factor-cytokine as signalling (TNFa). Then, it transfers to the outer leaflet of the plasma membrane to bind to its S1PRs receptor [41]. The ABC transporter superfamily has two members proposed to control S1P trafficking [42]. There are two members to regulate S1P, either internalization or efflux by cystic fibrosis transmembrane regulator (CFTR) or ABCC1.
Sphingomyelin contains two aliphatic chains and a zwitter ionic head group. Thus, it has little aqueous solubility and hardly ever flip-flops across bilayers but moves laterally [43]. The movement of sphingomyelin may be hampered by interactions with sterols in cell membranes and self-aggregation [43]. The ceramide structure has two aliphatic chains and a neutral head group. Ceramide is transported from its production site in the endoplasmic reticulum to the Golgi apparatus under the control of the Ceramide Transfer Protein (CERT). Studies show neutral ceramide easily flip-flopping across cell membranes [43].
It is unknown if the organization of ceramide into microdomains prevents ceramide from flipping from the outer leaflet to the inner leaflet of the plasma membrane or whether ceramide can flip-flop as effectively in complex biological membranes [43]. Limiting the flipping of ceramide could impact its signalling functions significantly.

Role of Sphingolipids in Viral Entry

Lipid rafts are particular regions of the host cell membrane that are profuse in lipids like cholesterol, sphingolipids, and gangliosides [44]. These lipid-rich domains are characterized by containing well-organized lipid molecules stacked tightly. Studies show lipid rafts are key in viral infection cycles, including HIV, poliovirus, hepatitis C, and coronaviruses [4547]. The SARS-CoV-2 virus uses lipid rafts and caveolae-mediated endocytosis for viral entry [48]. Thorp and Gallagher (2004) observed that methyl-β-cyclodextrin triggers cholesterol depletion and inhibits viral entry and infection. This observation supports a lipid raft’s functional role in viral entry [49]. Coronaviridae, including SARS-CoV, use lipid rafts to enter and host infection. In addition to the minor envelope protein and membrane protein, the SARS-CoV-2 envelope contains spike protein (S) [50]. A viral spike (S) comprises S protein trimmers, which act in viral fusion with host cellular membranes and constitute two subunits (S1 and S2). After viral binding, spike protein is cleaved by host protease transmembrane serine protease 2 with furin pre-cleavage to facilitate viral entry [11, 51, 52]. SARS-CoV-2 entry is receptor-mediated endocytosis through a specific host receptor (ACE-2). Viral S protein binds with ACE-2, enabling proteolysis of viral S1 protein by host proteases, which may be attached to caveolae, including TMPRSS2 and Cathepsin L [53].
Moreover, SARS-CoV-2's ability to enter and cause host infection depends on its interaction with specific gln493 residue of the ACE-2 receptor [54]. Viral entrance may be mediated by the host ACE-2 receptor or by sialic acids interacting with host cell surface ganglioside binding domains. This domain (111–158) is a well-conserved sequence causing viral attachment to lipid rafts, which makes it easier for SARS-CoV-2 to infect the host's ACE-2 receptor [54]. ACE-2 must colocalize with the raft markers GM1 and caveolin-1. Lipid rafts are a key platform that can concentrate host ACE-2 receptors interacting with viral S protein. Viral particles can bind to the surface of the host cell membrane because ACE-2 clusters in certain positions in the cell membrane. In this approach, lipid raft microdomains boost the efficacy of viral infection. These results agree with cholesterol depletion and reduce, but do not prevent, the susceptibility to viral infection [55].
Lipid rafts are considered targets for inhibiting viral infection. Drugs such as methyl-β-cyclodextrin cause disruption of lipid rafts, resulting in viral entry inhibition [56]. Pathogen-host interactions probably aid the development of focal adhesions and lipid raft clustering during endocytosis. Table 1 shows other inhibitors of lipid rafts such as propofol, isoflurane, pentobarbital, aspirin, naproxen, perifosine cisplatin, azithromycin, daunorubicin, doxorubicin, quercetin, and luteolin. These inhibitors may be used as antiviral drugs against SARS-CoV-2. Thus, research on lipid rafts should be included in developing antiviral drugs.
Table 1
Common inhibitors of lipid rafts with their mechanism
Drug
Mechanism
References
Propofol
The propofol has a role for caveolae (specifically caveolin-1) in propofol-induced bronchodilatation. Due to its lipid nature, propofol may transiently disrupt caveolar regulation, thus altering ASM [Ca2+] and decreasing caveolin-1 expression
[57]
Isoflurane
The isoflurane increases membrane fluidity and the permeability of the blood–brain barrier by distributing the highly ordered lipid domains with saturated lipids. It also weakened the sterol-phospholipid association in cholesterol-rich membranes
[58, 59]
Pentobarbital
Pentobarbitals modify the physical characteristics of lipid rafts on model membranes and cause lipid membrane disorder of brain plasma membranes
[60]
Lidocaine
Lidocaine is observed to distribute the erythrocyte membrane lipid rafts reversibly and abolish flotillin-1 in lipid rafts together with depleting cholesterol. In addition, the Lidocaine hydrochloride, an amphipathic local anaesthetic, is shown to reversibly disrupt rafts in erythrocyte membranes and alter the Gsα dependent signal transduction pathway. These findings provide evidence of rafts' presence while maintaining normal cholesterol content in erythrocyte membranes and confirm a role for raft-associated Gsα in signal transduction in erythrocytes
[61, 62]
Tetracaine
Tetracaine induces lipid chain mobility, destabilizes the supported lipid bilayers, and induces lipid raft distribution and solubilization. Tetracaine causes a curvature change in the bilayer, which leads to the formation of the subsequent formation of up to 20-μm-long flexible lipid tubules as well as the formation of micron-size holes
[63]
Dibucaine
Dibucaine hydrochloride has a distribution effect on lipid rafts. The inserting Dibucaine molecules into lipid bilayers induces a reduction in the ternary liposome's miscibility transition temperature (Tc) and a reduction in the phase boundary line tension. This suggests that the Dibucaine.HCl molecules may disturb ion channel functions by affecting the lipid bilayers surrounding the ion channels
[64]
Bupivacaine
Bupivacaine stereostructure specifically interacts with membranes containing cholesterol, which is consistent with the clinical features of S (-)-bupivacaine. The bupivacaine interacted with liposomal membranes to increase membrane fluidity. They also revealed that the interactivity with lipid bilayer membranes is largely consistent with the local anaesthetic potency
[65]
Dexmedetomidine
Levomedetomidine Clonidine
Dexmedetomidine and clonidine acted on lipid bilayers to increase the membrane fluidity with potencies varying by a compositional difference of membrane lipids. Dexmedetomidine showed greater interactivity with neuro-mimetic and cardiomyocyte-mimetic membranes than clonidine, consistent with their comparative lipophilicity and activity. The effects of α2-adrenergic agonists on lipid raft model membranes were much weaker than those on other membranes, indicating that lipid rafts are not mechanistically relevant to them. Higher interactive dexmedetomidine was discriminated from lower interactive levomedetomidine in the presence of chiral cholesterol in membranes. An interactivity difference between the two enantiomers was largest in the superficial region of lipid bilayers, and the rank order of their membrane-interacting potency was reversed by replacing cholesterol with epicholesterol, suggesting that cholesterol’s 3β-hydroxyl groups positioned close to the membrane surface are responsible for the enantioselective interaction
[66]
Morphine
Morphine increases the membrane fluidity of membranes
[67]
Aspirin
It is observed that aspirin increases membrane fluidity, disrupts the membrane organization, and prevents raft formation
[64]
Indomethacin
Naproxen
Ibuprofen
These compounds affected the organization of rat-like ordered lipid and protein membrane nanoclusters
[68]
Edelfosine
It is observed that Edelfosine increases the fluidity of lipid rafts. Edelfosine is associated with cholesterol and colocalizes in vivo with rafts, causing the raft's structure modification
[69]
Perifosine
It is observed that perifosine causes disrupted membrane raft domains
[70]
Edelfosine
Miltefosine
The edelfosine and miltefosine increase the fluidity of raft model membranes
[71]
Erucylphosphocholine
Erucylphosphocholine is observed to increase the membrane raft fluidity and weaken the interaction between cholesterol and sphingomyelin
[72]
2-Hydroxyoleic acid
2-Hydroxyoleic acid increases the membrane raft fluidity
[73]
Cisplatin
Cisplatin increases the membrane fluidity and induces apoptosis, which was inhibited by cholesterol (30 μg/mL) and monosialoganglioside-1 (80 μM)
[74, 75]
Azithromycin
Azithromycin is observed to increase the fluidity of raft-like membranes
[76]
Daunorubicin
Daunorubicin is observed to affect lipid rafts by decreasing the fluidity of raft-like membranes
[77]
Doxorubicin
Doxorubicin is an anticancer drug that increases the fluidity of binary membranes but not ternary membranes
[78]
Quercetin
Quercetin is observed to suppress the accumulation of lipid rafts to inhibit TNF-α production. In addition, it increases the fluidity of raft model membranes in mouse macrophages
[79, 80]
Luteolin
Luteolin suppresses the accumulation of lipid rafts to inhibit TNF-α production in mouse macrophages
[80]
EGCG
Epigallocatechin gallate (EGGG) decreases the fluidity of binary membranes. On the other hand, it induces lipid raft clustering and apoptotic cell death in human multiple myeloma cells
[81]
Dimeric procyanidin
Dimeric procyanidin increases the membrane fluidity in human acute T-cell leukemia cells
[82]
Hexameric procyanidin
Hexameric procyanidin decreases the membrane fluidity and prevents the lipid raft disruption induced by deoxycholate in human colon cancer cells
[83]
Emodin
Emodin causes disrupted lipid rafts in human umbilical vein endothelial cells
[84]
Ginsenosides
Ginsenosides increase the membrane fluidity and reduce the raft-marker protein concentration in lipid rafts in HeLa cells
[85]
Saikosaponin
Saikosaponin inhibits Lipopolysaccharide-induced cytokine expression and Toll-like receptor localization in lipid rafts, and reduces membrane cholesterol levels in mouse macrophages
[86]
Methyl-beta-cyclodextrin (MβCD) treatment
It is observed that MβCD causes depletion of cholesterol in the rafts by methyl-beta-cyclodextrin (MβCD) treatment impaired the expression of the cell surface receptor angiotensin-converting enzyme 2 (ACE2), resulting in a significant increase in SARS-CoV-2 entry into cells
[87]
Statins
Statins reduces cholesterol synthesis by inhibiting the activity of HMG-CoA reductase. Statins could modulate virus entry, acting on the SARS‐CoV‐2 receptors, ACE2 and CD147, and/or lipid rafts engagement. In addition, statins, by inducing autophagy activation, could regulate virus replication or degradation, exerting protective effects
[88]

The Acid Sphingomyelinase/Ceramide System in Viruses

Scientific studies showed severe consequences and harsh symptoms resulting from acute respiratory syndrome coronavirus 2 (SARS-COV-2). Virus infectivity and spread have been extensively studied. Interestingly, SARS-CoV-2 infectivity occurs by attachment to the host cell receptor via S proteins. This results in virus priming by proteases, facilitating viral entry through endocytosis and completing the viral life cycle. The sphingolipid family is the most common lipid along the cell membrane, including sphingosine and ceramide. Such lipids can interfere with virus uptake into epithelial cells and in cultures of human nasal cells. With the different mechanisms of action, sphingosine is blocked, while ceramide enables viral infection. The well-known acid sphingomyelinase (ASMase) is essential to produce ceramide, and drug inhibition, like amitriptyline, reduces entry into epithelial cells.
Consequently, a key prognostic marker for assessing the severity of COVID-19 is S1P [89]. ASMase transforms sphingomyelin into ceramide, found either on the cell membrane surfaces or attaches to the outer surface of plasma membranes. Acid sphingomyelinase surfaces function as signalling molecules and produce ceramide in the outer parts of plasma membranes. The ceramide molecules are hydrophobic and form small membrane domains that rearrange to form larger platforms. These domains recognize 1-integrin, CD95, CD40, DR5, and other activated receptor molecules. Ceramide platforms mediate bacterial or viral infection and other stress stimuli [24].
When viruses enter cell membranes, sphingolipids function as bioactive lipids that transmit signals inside and outside cells. So, limiting viral replication by targeting the host cell's sphingolipid metabolism may give a chance for more therapeutic approaches. Host cell viral infection begins with endocytosis, then un-coating, exocytosis, and discharge of nucleocapsids into the cytoplasm. These previous actions are affected by membrane microdomains. Subsequently, the interactions between viruses and cells promote different signal cascades affecting cellular uptake, intracellular trafficking, and viral replication [90].
The ASMase activity is implicated in other viruses like Ebola’s early infection stages. Acid sphingomyelinase activation is crucial for Ebola virus endocytosis, making Niemann-Pick C protein 1 (NPC1), an endo/lysosomal cholesterol transporter, virus particle-accessible. To facilitate the fusing of the Ebola virus and endosomal membranes, NPC1 is essential for viral absorption. Thus, NPC1 acts as a receptor for the proteolytically activated viral envelope protein in an intracellular compartment rather than at the plasma membrane.
Acid sphingomyelinase activation is also recognized after the interaction of dendritic cells with the measles virus. Viral glycoproteins interact with DC-SIGN on the cell surface, which induces the activation of sphingomyelinase and the release of ceramide molecules. Then, measles virus receptor CD150 entry is translocated from an intracellular storage compartment to the cell surface, favouring viral infection of dendritic cells [90].

Trafficking Process utilized in viral entry

The trafficking or endocytosis process enables cells to internalize macromolecules, nutrients, or viruses into the cell [91]. The endocytosis process is classified into receptor-mediated endocytosis, caveolae uptake, or clathrin-independent endocytosis, including the CLIC/GEEC pathway [9294]. Internalized macromolecules are categorized by endosomes, which are a pleiomorphic series of tubulovesicular compartments [95]. Internalized macromolecules are processed in various ways, including back-recycling to the cellular plasma membrane, degradation by delivery to the lysosomal molecules, or to polarized cells through transcytosis [96]. Several events accompany the maturation of endosomal compartments, including luminal pH decrease, significant phosphatidylinositol lipid alterations via regulating lipid kinases and phosphatases, and activation and differential Rab-family GTPase recruitment. The trafficking or endocytosis process has critical cellular functions. Functions include cellular communication between cells and the environment, controlling cellular homeostasis and regulating essential surface proteins, and viral or bacterial entrance [97]. Moreover, the process regulates cell signalling through G-protein coupled receptors and receptor tyrosine kinases [98, 99]. This review focuses on clathrin and dynamin-independent pathways, especially lipid raft entry, and their role in SARS-CoV-2 entry.

Clathrin and dynamin-independent pathways utilized in viral entry

Receptor-independent endocytosis (CIE) includes the CLIC/GEEC pathway responsible for cellular functions. For instance, cell signalling, adhesion, nutrient receptors, and regulation of the expression of certain membrane transporters. The endocytic vesicles/tubules of CIE are characterized by having no distinct coat. The CIE was discovered using inhibitors blocking clathrin-mediated and caveolae-mediated endocytosis [92, 93, 100]. Small GTPases Rac1 and Cdc42 involved in clathrin- and dynamin-independent pathways are responsible for actin formation-dependent clathrin-independent carriers (CLICs) [101]. The GPI-AP enriched endosomal compartments are specific early endosomal compartments generated by the fusion of CLICs (GEECs) [102, 103]. This process, called the CLIC/GEEC pathway, depends on specific proteins, including GTPase and Arf6, and is responsible for taking and recycling the major Histocompatibility Antigen I [104].
Small protein Arf6 triggers the activation of phosphatidylinositol-4-phosphate 5-kinase, resulting in PI(4,5)P2, which induces actin assembly and drives endocytosis [105]. Another endocytosis pathway is the flotillin pathway, which depends on curvature-generating and membrane-anchored proteins [106, 107]. In vitro HeLa cells undergo CLIC/GEEC and a flotillin-dependent pathway, taking up PI-anchored protein and CD59. The CLIC/GEEC pathway and the Arf6-pathway are both involved in the uptake of the transmembrane protein CD44 [108]. Several types of CLIC/GEEC pathways play a role in rapidly recycling cell membranes. The CLIC/GEEC pathway is responsible for nutrient and toxin uptake and is considered a portal for viral infection [109].

SARS-CoV-2 Entry by Lipid Rafts

Viral entry and infection depend on endocytosis pathways, especially sphingolipids and lipid rafts. Many viruses utilize lipid rafts to enter the host cell and facilitate infection, including hepatitis C viruses [47], human herpes virus 6 [110], poliovirus [46], and simian virus 40. Coronaviruses, including SARS-CoV-2, interact with lipid rafts to enter host cells and cause infection [111, 112]. Studies by Thorp and Gallagher (2004) supported the function of sphingolipids and cholesterol in viral infections, where cholesterol reduction prevents viral entry [49].
The virus is made up of an envelope that includes spike protein (S), membrane protein (M), and minor envelope protein (E). Transmembrane serine protease 2 (TMPRSS2), with the help of furin, triggers cleavage of the viral spike (S1 and S2) [51]. The Golgi apparatus contains a predominant amount of furin; the other part is found on the cell surface [52]. Once the viral spike and its structural proteins bind to ACE-2, it is activated and promotes viral entry into the host cell.
The host cell receptor is angiotensin-converting enzyme-2 that binds to the S proteins in the virus [113], enabling proteolysis of viral surface S1 subunit by a plasma-membrane-bound serine protease (TMPRSS2) and Cathepsin L (CatL), which may be associated with caveolae [114]. Once SARS-CoV-2 is attached to caveolae and enters intracellular endosomes, cathepsin L emerges as the main protease of the virus [115].
Viral gateway into the host cell or ACE-2 receptor exists on the surface of several types of cells, including kidney, respiratory, and intestinal epithelial and endothelial cells. Respiratory SARS-CoV-2 attaches to ACE-2 by gln493 residue, enabling viral entry. Viral S protein not only attaches to ACE-2 but also binds to host cell surface gangliosides. A new type of ganglioside-binding domain (111–158) was identified within the N-terminal domain of the SARS-CoV-2 S protein, facilitating attachment of viral spike to lipid rafts and attachment to host cell receptors [54]. The ACE-2 is colocalized with SARS-CoV-2, entering and infecting host cells by direct membrane fusion or by host cell ACE-2. Lipid rafts are key in both viral entrance methods, enabling the concentration of the endocytic proteins for endocytosis and fusion, as shown in Fig. 3. When endocytic proteins concentrate and interact within lipid rafts, the frequency of interprotein collisions by protein partitioning into lipid rafts increases [116]. As a result, lipid rafts act as plasma membrane "chambers" that facilitate protein interactions on the plasma membrane, promote the rate of molecule collisions, and consequently improve the efficacy of membrane reactions.
Lipid rafts play a role in viral infection by providing appropriate platforms that concentrate host cell receptor ACE-2 on the cell membrane, where they attach with viral S protein. The receptor binding domain (RBD) is the vital part of the virus that engages the protease domain (PD) of ACE-2, resulting in a complex containing a dimeric ACE-2 with two S protein trimers [117]. Multivalent binding of virus particles to the cell surface occurs by host cell receptors clustering. Microdomains of the host cell membrane improve the efficiency of viral infection and facilitate viral endocytosis. Several studies confirm that methyl-β-cyclodextrin (MβCD) inhibits infectious bronchitis virus infection by disrupting lipid rafts, indicating that lipid rafts play a role in viral entry [56, 118]. After the viral S protein attaches to ACE-2 and the virus and host receptor complex have formed, lipid raft and focal adhesions are clustered during endocytosis. Therefore, lipid rafts are hypothesized to be significant during the early stages of coronavirus infection.

Lipid Raft Distribution Reduces SARS-CoV-2 Infectivity

Some drugs affect lipid rafts and thus play an important role as antiviral drugs. Lipid raft distribution and cholesterol depletion by methyl-β-cyclodextrin (MβCD) minimizes the infectivity of the influenza virus [119]. Lipid raft distribution reduces viral infectivity and holes in the viral envelope, which disturb the viral structure and affect viral protein release. Several studies observed that cholesterol depletion reduces the infectivity of SARS-CoV-2 [120122]. Inhibiting of viral biosynthesis and infection occurs using drugs such as lovastatin or squalestatin that promote cholesterol depletion. A significant viral ASM/ceramide system in SARS-CoV-2 is important for viral infection. Entry of SARS-CoV-2 and clustering with host cell receptors are facilitated by stimulation of the ASM/ceramide system, subsequently forming membrane domains rich in ceramide platforms on the cell membrane [24].
In this context, the ASM/ceramide system is considered an antiviral target to reduce viral infection. FIASMAs are antiviral drugs used against the ASM/ceramide system in SARS-CoV-2 that inhibit the formation of ceramide-enriched membrane domains, thereby preventing SARS-CoV-2 infection (Table 2). Ceramide has several functions, including clustering of ACE-2 in large membrane domains and amplifying signaling via ACE-2, which is also required for host cell ACE-2 internalization of the virus into the endosome [123]. Cathepsins in the endosome interact with ceramide produced inside endosomes or on the cell membrane's outer leaflet, promoting spike-protein priming and membrane fusion [124]. As a result, FIASMAs inhibit the formation of domains enriched with ceramide and viral entry and infection. In this context, viral infection is inhibited by the down-regulation of the genetic expression of ASMase. FIASMAs change the pH of the endosome, enabling lysosomes to target the endosome and make the virus more susceptible to lysosomal degradation. Therefore, our review suggests FIASMA medications as antiviral therapeutics by targeting lipid raft domains.
Table 2
Functional inhibitors of acid sphingomyelinase (FIASMs) with US Food and Drug Administration (FDA) appraisal
No
FIASMAs
FDA
Molecular weight g/mole
References
1
Alverine
Not approved
281.44
[27, 125, 126]
2
Astemizole
Approved
458.571
[127]
3
Aprindine
Not approved
322.487
[27, 125]
4
Amlodipine
Approved
408.879
[125, 127]
5
Ambroxol
Approved
378.1028
[125]
6
Amiodarone
Approved
645.31
[128, 129]
7
Amitriptyline
Approved
277.403
[128130]
8
Benztropin
Approved
307.429
[127, 131]
9
Bepridil
Approved
366.54
[127, 131, 132]
10
Biperidene
Approved
311.46
[27, 125]
11
Camylofine
Approved
320.47
[127]
12
Carvedilol
Approved
406.474
[27, 125, 128, 130]
13
Cepharanthine
Not approved
606.7
[27, 125, 133, 134]
14
Clofazimine
Approved
473.4
[125, 128]
15
Clemastine
Approved
343.89
[125, 128, 135, 136]
16
Cloperastine
Approved
329.86
[127, 134, 137]
17
Chlorprothixene
Not approved
315.86
[127, 128, 135]
18
Chlorpromazine
Approved
318.86
[128, 131, 134, 138]
19
Clofazimine
Approved
473.39
[128, 139, 140]
20
Clomiphene
Approved
405.966
[127, 141, 142]
21
Clomipramine
Approved
314.9
[128, 131, 143, 144]
22
Conessine
Not approved
356.6
[27, 125]
23
Cyclobenzaprine
Approved
275.4
[127, 128]
24
Cyproheptadine
Approved
287.39
[127, 128]
25
Desipramine
Approved
266.388
[128, 143, 145]
26
Desloratadine
Approved
310.82
[27, 125, 145]
27
Dicycloverine
Approved
309.487
[27, 125, 140]
28
Dilazep
Approved
604.7
[132, 146]
29
Dimebon
Not approved
319.452
[27, 125]
30
Doxepine
Approved
279.376
[127, 132, 147]
31
Drofenine
Approved
317.47
[127, 128, 143, 145]
32
Emetine
Not approved
480.639
[125, 134, 148150]
33
Fendeline
Approved
315.5
[127]
34
Flupenthixol
Not approved
434.5219
[136, 143, 151]
35
Fluoxetine
Approved
309.33
[127129, 144, 146]
36
Fluvoxamine
Approved
318.335
[125, 143, 152]
37
Fluphenazine
Approved
437.523
[125, 128, 131, 153]
38
Flupentixol
Not approved
434.5219
[136, 143, 151]
39
Flunarizine
Not approved
404.495
[128, 135]
40
Hydroxyzin
Approved
374.904
[125, 129, 144, 154, 155]
41
Imipramine
Approved
280.407
[128, 143, 145, 156]
42
Loperamide
Approved
477.037
[129, 135, 157]
43
Loratadine
Approved
382.88
[128, 154, 158]
44
Maproteline
Approved
277.403
[127, 128, 135, 145]
45
Melatonine
Not approved
232.278
[130, 138, 159, 160]
46
Mebhydroline
Not approved
276.376
[125]
47
Mebeverine
Not approved
429.55
[27, 125]
48
Mibefradile
Not approved
495.63
[27, 125]
49
Norfluoxetine
Approved
295.30
[127]
50
Nortriptyline
Approved
263.377
[125, 127, 146]
51
Paroxetine
Approved
329.37
[127, 129, 144, 160, 161]
52
Perphenazine
Approved
403.97
[27, 125, 128, 162]
53
Pimozide
Approved
461.56
[27, 125]
54
Pimethexene
Approved
293.434
[127]
55
Profenamine
Discontinued
312.5
[27, 125]
56
Promethazine
Approved
284.4191
[127, 128, 131, 155]
57
Promazine
Not approved
284.42
[127]
58
Protriptyline
Approved
263.377
[127, 128]
59
Quinacrine
Not approved
400.0
[155, 163]
60
Sertindole
Not approved
440.941
[27, 125]
61
Solasodine
Not approved
413.64
[27, 125]
62
Sertraline
Approved
306.229
[127, 144, 164]
63
Suloctidil
Not approved
337.6
[127]
64
Tamoxifene
Approved
371.515
[144, 155, 164]
65
Thioridazine
Approved
370.6
[163165]
66
Tomatidine
Not approved
415.7
[27, 125]
67
Terfenadine
Not approved
471.673
[127]
68
Trifluoperazine
Approved
407.497
[128, 151, 164]
69
Triflupromazine
Approved
352.4
[125, 128]
70
Trimipramine
Approved
294.434
[128, 166]
71
Zolantidine
Not approved
381.5
[27, 125]

Functional Inhibitors of Acid Sphingomyelinase FIASMAs’ Mechanism of Action

Specific electrostatic forces bind lysosomal acid sphingomyelinase to the intra-lysosomal membranes and thus remain protected against proteolytic activity. FIASMAs inhibit ASMase by an indirect mechanism [26] (Figs. 4). The intra-lysosomal space maintains a low pH by an ATP-driven proton pump, which retains the attachment of the ASMase to the intra-lysosomal membranes. The lysosomal membrane is characterized by low permeability towards the protonated bases compared to uncharged ones (lysomotropism). Therefore, with the intake of FIASMAs and other weak bases (lysosomal accumulation), the intra-lysosomal pH raises and diminishes the electrostatic interactions between the lysosomal membrane and the ASMase, resulting in ASMase detachment [127].
Following the detachment, ASMase is cleaved and degraded within the lysosomes by proteolytic degradation [27, 167]. Notably, inhibition of ASMase by certain drugs has long been recognized, but systematic studies describing FIASMA inhibition are fairly new [127] (Figs. 5, 6).

In Vitro Docking of Potent Antiviral Compounds Based on Sphingolipid Inhibition

Molecular Operating Environment (MOE) software was used to perform docking analyses [168] of acid sphingomyelinase inhibitors to quantify their inhibitory effect on SARS-CoV-2 uptake. Their binding modes with mammalian acid sphingomyelinase’s binding site (PDB code: 5FI9) and their interaction with key amino acids were compared to the candidate drug amiodarone [169]. All structure minimizations were performed until an RMSD gradient of 0.05 kcal∙mol−1 Å−1 with MMFF94x force field, and partial charges were automatically calculated. All intervening water molecules were removed from the structure, and then the target protein was prepared for docking using Protonate 3D protocol in MOE with default parameters. The co-crystalized ligand was used to define the binding site for docking simulation. The Triangle Matcher Placement method and London dG scoring function were employed for docking and scoring. The docking protocol was first validated by self-docking the co-crystallized ligand near the protein's binding site. The ligand-receptor interactions at the protein binding site were studied with the validated docking protocol (RMSD < 2) for the reported inhibitors to predict their binding mode and binding affinity.
Validation and endorsement of the docking protocol were achieved by self-docking of the co-crystallized (1-azanyl-1-phosphono-decyl) phosphonic acid (APPA) within the acid sphingomyelinase active site with an energy score (S) of –28.75 kcal/mol and RMSD of 1.49 Å, and with reproducing all interactions of APPA with the binding site of the enzyme (Fig. 7A). Reported inhibitors interacted with the key amino acids in the acid sphingomyelinase active site, indicating their inhibition activities as confirmed by their docking scores (S) and binding modes compared to that of the candidate drug amiodarone (Figures. 7B and Table 3).
Table 3
Docking energy scores (S) and hot spots involved in binding for APPA (the co-crystalized compound), amiodaron (the drug candidate), and the reported compounds in the acid sphingomyelinase active site
Compound
Docking score (S) (kcal/mol)
Hot spots involved in binding
APPA
(Co-crystalized ligand)
 − 28.75
Asn316, His280, and Zn(II) ions
Amiodarone
(Drug candidate)
 − 10.43
Tyr572
Alverine
 − 8.22
Ile 487
Astemizole
 − 10.81
Asn488 and His457
Aprindine
 − 8.41
Asn488 and Thr456
Amlodipine
 − 9.14
Zn(II) ions
Ambroxol
 − 8.54
His455, His457, Glu386, and Zn(II) ions
Amitriptyline
 − 7.94
Ile 487
Benztropine
 − 8.18
––––-
Bepridil
 − 10.47
Asn488
Biperidene
 − 7.96
Thr456
Camylofine
 − 8.55
His280 and His455
Carvedilol
 − 11.28
––––-
Cepharanthine
 − 11.06
Asn316, His280, Ile487, and His457
Clofazimine
 − 10.37
Ile 487
Clemastine
 − 8.40
––––-
Cloperastine
 − 8.04
––––-
Chlorprothixene
 − 7.86
Asn323, His280, and Phe486
Chlorpromazine
 − 8.29
Ile 487
Clomiphene
 − 8.95
––––-
Clomipramine
 − 8.31
His280
Conessine
 − 8.33
––––-
Cyclobenzaprine
 − 8.03
Asn488 and His457
Cyproheptadine
 − 8.45
––––-
Desipramine
 − 8.38
Asn316 and Glu386
Desloratadine
 − 8.77
Asn323 and His280
Dicycloverine
 − 7.53
His280 and His457
Dilazep
 − 12.58
His457
Dimebon
 − 9.41
Asn488
Doxepine
 − 8.36
Asn488
Drofenine
 − 8.08
Asn316 and His317
Emetine
 − 11.65
––––-
Fendeline
 − 9.06
Ile487
Flupenthixol
 − 10.39
His455, His280, His457, Ile487, and Zn(II) ions
Fluoxetine
 − 10.09
His457, Ile487, and Lys103
Fluvoxamine
 − 9.37
His455, Ile487, and Zn(II) ion
Fluphenazine
 − 9.59
His455, His317, and Glu386
Flunarizine
 − 9.20
His317
Hydroxyzine
 − 10.96
His455, Ile487, and Zn(II) ions
Imipramine
 − 7.76
Asn488
Loperamide
 − 10.13
Asn316, His280, and Lys103
Loratadine
 − 8.47
––––-
Maproteline
 − 7.96
His280, Thr456, and His457
Melatonine
 − 9.23
His280
Mebhydroline
 − 8.02
Asn488
Mebeverine
 − 11.14
His457
Mibefradil
 − 10.09
Asn488 and Glu386
Norfluoxetine
 − 10.34
His280 and Zn(II) ions
Nortriptyline
 − 7.49
His457
Paroxetine
 − 10.23
Asn488
Perphenazine
 − 9.78
His455, His317, and Zn(II) ions
Pimozide
 − 11.29
His280, His317, and Asn488
Profenamine
 − 7.72
His317
Promethazine
 − 7.62
Ile487
Promazine
 − 8.09
Ile487
Protriptyline
 − 8.48
Ile487
Quinacrine
 − 10.19
His280
Sertindole
 − 10.55
His457
Solasodine
 − 8.64
His317
Sertraline
 − 7.77
His317
Suloctidil
 − 8.64
His455
Tamoxifene
 − 8.56
Phe486
Thioridazine
 − 8.00
His317
Tomatidine
 − 8.85
His280
Terfenadine
 − 10.39
His455 and His457
Trifluoperazine
 − 10.22
Ile487
Triflupromazine
 − 8.72
Asn488
Trimipramine
 − 7.79
His280, Asn323, and Phe486
Zolantidine
 − 9.13
His457 and Ile487
The docking simulation studies revealed that dilazep (S = − 12.58 kcal/mol), emetine (S = − 11.65 kcal/mol), pimozide (S = − 11.29 kcal/mol), carvedilol (S = − 11.28 kcal/mol), mebeverine (S = − 11.14 kcal/mol), cepharanthine (S = − 11.06 kcal/mol), hydroxyzine (S = − 10.96 kcal/mol), astemizole (S = − 10.81 kcal/mol), sertindole (S = − 10.55 kcal/mol), and bepridil (S = − 10.47 kcal/mol) had higher inhibition activity than the candidate drug amiodarone (S = − 10.43 kcal/mol) towards the acid sphingomyelinase. In addition, dilazep (S = − 12.58 kcal/mol) was the most effective inhibitor. Additionally, we provided a comprehensive Table 4 for publicly available inhibitors of ASMase in vitro and in vivo in previous studies to give insight into experimental data regarding ASMase inhibitors.
Table 4
In vitro and in vivo studies of FIASMAs
FIASMAs
In silico study
In vitro study
In vivo study
Refences
Alverine
-
Show functional inhibition of ASMase with residual ASM activity of 21.7
-
[27]
Astemizole
Astemizole formed one hydrogen bond with ACE2 while three hydrogen bonds with H1R. Nitrogen on the hexahydropyridine ring of astemizole forms hydrogen bonds with ARG393 of ACE2 with distances of 2.14 Å. Asmidazole forms hydrogen bonds with LYS1016, ANS1055, and ASN1053 of H1R with distances of 1.92 Å, 2.39 Å, and 1.91 Å, respectively
The results showed that astemizole can bind to the ACE2 receptor and inhibit the invasion of SARS-COV-2 Spike pseudoviruses
[170]
Aprindine
-
Show functional inhibition of ASMase with residual ASM activity of 27.5
[27]
Amlodipine
Amlodipine showed binding affinity to S glycoprotein and 3-chymotrypsin-like protease was − 5.5, − 6.0, and − 5.2, respectively
Amlodipine Besylate showed antiviral activity against OC43 cells through binding and acting as a carbonic anhydrase inhibitor, calcium channel inhibitor, and PDE inhibitor
Chronic treatment with amlodipine could be significantly associated with low mortality of COVID-19 in patients
[171] [172]
Ambroxol
––-
––––
The system of sphingomyelinase/ceramide is very significant in transmitting SARS-CoV-2. They used Ambroxol, which has trans-4-[(2,4-dibromanilin-6-yl)-methyamino]-cyclohexanol structure as an inhibitor of ASMase. The Ambroxol is applied by inhalation, suggesting that the drug might inhibit the acid sphingomyelinase and, thereby, infection with SARS-CoV-2. They used vesicular stomatitis virus pseudoviral particles presenting SARS-CoV-2 spike protein on their surface (pp-VSV-SARS-CoV-2 spike), a bona fide system for mimicking SARS-CoV-2 entry into cells. They found that entry of pp-VSV-SARS-CoV-2 spike required activation of acid sphingomyelinase and release of ceramide, all of which were prevented by pretreatment with ambroxol. They also obtained nasal epithelial cells from human volunteers before and after inhalation of ambroxol. Inhalation of ambroxol reduced acid sphingomyelinase activity in nasal epithelial cells and prevented pp-VSV-SARS-CoV-2 spike-induced acid sphingomyelinase activation, ceramide release, and entry of pp-VSV-SARS-CoV-2 spike ex vivo [123]
[123]
Amiodarone
Amiodarone reduced SARS-CoV-2 and IAV titres ≥ 90% without any cytotoxic effects. It also inhibited SARS2 replication, reducing supernatant viral RNA load with a promising activity level
Amiodarone administration in an early disease phase might block SARS-CoV-2 replication
[156]-[173]
Amitriptyline
Amitriptyline showed binding to the allosteric site of SARS-CoV-2 Main Protease with − 5.9 kcal/mol
The results showed that the increased ASMase activity and ceramide release were inhibited by pretreatment with Amitriptyline at 0.625, 1.25, 2.5, and 5 μM. Thus, amitriptyline was regarded as an active inhibitor of ASMase
In healthy volunteers, oral administration of amitriptyline blocked infection of freshly isolated nasal epithelial cells with SARS‐CoV‐2
[174176]
Benztropin
-
Benztropin inhibited ASMase activity by at least 50% at 10 µM
In healthy volunteers, oral administration of amitriptyline blocked infection of freshly isolated nasal epithelial cells with SARS‐CoV‐2
[174, 177]
Bepridil
Amitriptyline showed binding to the allosteric site of SARS-CoV-2 Main Protease with − 5.1 kcal/mol
Bepridil possesses significant anti − SARS-CoV-2 activity in both Vero E6 and A459/ACE2 cells in a dose-dependent manner with low micromolar effective concentration 50% (EC50) values
-
[178]
Biperidene
-
Showed inhibitory impact on ASMase
-
[174]
Camylofine
-
Camylofin showed an inhibitory impact with a pKa of 10.02
-
[127]
Carvedilol
-
-
Carvedilol usage was not significantly associated with a reduced likelihood of a positive laboratory test result for SARS-CoV-2 among the 5 subgroups after adjusting for age, sex, race, smoking, and various disease comorbidities
[130]
Cepharanthine
Cepharanthine can block both the NSP12‐NSP7 interface and the NSP12‐NSP8 interface of SARS‐CoV‐2 and the NSP12‐NSP8 interface of SARS‐CoV.2
Cepharanthine showed potential antiviral activities against SARS-CoV-2, with IC50 values between 0.1 and 10 μM
 
[179]
Clofazimine
Clofazimine inhibit 3CLPRO
Clofazimine showed IC50 value of 0.01 µM
Our data provide evidence that clofazimine may have a role in controlling the current COVID-19 pandemic and, more importantly, in dealing with coronavirus diseases that may emerge
[164, 180, 181]
Clemastine
Clemastin inhibits SARS-CoV-2 replication by non-specific (off-target) effects. Clemastine was docked into the agonist-bound state structure of the receptor (6DK1) with solvation-corrected docking of − 43 kcal/mol
Clemastine inhibited SARS2 replication, reducing supernatant viral RNA load with a promising level of activity with EC50 = 0.95 ± 0.83 µM
-
[136, 137, 182]
Cloperastine
Cloperastine inhibited SARS-CoV-2 replication by non-specific (off-target) effects
-
-
[182]
Chlorprothixene
-
Chlorprothixene inhibits the SARS-CoV replication with EC50s around 10 µM
-
[183]
Chlorpromazine
Chlorpromazine inhibited SARS-CoV-2 replication by non-specific (off-target) effects
Chlorpromazine didn’t inhibit the virus replication
Inhibited viral replication in the lungs but protected against SARS-CoV-2
[184, 185]
Clomiphene
-
Clomiphene showed an inhibitory impact with IC50 of 3.32 µM
-
[142]
Clomipramine
-
Clomipramine showed an IC50 average of 5.63
-
[184]
Conessine
-
Show functional inhibition of ASMase with residual ASM activity of 20.8
-
[27]
Cyclobenzaprine
-
-
-
 
Cyproheptadine
-
-
-
 
Desipramine
-
Desipramine with concentrations of 5 μM and 35 μM inhibited acid sphingomyelinase activity
-
[186]
Desloratadine
-
Desloratadine, a commonly used antiallergic, well-tolerated with no major side effects, potently reduced the production of SARS-CoV-2 RNA in Vero-E6 cells
Finally, the ex vivo kinetic of the antiviral effect of desloratadine was evaluated on primary Human Nasal Epithelial Cells (HNEC), showing a significant delay of viral RNA production with a maximal reduction reached after 72 h of treatment
[187]
Dicycloverine
-
Dicycloverine, showed antiviral efficacy against SARS-CoV-2, reducing viral infection by at least 50%,
-
[188]
Dilazep
-
-
-
 
Dimebon
-
Inhibited ASMase with residual activity 44.1%
-
[27]
Doxepine
-
Doxepin could inhibit SARS-CoV-2 spike pseudovirus from entering the ACE2-expressing cell, reducing the infection rate to 25.82%
-
[189]
Drofenine
-
Drofenine showed an inhibitory impact through pKa alteration of 9.21
-
[127]
Emetine
Emetine (P5) showed binding energy to RNA-dependent RNA polymerase (RdRp) enzyme with − 7.81 kcal/mol
Antiviral effect of emetine against SARS-CoV-2 virus in Vero E6 cells with the estimated 50% effective concentration at 0.46 μM
-
[148, 190],
Fendeline
-
-
-
 
Flupenthixol
Flupenthixol showed docking PLANTS score with RdRp and MPro with − 91.70 and − 91.82, respectively
Antiviral tests using native SARS-CoV-2 virus in Vero E6 cells confirmed that flupenthixol significantly inhibited SARS2 replication, reducing supernatant viral RNA load with a promising activity level
Flupenthixol inhibited viral entry in our lung organoid model
[136, 191]
Fluoxetine
Fluoxetine demonstrates non-serotonergic, anti-inflammatory effects. Our results show a critical role for IL6 signal transduction protein (IL6ST) and NF-kappaB Subunit 1 (NFKB1) in fluoxetine’s ability to act as a potential therapy for hyperinflammatory states such as asthma, sepsis, and COVID-19
Fluoxetine with concentrations between 5 μM and 35 μM inhibited acid sphingomyelinase activity
In this multicenter retrospective observational study involving a large sample of patients hospitalized for COVID-19, we found that antidepressant use, at a mean dosage of 21.6 (SD = 14.1) fluoxetine-equivalent milligrams, was significantly and substantially associated with reduced risk of intubation or death, independently of patient characteristics, clinical and biological markers of disease severity, and other psychotropic medications
[144, 186]
Fluvoxamine
 
Fluvoxamine reduced the viral infection, as measured by luciferase reporter activity
Treatment of COVID-19 patients with fluvoxamine for 2 weeks also effectively decreased the development of clinical deterioration
[143, 152]
Fluphenazine
Fluphenazine revealed the best binding pattern and the highest docking score against the main protease binding site (–11.75 kcal/mol)
Fluphenazine dihydrochloride showed IC50 (Avg) of 6.36 against against SARS-CoV-2
-
[153, 184]
Flupentixol
-
-
-
 
Flunarizine
Flunarizine by a spike protein docking screen
Flunarizine showed an impact against SARS-CoV-2, which was confirmed through cytopathic effect (CPE) assay in Vero E6 cells with EC50 (uM) of 10.0
-
[185, 192]
Hydroxyzin
The drugs that passed all applied lysosomotropism criteria are azithromycin, promethazine, cyclizine, chloroquine, clemastine, hydroxyzine, rifabutin and vicriviroc, and drugs that do not have data for one of the criteria but passed all the others are chlorcyclizine, homochlorcyclizine and quinacrine
The diphenhydramine, hydroxyzine, and azelastine to exhibit direct antiviral activity against SARS-CoV-2 in vitro
Usage of hydroxyzine was associated with reduced incidence of SARS-CoV-2 positivity in subjects greater than age 61
[154, 193]
Imipramine
Inhibitor candidate for SARS-CoV-2 Main Protease
Concentrations between 5 μM and 35 μM inhibited acid sphingomyelinase activity
-
[176, 186]
Loperamide
-
Loperamide hydrochloride showed antiviral effect against In vitro live virus
-
[179]
Loratadine
 
In vitro, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike pseudotyped viral infection experiments indicated that histamine H1 antagonists loratadine (LOR) and desloratadine (DES) could prevent the entry of the pseudotyped virus into ACE2-overexpressing HEK293T cells and showed that DES was more effective
Prior usage of loratadine was associated with a reduced incidence of positive SARS-CoV-2 test results in individuals 61 years and above in a statistically significant manner
[154, 158]
Maproteline
-
-
-
 
Melatonine
The establish that a combinatorial drug treatment using melatonin and toremifene will provide an effective therapeutic strategy to mitigate the severity of COVID-19
In summary, combining mercaptopurine and melatonin may offer a potential combination therapy for 2019-nCoV/SARS-CoV-2 by synergistically targeting papain-like protease, ACE2, c-Jun signalling, and anti-inflammatory pathways
 
The risk was reduced in those who had pneumococcal polysaccharide or influenza vaccine or were on melatonin, paroxetine, or carvedilol
[160, 194, 195]
Mebhydroline
-
Mebhydroline causes in vitro inhibition of acid sphingomyelinase
-
[174]
Mebeverine
-
-
-
 
Mibefradile
-
Mibefradile causes in vitro inhibition of acid sphingomyelinase
-
[174]
Norfluoxetine
-
-
-
 
Nortriptyline
The potential to reverse transcriptomic signature upon SARS-CoV-2 through acting as an antagonist for Adrenergic uptake inhibitor
-
-
[196]
Paroxetine
-
-
Most potentially impactful is the reduced risk of testing positive in patients who were on melatonin, carvedilol, and paroxetine, which are drugs identified in drug-repurposing studies to have a potential benefit against COVID-19
[160]
Perphenazine
-
-
-
 
Pimozide
Pimozide, tested by computational docking analysis and in vitro assays, has been suggested to inhibit the main protease of SARS-CoV-2 (MPro)
Pimozide, ebastine, and bepridil were the three most potent FDA/EMA-approved medicines, with IC50 values of 42 ± 2, 57 ± 12, and 72 ± 12 µM, respectively
Pimozide inhibited the infection by pseudotyped viruses with minimal effects on cell viability
-
[143, 178]
Pimethexene
-
-
-
 
Profenamine
Profenamine showed binding affinity to ASMase of − 8.7 kcal/mol
-
-
[197]
Promethazine
-Promethazine showed effectiveness against either SARS-CoV, SARS-CoV-2 or MERS viruses or two or all of them, supporting the potential value of this antiviral strategy
-Promethazine is a candidate for targeting COVID-19 Related Genes
Promethazine hydrochloride showed IC50 (avg) of 9.21 μM
-
[184, 193, 198]
Promazine
-
Promazine was identified as a high-confidence inhibitor of SARS-CoV-2 replication
-
[199]
Protriptyline
-
-
-
 
Quinacrine
The remaining top candidate drugs identified by our analysis include kinase inhibitors erlotinib, alvocidib, dasatinib, antimalarial quinacrine, and phenothiazine thioridazine, a more commonly used antipsychotic. These drugs also have antiviral properties and are yet to be explored for the treatment of COVID-19
-
-
[200]
Sertindole
-
Sertindole showed in vitro inhibition of acid sphingomyelinase
-
[174]
Solasodine
Solasodine showed a binding affinity of − 8.7 against ASMase
-
-
 
Sertraline
-
Mechanistically, sertraline HCl was found to block SARS-CoV-2 S protein-mediated cell fusion
-
[164]
Suloctidil
-
-
-
 
Tamoxifene
Overall, we recommend that tamoxifen may protect against cytokine storms, alleviate ARDS in COVID-19 patients, and reduce the incidence of critical illness and mortality
Tamoxifen citrateshowed IC50 (avg) of 34.12 μM
-
[184, 198]
Thioridazine
Thioridazine and its identified photoproducts (mesoridazine and sulforidazine) have high biological activity on the virus Mpro. This shows that thioridazine and its two photoproducts might represent new potent medicines to be used for treatment in this outbreak
-
Thioridazine has anti-SARS-CoV-2 activity in vitro
-
[164, 201]
Tomatidine
Profenamine showed binding affinity to ASMase of − 8.7 kcal/mol
-
-
 
Terfenadine
-
Terfenadine can reverse the transcriptional landscape induced by SARS-CoV-2 infection when tested on Vero-E6 cells infected with SARS-CoV-2 and on human pluripotent stem-cell-derived pancreatic endocrine organoid cultures
-
[202]
Trifluoperazine
Trifluoperazine was predicted to bind to Mpro and RdRp (PLANTS scores < − 80.00), thus corroborating putative multimodal actions
Trifluoperazine 2HCl showed antiviral activity against SARS-CoV-2 with CC50 and IC50(μM) of 29.29 and 11.75, respectively
-
[164, 191]
Triflupromazine
-
The triflupromazine demonstrated antiviral activity in a screen against MERS-CoV replication in Huh-7 cells
-
[24]
Trimipramine
Amitriptyline showed binding to the allosteric site of SARS-CoV-2 Main Protease with − 5.5 kcal/mol
-
-
[176]
Zolantidine
-
-
-
 
(-) = Not found

Conclusion and limitations

Nevertheless, dilazep showed the most promising in silico results against ASMase with (S = − 12.58 kcal/mol); we couldn’t find a correlation with experimental data; however, our pre-elementary docking can be validated through in vitro and in vivo future experimental data. Interestingly, emetine had (S = − 11.65 kcal/mol), consistent with its in vitro capacity against SARS-CoV-2 virus in Vero E6 cells with the estimated 50% effective concentration at 0.46 μM [148]. Pimozide pointed out (S = − 11.29 kcal/mol) can be correlated with its IC50 potency of 42 ± 2 µM and its potent inhibitory infection by pseudotyped viruses with minimal effects on cell viability [143, 178]. While carvedilol had (S = − 11.28 kcal/mol), a previous cohort study didn’t confirm its role as a significant player against SARS-CoV-2 [130]. Mebeverine showed (S = − 11.14 kcal/mol); however, to our knowledge, the inhibitor hasn’t been tested experimentally. Furthermore, cepharanthine, which pointed out (S = − 11.06 kcal/mol), had potential antiviral activities against SARS-CoV-2 [179]. Hydroxyzine (S = − 10.96 kcal/mol) had previously shown a significant impact against SARS-CoV-2 in vitro and in vivo approaches [154, 193]. Astemizole had (S = − 10.81 kcal/mol) given by its ability to bind to the ACE2 receptor and inhibit the invasion of SARS-COV-2 Spike pseudoviruses [170]. Sertindole had (S = − 10.55 kcal/mol) results, which is in agreement with its showed in vitro inhibition of acid sphingomyelinase [174]. Bepridil (S = − 10.47 kcal/mol) was found to be a significant inhibitor against SARS-CoV-2 activity in both Vero E6 and A459/ACE2 cells in a dose-dependent manner with low micromolar effective concentration, 50% (EC50) values [178].

Limitations

Our work can be considered pre-elementary screening for ASMase inhibitors, leading to several candidates that should be tested in vitro and in vivo. Also, FIASMAs binding to the active site of ASMase wasn’t significantly robust as compared to crystallographic ligand (S = –28.75 kcal/mol), which can be attributed to the indirect work of FIASMAs through lysosomal accumulation and raising intra-lysosomal pH causing reduced the electrostatic interactions between the lysosomal membrane and the ASMase, resulting in ASMase detachment. Also, our in silico framework depended only on MOE software, which didn’t reveal the standard deviations of binding energies, so we recommend using additional software to validate the results further.

Acknowledgements

 Not applicable.

Declarations

Not applicable.
Not applicable.

Financial interest

All authors declare that they have no financial or non-financial interests that are directly or indirectly related to the work submitted for publication.

Competing interests

The authors declare no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Hoertel N, Blachier M, Blanco C, Olfson M, Massetti M, Rico MS, Limosin F, Leleu H. A stochastic agent-based model of the SARS-CoV-2 epidemic in France. Nat Med. 2020;26(9):1417–21.PubMedCrossRef Hoertel N, Blachier M, Blanco C, Olfson M, Massetti M, Rico MS, Limosin F, Leleu H. A stochastic agent-based model of the SARS-CoV-2 epidemic in France. Nat Med. 2020;26(9):1417–21.PubMedCrossRef
2.
Zurück zum Zitat Ghosh S, Bornman C, Zafer MM. Antimicrobial Resistance Threats in the emerging COVID-19 pandemic: Where do we stand? J Infect Public Health. 2021;14(5):555–60.PubMedPubMedCentralCrossRef Ghosh S, Bornman C, Zafer MM. Antimicrobial Resistance Threats in the emerging COVID-19 pandemic: Where do we stand? J Infect Public Health. 2021;14(5):555–60.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Alhouri A, Salloum A, Harfouch RM, Soumya G. Possible side effects of using detergents during the Covid19 pandemic in Syria. Ann Clin Cases. 2020;1(4):1023. Alhouri A, Salloum A, Harfouch RM, Soumya G. Possible side effects of using detergents during the Covid19 pandemic in Syria. Ann Clin Cases. 2020;1(4):1023.
4.
Zurück zum Zitat Meskini M, Rami MR, Maroofi P, Ghosh S, Siadat SD, Sheikhpour M. An overview on the epidemiology and immunology of COVID-19. J Infect Public Health. 2021;14(10):1284–98.PubMedPubMedCentralCrossRef Meskini M, Rami MR, Maroofi P, Ghosh S, Siadat SD, Sheikhpour M. An overview on the epidemiology and immunology of COVID-19. J Infect Public Health. 2021;14(10):1284–98.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Ghosh S, Al-Sharify ZT, Maleka MF, Onyeaka H, Maleke M, Maolloum A, Godoy L, Meskini M, Rami MR, Ahmadi S, et al. Propolis efficacy on SARS-COV viruses: a review on antimicrobial activities and molecular simulations. Environ Sci Pollut Res. 2022l;29(39):58628–47. Ghosh S, Al-Sharify ZT, Maleka MF, Onyeaka H, Maleke M, Maolloum A, Godoy L, Meskini M, Rami MR, Ahmadi S, et al. Propolis efficacy on SARS-COV viruses: a review on antimicrobial activities and molecular simulations. Environ Sci Pollut Res. 2022l;29(39):58628–47.
6.
Zurück zum Zitat Hessien M, Donia T, Tabll AA, Adly E, Abdelhafez TH, Attia A, Alkafaas SS, Kuna L, Glasnovic M, Cosic V. Mechanistic-Based Classification of Endocytosis-Related Inhibitors: Does It Aid in Assigning Drugs against SARS-CoV-2? Viruses. 2023;15(5):1040.PubMedPubMedCentralCrossRef Hessien M, Donia T, Tabll AA, Adly E, Abdelhafez TH, Attia A, Alkafaas SS, Kuna L, Glasnovic M, Cosic V. Mechanistic-Based Classification of Endocytosis-Related Inhibitors: Does It Aid in Assigning Drugs against SARS-CoV-2? Viruses. 2023;15(5):1040.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan China. The lancet. 2020;395(10223):497–506.CrossRef Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan China. The lancet. 2020;395(10223):497–506.CrossRef
8.
Zurück zum Zitat Alkafaas SS, Abdallah AM, Hussien AM, Bedair H, Abdo M, Ghosh S, Elkafas SS, Apollon W, Saki M, Loutfy SA. A study on the effect of natural products against the transmission of B.1.1. 529 Omicron. Virol J. 2023;20(1):191.PubMedPubMedCentralCrossRef Alkafaas SS, Abdallah AM, Hussien AM, Bedair H, Abdo M, Ghosh S, Elkafas SS, Apollon W, Saki M, Loutfy SA. A study on the effect of natural products against the transmission of B.1.1. 529 Omicron. Virol J. 2023;20(1):191.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Mahase E. Covid-19: death rate is 0.66% and increases with age, study estimates. BMJ. 2020;369:1327.CrossRef Mahase E. Covid-19: death rate is 0.66% and increases with age, study estimates. BMJ. 2020;369:1327.CrossRef
10.
Zurück zum Zitat Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine storm in COVID-19: the current evidence and treatment strategies. Front Immunol. 2020;11:1708.PubMedPubMedCentralCrossRef Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine storm in COVID-19: the current evidence and treatment strategies. Front Immunol. 2020;11:1708.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu N-H, Nitsche A. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280. e278.PubMedPubMedCentralCrossRef Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu N-H, Nitsche A. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280. e278.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Hurwitz R, Ferlinz K, Vielhaber G, Moczall H, Sandhoff K. Processing of human acid sphingomyelinase in normal and I-cell fibroblasts. J Biol Chem. 1994;269(7):5440–5.PubMedCrossRef Hurwitz R, Ferlinz K, Vielhaber G, Moczall H, Sandhoff K. Processing of human acid sphingomyelinase in normal and I-cell fibroblasts. J Biol Chem. 1994;269(7):5440–5.PubMedCrossRef
13.
Zurück zum Zitat Schissel SL. Jiang X-c, Tweedie-Hardman J, Jeong T-s, Camejo EH, Najib J, Rapp JH, Williams KJ, Tabas I: Secretory sphingomyelinase, a product of the acid sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH: implications for atherosclerotic lesion development. J Biol Chem. 1998;273(5):2738–46.PubMedCrossRef Schissel SL. Jiang X-c, Tweedie-Hardman J, Jeong T-s, Camejo EH, Najib J, Rapp JH, Williams KJ, Tabas I: Secretory sphingomyelinase, a product of the acid sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH: implications for atherosclerotic lesion development. J Biol Chem. 1998;273(5):2738–46.PubMedCrossRef
14.
Zurück zum Zitat Grassmé H, Jekle A, Riehle A, Schwarz H. Berger Jr, Sandhoff K, Kolesnick R, Gulbins E: CD95 signaling via ceramide-rich membrane rafts. J Biol Chem. 2001;276(23):20589–96.PubMedCrossRef Grassmé H, Jekle A, Riehle A, Schwarz H. Berger Jr, Sandhoff K, Kolesnick R, Gulbins E: CD95 signaling via ceramide-rich membrane rafts. J Biol Chem. 2001;276(23):20589–96.PubMedCrossRef
15.
Zurück zum Zitat Miller ME, Adhikary S, Kolokoltsov AA, Davey RA. Ebolavirus requires acid sphingomyelinase activity and plasma membrane sphingomyelin for infection. J Virol. 2012;86(14):7473–83.PubMedPubMedCentralCrossRef Miller ME, Adhikary S, Kolokoltsov AA, Davey RA. Ebolavirus requires acid sphingomyelinase activity and plasma membrane sphingomyelin for infection. J Virol. 2012;86(14):7473–83.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Avota E, Gulbins E, Schneider-Schaulies S. DC-SIGN mediated sphingomyelinase-activation and ceramide generation is essential for enhancement of viral uptake in dendritic cells. PLoS Pathog. 2011;7(2): e1001290.PubMedPubMedCentralCrossRef Avota E, Gulbins E, Schneider-Schaulies S. DC-SIGN mediated sphingomyelinase-activation and ceramide generation is essential for enhancement of viral uptake in dendritic cells. PLoS Pathog. 2011;7(2): e1001290.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Tani H, Shiokawa M, Kaname Y, Kambara H, Mori Y, Abe T, Moriishi K, Matsuura Y. Involvement of ceramide in the propagation of Japanese encephalitis virus. J Virol. 2010;84(6):2798–807.PubMedPubMedCentralCrossRef Tani H, Shiokawa M, Kaname Y, Kambara H, Mori Y, Abe T, Moriishi K, Matsuura Y. Involvement of ceramide in the propagation of Japanese encephalitis virus. J Virol. 2010;84(6):2798–807.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Esen M, Schreiner B, Jendrossek V, Lang F, Fassbender K, Grassme H, Gulbins E. Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells. Apoptosis. 2001;6(6):431–9.PubMedCrossRef Esen M, Schreiner B, Jendrossek V, Lang F, Fassbender K, Grassme H, Gulbins E. Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells. Apoptosis. 2001;6(6):431–9.PubMedCrossRef
19.
Zurück zum Zitat Grassmé H, Gulbins E, Brenner B, Ferlinz K, Sandhoff K, Harzer K, Lang F, Meyer TF. Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells. Cell. 1997;91(5):605–15.PubMedCrossRef Grassmé H, Gulbins E, Brenner B, Ferlinz K, Sandhoff K, Harzer K, Lang F, Meyer TF. Acidic sphingomyelinase mediates entry of N. gonorrhoeae into nonphagocytic cells. Cell. 1997;91(5):605–15.PubMedCrossRef
20.
Zurück zum Zitat Hauck CR, Grassmé H, Bock J, Jendrossek V, Ferlinz K, Meyer TF, Gulbins E. Acid sphingomyelinase is involved in CEACAM receptor-mediated phagocytosis of Neisseria gonorrhoeae. FEBS Lett. 2000;478(3):260–6.PubMedCrossRef Hauck CR, Grassmé H, Bock J, Jendrossek V, Ferlinz K, Meyer TF, Gulbins E. Acid sphingomyelinase is involved in CEACAM receptor-mediated phagocytosis of Neisseria gonorrhoeae. FEBS Lett. 2000;478(3):260–6.PubMedCrossRef
21.
Zurück zum Zitat Akinyemi KO, Al-Khafaji NS, Al-Alaq FT, Fakorede CO, Al-Dahmoshi HO, Iwalokun BA, Akpabio I, Alkafaas SS, Saki M. Extended-spectrum Beta-lactamases Encoding Genes among Salmonella Enterica serovar Typhi Isolates in Patients with Typhoid Fever from four Academic Medical Centers in Lagos. Nigeria Revista de investigacion clinica. 2022;74(3):165–71.PubMed Akinyemi KO, Al-Khafaji NS, Al-Alaq FT, Fakorede CO, Al-Dahmoshi HO, Iwalokun BA, Akpabio I, Alkafaas SS, Saki M. Extended-spectrum Beta-lactamases Encoding Genes among Salmonella Enterica serovar Typhi Isolates in Patients with Typhoid Fever from four Academic Medical Centers in Lagos. Nigeria Revista de investigacion clinica. 2022;74(3):165–71.PubMed
22.
Zurück zum Zitat Alduhaidhawi AHM, AlHuchaimi SN, Al-Mayah TA, Al-Ouqaili MT, Alkafaas SS, Muthupandian S, Saki M. Prevalence of CRISPR-Cas Systems and Their Possible Association with Antibiotic Resistance in Enterococcus faecalis and Enterococcus faecium Collected from Hospital Wastewater. Infection and Drug Resistance. 2022;15:1143.PubMedPubMedCentralCrossRef Alduhaidhawi AHM, AlHuchaimi SN, Al-Mayah TA, Al-Ouqaili MT, Alkafaas SS, Muthupandian S, Saki M. Prevalence of CRISPR-Cas Systems and Their Possible Association with Antibiotic Resistance in Enterococcus faecalis and Enterococcus faecium Collected from Hospital Wastewater. Infection and Drug Resistance. 2022;15:1143.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Raheem HQ, Hussein EF, Ghosh S, AlKafaas SS, Bloemfontein SA. Resistance of Klebsiella pneumoniae from Different Clinical Samples to Penicillin, Cephalosporin. Carbapenem and Fluoroquinolone Teikyo Medical Journal. 2021;44(06):1–8. Raheem HQ, Hussein EF, Ghosh S, AlKafaas SS, Bloemfontein SA. Resistance of Klebsiella pneumoniae from Different Clinical Samples to Penicillin, Cephalosporin. Carbapenem and Fluoroquinolone Teikyo Medical Journal. 2021;44(06):1–8.
24.
Zurück zum Zitat Kornhuber J, Hoertel N, Gulbins E. The acid sphingomyelinase/ceramide system in COVID-19. Mol Psychiatry. 2022;27(1):307–14.PubMedCrossRef Kornhuber J, Hoertel N, Gulbins E. The acid sphingomyelinase/ceramide system in COVID-19. Mol Psychiatry. 2022;27(1):307–14.PubMedCrossRef
25.
Zurück zum Zitat Sakuragawa N, Sakuragawa M, Kuwabara T, Pentchev PG, Barranger JA, Brady RO. Niemann-Pick disease experimental model: sphingomyelinase reduction induced by AY-9944. Science. 1977;196(4287):317–9.ADSPubMedCrossRef Sakuragawa N, Sakuragawa M, Kuwabara T, Pentchev PG, Barranger JA, Brady RO. Niemann-Pick disease experimental model: sphingomyelinase reduction induced by AY-9944. Science. 1977;196(4287):317–9.ADSPubMedCrossRef
26.
Zurück zum Zitat Kölzer M, Werth N, Sandhoff K. Interactions of acid sphingomyelinase and lipid bilayers in the presence of the tricyclic antidepressant desipramine. FEBS Lett. 2004;559(1–3):96–8.PubMedCrossRef Kölzer M, Werth N, Sandhoff K. Interactions of acid sphingomyelinase and lipid bilayers in the presence of the tricyclic antidepressant desipramine. FEBS Lett. 2004;559(1–3):96–8.PubMedCrossRef
27.
Zurück zum Zitat Kornhuber J, Muehlbacher M, Trapp S, Pechmann S, Friedl A, Reichel M, Mühle C, Terfloth L, Groemer TW, Spitzer GM. Identification of novel functional inhibitors of acid sphingomyelinase. PLoS ONE. 2011;6(8): e23852.ADSPubMedPubMedCentralCrossRef Kornhuber J, Muehlbacher M, Trapp S, Pechmann S, Friedl A, Reichel M, Mühle C, Terfloth L, Groemer TW, Spitzer GM. Identification of novel functional inhibitors of acid sphingomyelinase. PLoS ONE. 2011;6(8): e23852.ADSPubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Lansmann S, Schuette CG, Bartelsen O, Hoernschemeyer J, Linke T, Weisgerber J, Sandhoff K. Human acid sphingomyelinase: Assignment of the disulfide bond pattern. Eur J Biochem. 2003;270(6):1076–88.PubMedCrossRef Lansmann S, Schuette CG, Bartelsen O, Hoernschemeyer J, Linke T, Weisgerber J, Sandhoff K. Human acid sphingomyelinase: Assignment of the disulfide bond pattern. Eur J Biochem. 2003;270(6):1076–88.PubMedCrossRef
29.
Zurück zum Zitat Ferlinz K, Hurwitz R, Moczall H, Lansmann S, Schuchman EH, Sandhoff K. Functional characterization of the N-glycosylation sites of human acid sphingomyelinase by site-directed mutagenesis. Eur J Biochem. 1997;243(1–2):511–7.PubMedCrossRef Ferlinz K, Hurwitz R, Moczall H, Lansmann S, Schuchman EH, Sandhoff K. Functional characterization of the N-glycosylation sites of human acid sphingomyelinase by site-directed mutagenesis. Eur J Biochem. 1997;243(1–2):511–7.PubMedCrossRef
30.
Zurück zum Zitat Xiong Z-J, Huang J, Poda G, Pomès R, Privé GG. Structure of human acid sphingomyelinase reveals the role of the saposin domain in activating substrate hydrolysis. J Mol Biol. 2016;428(15):3026–42.PubMedCrossRef Xiong Z-J, Huang J, Poda G, Pomès R, Privé GG. Structure of human acid sphingomyelinase reveals the role of the saposin domain in activating substrate hydrolysis. J Mol Biol. 2016;428(15):3026–42.PubMedCrossRef
31.
Zurück zum Zitat Henseler M, Klein A, Glombitza GJ, Suziki K, Sandhoff K. Expression of the three alternative forms of the sphingolipid activator protein precursor in baby hamster kidney cells and functional assays in a cell culture system. J Biol Chem. 1996;271(14):8416–23.PubMedCrossRef Henseler M, Klein A, Glombitza GJ, Suziki K, Sandhoff K. Expression of the three alternative forms of the sphingolipid activator protein precursor in baby hamster kidney cells and functional assays in a cell culture system. J Biol Chem. 1996;271(14):8416–23.PubMedCrossRef
32.
Zurück zum Zitat Gorelik A, Illes K, Heinz LX, Superti-Furga G, Nagar B. Crystal structure of mammalian acid sphingomyelinase. Nat Commun. 2016;7(1):1–9.CrossRef Gorelik A, Illes K, Heinz LX, Superti-Furga G, Nagar B. Crystal structure of mammalian acid sphingomyelinase. Nat Commun. 2016;7(1):1–9.CrossRef
33.
Zurück zum Zitat Zhou Y-F, Metcalf MC, Garman SC, Edmunds T, Qiu H, Wei RR. Human acid sphingomyelinase structures provide insight to molecular basis of Niemann-Pick disease. Nat Commun. 2016;7(1):1–10.CrossRef Zhou Y-F, Metcalf MC, Garman SC, Edmunds T, Qiu H, Wei RR. Human acid sphingomyelinase structures provide insight to molecular basis of Niemann-Pick disease. Nat Commun. 2016;7(1):1–10.CrossRef
34.
Zurück zum Zitat Lefrancois S, Zeng J, Hassan AJ, Canuel M, Morales CR. The lysosomal trafficking of sphingolipid activator proteins (SAPs) is mediated by sortilin. EMBO J. 2003;22(24):6430–7.PubMedPubMedCentralCrossRef Lefrancois S, Zeng J, Hassan AJ, Canuel M, Morales CR. The lysosomal trafficking of sphingolipid activator proteins (SAPs) is mediated by sortilin. EMBO J. 2003;22(24):6430–7.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Wähe A, Kasmapour B, Schmaderer C, Liebl D, Sandhoff K, Nykjaer A, Griffiths G, Gutierrez MG. Golgi-to-phagosome transport of acid sphingomyelinase and prosaposin is mediated by sortilin. J Cell Sci. 2010;123(14):2502–11.PubMedCrossRef Wähe A, Kasmapour B, Schmaderer C, Liebl D, Sandhoff K, Nykjaer A, Griffiths G, Gutierrez MG. Golgi-to-phagosome transport of acid sphingomyelinase and prosaposin is mediated by sortilin. J Cell Sci. 2010;123(14):2502–11.PubMedCrossRef
36.
Zurück zum Zitat Ni X, Morales CR. The lysosomal trafficking of acid sphingomyelinase is mediated by sortilin and mannose 6-phosphate receptor. Traffic. 2006;7(7):889–902.PubMedCrossRef Ni X, Morales CR. The lysosomal trafficking of acid sphingomyelinase is mediated by sortilin and mannose 6-phosphate receptor. Traffic. 2006;7(7):889–902.PubMedCrossRef
37.
Zurück zum Zitat Gault CR, Obeid LM, Hannun YA: An overview of sphingolipid metabolism: from synthesis to breakdown. Sphingolipids as signaling and regulatory molecules 2010:1–23. Gault CR, Obeid LM, Hannun YA: An overview of sphingolipid metabolism: from synthesis to breakdown. Sphingolipids as signaling and regulatory molecules 2010:1–23.
38.
Zurück zum Zitat Alkafaas SS, Elsalahaty MI, Ismail DF, Radwan MA, Elkafas SS, Loutfy SA, Elshazli RM, Baazaoui N, Ahmed AE, Hafez W, Diab M, Sakran M, El-Saadony MT, El-Tarabily KA, Kamal HK, HEssien M. The emerging roles of sphingosine 1-phosphate and SphK1 in cancer resistance: a promising therapeutic target. Cancer cell Interna. 2024. https://doi.org/10.1186/s12935-024-03221-8. Alkafaas SS, Elsalahaty MI, Ismail DF, Radwan MA, Elkafas SS, Loutfy SA, Elshazli RM, Baazaoui N, Ahmed AE, Hafez W, Diab M, Sakran M, El-Saadony MT, El-Tarabily KA, Kamal HK, HEssien M. The emerging roles of sphingosine 1-phosphate and SphK1 in cancer resistance: a promising therapeutic target. Cancer cell Interna. 2024. https://​doi.​org/​10.​1186/​s12935-024-03221-8.
39.
Zurück zum Zitat Pralhada Rao R, Vaidyanathan N, Rengasamy M, Mammen Oommen A, Somaiya N, Jagannath MR: Sphingolipid Metabolic Pathway: An Overview of Major Roles Played in Human Diseases. J Lipids. 2013;2013:1–12. Pralhada Rao R, Vaidyanathan N, Rengasamy M, Mammen Oommen A, Somaiya N, Jagannath MR: Sphingolipid Metabolic Pathway: An Overview of Major Roles Played in Human Diseases. J Lipids. 2013;2013:1–12.
40.
Zurück zum Zitat Xia P, Gamble JR, Rye K-A, Wang L, Hii CS, Cockerill P, Khew-Goodall Y, Bert AG, Barter PJ, Vadas MA. Tumor necrosis factor-α induces adhesion molecule expression through the sphingosine kinase pathway. Proc Natl Acad Sci. 1998;95(24):14196–201.ADSPubMedPubMedCentralCrossRef Xia P, Gamble JR, Rye K-A, Wang L, Hii CS, Cockerill P, Khew-Goodall Y, Bert AG, Barter PJ, Vadas MA. Tumor necrosis factor-α induces adhesion molecule expression through the sphingosine kinase pathway. Proc Natl Acad Sci. 1998;95(24):14196–201.ADSPubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Mitra P, Oskeritzian CA, Payne SG, Beaven MA, Milstien S, Spiegel S. Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proc Natl Acad Sci. 2006;103(44):16394–9.ADSPubMedPubMedCentralCrossRef Mitra P, Oskeritzian CA, Payne SG, Beaven MA, Milstien S, Spiegel S. Role of ABCC1 in export of sphingosine-1-phosphate from mast cells. Proc Natl Acad Sci. 2006;103(44):16394–9.ADSPubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Fugmann T, Hausser A, Schöffler P, Schmid S, Pfizenmaier K, Olayioye MA. Regulation of secretory transport by protein kinase D–mediated phosphorylation of the ceramide transfer protein. J Cell Biol. 2007;178(1):15–22.PubMedPubMedCentralCrossRef Fugmann T, Hausser A, Schöffler P, Schmid S, Pfizenmaier K, Olayioye MA. Regulation of secretory transport by protein kinase D–mediated phosphorylation of the ceramide transfer protein. J Cell Biol. 2007;178(1):15–22.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008;9(2):139–50.PubMedCrossRef Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008;9(2):139–50.PubMedCrossRef
44.
Zurück zum Zitat Sorice M, Misasi R, Riitano G, Manganelli V, Martellucci S, Longo A, Garofalo T, Mattei V. Targeting lipid rafts as a strategy against coronavirus. Front Cell Dev Biol. 2021;8: 618296.PubMedPubMedCentralCrossRef Sorice M, Misasi R, Riitano G, Manganelli V, Martellucci S, Longo A, Garofalo T, Mattei V. Targeting lipid rafts as a strategy against coronavirus. Front Cell Dev Biol. 2021;8: 618296.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Viard M, Parolini I, Sargiacomo M, Fecchi K, Ramoni C, Ablan S, Ruscetti FW, Wang JM, Blumenthal R. Role of cholesterol in human immunodeficiency virus type 1 envelope protein-mediated fusion with host cells. J Virol. 2002;76(22):11584–95.PubMedPubMedCentralCrossRef Viard M, Parolini I, Sargiacomo M, Fecchi K, Ramoni C, Ablan S, Ruscetti FW, Wang JM, Blumenthal R. Role of cholesterol in human immunodeficiency virus type 1 envelope protein-mediated fusion with host cells. J Virol. 2002;76(22):11584–95.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Aizaki H, Lee K-J. Sung VM-H, Ishiko H, Lai MM: Characterization of the hepatitis C virus RNA replication complex associated with lipid rafts. Virology. 2004;324(2):450–61.PubMedCrossRef Aizaki H, Lee K-J. Sung VM-H, Ishiko H, Lai MM: Characterization of the hepatitis C virus RNA replication complex associated with lipid rafts. Virology. 2004;324(2):450–61.PubMedCrossRef
48.
Zurück zum Zitat Hu W, Zhu L, Yang X, Lin J, Yang Q. The epidermal growth factor receptor regulates cofilin activity and promotes transmissible gastroenteritis virus entry into intestinal epithelial cells. Oncotarget. 2016;7(11):12206.PubMedPubMedCentralCrossRef Hu W, Zhu L, Yang X, Lin J, Yang Q. The epidermal growth factor receptor regulates cofilin activity and promotes transmissible gastroenteritis virus entry into intestinal epithelial cells. Oncotarget. 2016;7(11):12206.PubMedPubMedCentralCrossRef
49.
50.
Zurück zum Zitat Yang J, Lv J, Wang Y, Gao S, Yao Q, Qu D, Ye R. Replication of murine coronavirus requires multiple cysteines in the endodomain of spike protein. Virology. 2012;427(2):98–106.PubMedCrossRef Yang J, Lv J, Wang Y, Gao S, Yao Q, Qu D, Ye R. Replication of murine coronavirus requires multiple cysteines in the endodomain of spike protein. Virology. 2012;427(2):98–106.PubMedCrossRef
51.
Zurück zum Zitat Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363–74. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363–74.
52.
Zurück zum Zitat Coutard B, Valle C, De Lamballerie X, Canard B, Seidah NG, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020;176: 104742.PubMedPubMedCentralCrossRef Coutard B, Valle C, De Lamballerie X, Canard B, Seidah NG, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020;176: 104742.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP: The trinity of COVID-19: immunity, inflammation and intervention. Nature Reviews Immunology 2020, 20(6):363–374. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP: The trinity of COVID-19: immunity, inflammation and intervention. Nature Reviews Immunology 2020, 20(6):363–374.
54.
Zurück zum Zitat Fantini J, Di Scala C, Chahinian H, Yahi N. Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int J Antimicrob Agents. 2020;55(5): 105960.PubMedPubMedCentralCrossRef Fantini J, Di Scala C, Chahinian H, Yahi N. Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int J Antimicrob Agents. 2020;55(5): 105960.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Mañes S, del Real G, Martínez-a C. Pathogens: raft hijackers. Nat Rev Immunol. 2003;3(7):557–68.PubMedCrossRef Mañes S, del Real G, Martínez-a C. Pathogens: raft hijackers. Nat Rev Immunol. 2003;3(7):557–68.PubMedCrossRef
56.
Zurück zum Zitat Wang H, Yuan X, Sun Y, Mao X, Meng C, Tan L, Song C, Qiu X, Ding C, Liao Y. Infectious bronchitis virus entry mainly depends on clathrin mediated endocytosis and requires classical endosomal/lysosomal system. Virology. 2019;528:118–36.PubMedCrossRef Wang H, Yuan X, Sun Y, Mao X, Meng C, Tan L, Song C, Qiu X, Ding C, Liao Y. Infectious bronchitis virus entry mainly depends on clathrin mediated endocytosis and requires classical endosomal/lysosomal system. Virology. 2019;528:118–36.PubMedCrossRef
57.
Zurück zum Zitat Grim K, Abcejo A, Barnes A, Sathish V, Smelter D, Ford G, Thompson M, Prakash Y, Pabelick C. Caveolae and propofol effects on airway smooth muscle. Br J Anaesth. 2012;109(3):444–53.PubMedPubMedCentralCrossRef Grim K, Abcejo A, Barnes A, Sathish V, Smelter D, Ford G, Thompson M, Prakash Y, Pabelick C. Caveolae and propofol effects on airway smooth muscle. Br J Anaesth. 2012;109(3):444–53.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Patel J, Chowdhury EA, Noorani B, Bickel U, Huang J. Isoflurane increases cell membrane fluidity significantly at clinical concentrations. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2020;1862(2):183140.PubMedCrossRef Patel J, Chowdhury EA, Noorani B, Bickel U, Huang J. Isoflurane increases cell membrane fluidity significantly at clinical concentrations. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2020;1862(2):183140.PubMedCrossRef
59.
Zurück zum Zitat Turkyilmaz S, Almeida PF, Regen SL. Effects of isoflurane, halothane, and chloroform on the interactions and lateral organization of lipids in the liquid-ordered phase. Langmuir. 2011;27(23):14380–5.PubMedPubMedCentralCrossRef Turkyilmaz S, Almeida PF, Regen SL. Effects of isoflurane, halothane, and chloroform on the interactions and lateral organization of lipids in the liquid-ordered phase. Langmuir. 2011;27(23):14380–5.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Sierra-Valdez FJ, Ruiz-Suárez J, Delint-Ramirez I. Pentobarbital modifies the lipid raft-protein interaction: A first clue about the anesthesia mechanism on NMDA and GABAA receptors. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2016;1858(11):2603–10.PubMedCrossRef Sierra-Valdez FJ, Ruiz-Suárez J, Delint-Ramirez I. Pentobarbital modifies the lipid raft-protein interaction: A first clue about the anesthesia mechanism on NMDA and GABAA receptors. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2016;1858(11):2603–10.PubMedCrossRef
61.
Zurück zum Zitat Kamata K, Manno S, Ozaki M, Takakuwa Y. Functional evidence for presence of lipid rafts in erythrocyte membranes: Gsα in rafts is essential for signal transduction. Am J Hematol. 2008;83(5):371–5.PubMedCrossRef Kamata K, Manno S, Ozaki M, Takakuwa Y. Functional evidence for presence of lipid rafts in erythrocyte membranes: Gsα in rafts is essential for signal transduction. Am J Hematol. 2008;83(5):371–5.PubMedCrossRef
62.
63.
Zurück zum Zitat Hu S, Zhao T, Li H, Cheng D, Sun Z. Effect of tetracaine on dynamic reorganization of lipid membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2020;1862(9):183351.PubMedCrossRef Hu S, Zhao T, Li H, Cheng D, Sun Z. Effect of tetracaine on dynamic reorganization of lipid membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2020;1862(9):183351.PubMedCrossRef
64.
Zurück zum Zitat Yoshida K, Takashima A, Nishio I. Effect of dibucaine hydrochloride on raft-like lipid domains in model membrane systems. MedChemComm. 2015;6(8):1444–51.CrossRef Yoshida K, Takashima A, Nishio I. Effect of dibucaine hydrochloride on raft-like lipid domains in model membrane systems. MedChemComm. 2015;6(8):1444–51.CrossRef
65.
Zurück zum Zitat Tsuchiya H, Mizogami M, Takakura K. Reversed-phase liquid chromatographic retention and membrane activity relationships of local anesthetics. J Chromatogr A. 2005;1073(1–2):303–8.PubMedCrossRef Tsuchiya H, Mizogami M, Takakura K. Reversed-phase liquid chromatographic retention and membrane activity relationships of local anesthetics. J Chromatogr A. 2005;1073(1–2):303–8.PubMedCrossRef
66.
Zurück zum Zitat Mizogami M, Tsuchiya H. Membrane interactivity of anesthetic adjuvant dexmedetomidine discriminable from clonidine and enantiomeric levomedetomidine. Journal of Advances in Medicine and Medical Research. 2019;29(11):1–15.CrossRef Mizogami M, Tsuchiya H. Membrane interactivity of anesthetic adjuvant dexmedetomidine discriminable from clonidine and enantiomeric levomedetomidine. Journal of Advances in Medicine and Medical Research. 2019;29(11):1–15.CrossRef
67.
Zurück zum Zitat Heron DS, Shinitzky M, Zamir N, Samuel D. Adaptive modulations of brain membrane lipid fluidity in drug addiction and denervation supersensitivity. Biochem Pharmacol. 1982;31(14):2435–8.PubMedCrossRef Heron DS, Shinitzky M, Zamir N, Samuel D. Adaptive modulations of brain membrane lipid fluidity in drug addiction and denervation supersensitivity. Biochem Pharmacol. 1982;31(14):2435–8.PubMedCrossRef
68.
Zurück zum Zitat Zhou Y, Cho K-J, Plowman SJ, Hancock JF. Nonsteroidal anti-inflammatory drugs alter the spatiotemporal organization of Ras proteins on the plasma membrane. J Biol Chem. 2012;287(20):16586–95.PubMedPubMedCentralCrossRef Zhou Y, Cho K-J, Plowman SJ, Hancock JF. Nonsteroidal anti-inflammatory drugs alter the spatiotemporal organization of Ras proteins on the plasma membrane. J Biol Chem. 2012;287(20):16586–95.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Ausili A, Torrecillas A, Aranda FJ, Mollinedo F, Gajate C, Corbalan-Garcia S, de Godos A, Gomez-Fernandez JC. Edelfosine is incorporated into rafts and alters their organization. J Phys Chem B. 2008;112(37):11643–54.PubMedCrossRef Ausili A, Torrecillas A, Aranda FJ, Mollinedo F, Gajate C, Corbalan-Garcia S, de Godos A, Gomez-Fernandez JC. Edelfosine is incorporated into rafts and alters their organization. J Phys Chem B. 2008;112(37):11643–54.PubMedCrossRef
70.
Zurück zum Zitat Gomide AB, Thomé CH, Dos Santos G, Ferreira G, Faça VM, Rego EM, Greene LJ, Stábeli RG, Ciancaglini P, Itri R. Disrupting membrane raft domains by alkylphospholipids. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2013;1828(5):1384–9.PubMedCrossRef Gomide AB, Thomé CH, Dos Santos G, Ferreira G, Faça VM, Rego EM, Greene LJ, Stábeli RG, Ciancaglini P, Itri R. Disrupting membrane raft domains by alkylphospholipids. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2013;1828(5):1384–9.PubMedCrossRef
71.
Zurück zum Zitat Castro BM, Fedorov A, Hornillos V, Delgado J, Acuña AU, Mollinedo F, Prieto M. Edelfosine and miltefosine effects on lipid raft properties: membrane biophysics in cell death by antitumor lipids. J Phys Chem B. 2013;117(26):7929–40.PubMedCrossRef Castro BM, Fedorov A, Hornillos V, Delgado J, Acuña AU, Mollinedo F, Prieto M. Edelfosine and miltefosine effects on lipid raft properties: membrane biophysics in cell death by antitumor lipids. J Phys Chem B. 2013;117(26):7929–40.PubMedCrossRef
72.
Zurück zum Zitat Wnętrzak A, Łątka K, Makyła-Juzak K, Zemla J, Dynarowicz-Łątka P. The influence of an antitumor lipid–erucylphosphocholine–on artificial lipid raft system modeled as Langmuir monolayer. Mol Membr Biol. 2015;32(5–8):189–97.PubMedCrossRef Wnętrzak A, Łątka K, Makyła-Juzak K, Zemla J, Dynarowicz-Łątka P. The influence of an antitumor lipid–erucylphosphocholine–on artificial lipid raft system modeled as Langmuir monolayer. Mol Membr Biol. 2015;32(5–8):189–97.PubMedCrossRef
73.
Zurück zum Zitat Węder K, Mach M, Hąc-Wydro K, Wydro P. Studies on the interactions of anticancer drug-Minerval-with membrane lipids in binary and ternary Langmuir monolayers. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2018;1860(11):2329–36.PubMedCrossRef Węder K, Mach M, Hąc-Wydro K, Wydro P. Studies on the interactions of anticancer drug-Minerval-with membrane lipids in binary and ternary Langmuir monolayers. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2018;1860(11):2329–36.PubMedCrossRef
74.
Zurück zum Zitat Lacour S, Hammann A, Grazide S, Lagadic-Gossmann D, Athias A, Sergent O, Laurent G, Gambert P, Solary E, Dimanche-Boitrel M-T. Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells. Can Res. 2004;64(10):3593–8.CrossRef Lacour S, Hammann A, Grazide S, Lagadic-Gossmann D, Athias A, Sergent O, Laurent G, Gambert P, Solary E, Dimanche-Boitrel M-T. Cisplatin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cells. Can Res. 2004;64(10):3593–8.CrossRef
75.
Zurück zum Zitat Rebillard A, Tekpli X, Meurette O, Sergent O, LeMoigne-Muller G, Vernhet L, Gorria M, Chevanne M, Christmann M, Kaina B. Cisplatin-induced apoptosis involves membrane fluidification via inhibition of NHE1 in human colon cancer cells. Can Res. 2007;67(16):7865–74.CrossRef Rebillard A, Tekpli X, Meurette O, Sergent O, LeMoigne-Muller G, Vernhet L, Gorria M, Chevanne M, Christmann M, Kaina B. Cisplatin-induced apoptosis involves membrane fluidification via inhibition of NHE1 in human colon cancer cells. Can Res. 2007;67(16):7865–74.CrossRef
76.
Zurück zum Zitat Berquand A, Fa N, Dufrene Y, Mingeot-Leclercq M-P. Interaction of the macrolide antibiotic azithromycin with lipid bilayers: effect on membrane organization, fluidity, and permeability. Pharm Res. 2005;22:465–75.PubMedCrossRef Berquand A, Fa N, Dufrene Y, Mingeot-Leclercq M-P. Interaction of the macrolide antibiotic azithromycin with lipid bilayers: effect on membrane organization, fluidity, and permeability. Pharm Res. 2005;22:465–75.PubMedCrossRef
77.
Zurück zum Zitat Alves AC, Ribeiro D, Horta M, Lima JL, Nunes C, Reis S. A biophysical approach to daunorubicin interaction with model membranes: relevance for the drug’s biological activity. J R Soc Interface. 2017;14(133):20170408.PubMedPubMedCentralCrossRef Alves AC, Ribeiro D, Horta M, Lima JL, Nunes C, Reis S. A biophysical approach to daunorubicin interaction with model membranes: relevance for the drug’s biological activity. J R Soc Interface. 2017;14(133):20170408.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Alves AC, Magarkar A, Horta M, Lima JL, Bunker A, Nunes C, Reis S. Influence of doxorubicin on model cell membrane properties: insights from in vitro and in silico studies. Sci Rep. 2017;7(1):6343.ADSPubMedPubMedCentralCrossRef Alves AC, Magarkar A, Horta M, Lima JL, Bunker A, Nunes C, Reis S. Influence of doxorubicin on model cell membrane properties: insights from in vitro and in silico studies. Sci Rep. 2017;7(1):6343.ADSPubMedPubMedCentralCrossRef
79.
Zurück zum Zitat 溝上真樹: Plant components exhibit pharmacological activities and drug interactions by acting on lipid membranes. Pharmacognosy Communications 2012;2:58–71. 溝上真樹: Plant components exhibit pharmacological activities and drug interactions by acting on lipid membranes. Pharmacognosy Communications 2012;2:58–71.
80.
Zurück zum Zitat Kaneko M, Takimoto H, Sugiyama T, Seki Y, Kawaguchi K, Kumazawa Y. Suppressive effects of the flavonoids quercetin and luteolin on the accumulation of lipid rafts after signal transduction via receptors. Immunopharmacol Immunotoxicol. 2008;30(4):867–82.PubMedCrossRef Kaneko M, Takimoto H, Sugiyama T, Seki Y, Kawaguchi K, Kumazawa Y. Suppressive effects of the flavonoids quercetin and luteolin on the accumulation of lipid rafts after signal transduction via receptors. Immunopharmacol Immunotoxicol. 2008;30(4):867–82.PubMedCrossRef
81.
Zurück zum Zitat Tsukamoto S, Hirotsu K, Kumazoe M, Goto Y, Sugihara K, Suda T, Tsurudome Y, Suzuki T, Yamashita S, Kim Y. Green tea polyphenol EGCG induces lipid-raft clustering and apoptotic cell death by activating protein kinase Cδ and acid sphingomyelinase through a 67 kDa laminin receptor in multiple myeloma cells. Biochemical Journal. 2012;443(2):525–34.PubMedCrossRef Tsukamoto S, Hirotsu K, Kumazoe M, Goto Y, Sugihara K, Suda T, Tsurudome Y, Suzuki T, Yamashita S, Kim Y. Green tea polyphenol EGCG induces lipid-raft clustering and apoptotic cell death by activating protein kinase Cδ and acid sphingomyelinase through a 67 kDa laminin receptor in multiple myeloma cells. Biochemical Journal. 2012;443(2):525–34.PubMedCrossRef
82.
Zurück zum Zitat Verstraeten SV, Oteiza PI, Fraga CG. Membrane effects of cocoa procyanidins in liposomes and Jurkat T cells. Biol Res. 2004;37(2):293–300.PubMedCrossRef Verstraeten SV, Oteiza PI, Fraga CG. Membrane effects of cocoa procyanidins in liposomes and Jurkat T cells. Biol Res. 2004;37(2):293–300.PubMedCrossRef
83.
Zurück zum Zitat Verstraeten SV, Jaggers GK, Fraga CG, Oteiza PI. Procyanidins can interact with Caco-2 cell membrane lipid rafts: involvement of cholesterol. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2013;1828(11):2646–53.PubMedCrossRef Verstraeten SV, Jaggers GK, Fraga CG, Oteiza PI. Procyanidins can interact with Caco-2 cell membrane lipid rafts: involvement of cholesterol. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2013;1828(11):2646–53.PubMedCrossRef
84.
Zurück zum Zitat Meng G, Liu Y, Lou C, Yang H. Emodin suppresses lipopolysaccharide-induced pro-inflammatory responses and NF-κB activation by disrupting lipid rafts in CD14-negative endothelial cells. Br J Pharmacol. 2010;161(7):1628–44.PubMedPubMedCentralCrossRef Meng G, Liu Y, Lou C, Yang H. Emodin suppresses lipopolysaccharide-induced pro-inflammatory responses and NF-κB activation by disrupting lipid rafts in CD14-negative endothelial cells. Br J Pharmacol. 2010;161(7):1628–44.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Yi J-S, Choo H-J, Cho B-R, Kim H-M, Kim Y-N, Ham Y-M, Ko Y-G. Ginsenoside Rh2 induces ligand-independent Fas activation via lipid raft disruption. Biochem Biophys Res Commun. 2009;385(2):154–9.PubMedCrossRef Yi J-S, Choo H-J, Cho B-R, Kim H-M, Kim Y-N, Ham Y-M, Ko Y-G. Ginsenoside Rh2 induces ligand-independent Fas activation via lipid raft disruption. Biochem Biophys Res Commun. 2009;385(2):154–9.PubMedCrossRef
86.
Zurück zum Zitat Wei Z, Wang J, Shi M, Liu W, Yang Z, Fu Y. Saikosaponin a inhibits LPS-induced inflammatory response by inducing liver X receptor alpha activation in primary mouse macrophages. Oncotarget. 2016;7(31):48995.PubMedPubMedCentralCrossRef Wei Z, Wang J, Shi M, Liu W, Yang Z, Fu Y. Saikosaponin a inhibits LPS-induced inflammatory response by inducing liver X receptor alpha activation in primary mouse macrophages. Oncotarget. 2016;7(31):48995.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Bakillah A, Hejji FA, Almasaud A, Jami HA, Hawwari A, Qarni AA, Iqbal J, Alharbi NK. Lipid raft integrity and cellular cholesterol homeostasis are critical for SARS-CoV-2 entry into cells. Nutrients. 2022;14(16):3417.PubMedPubMedCentralCrossRef Bakillah A, Hejji FA, Almasaud A, Jami HA, Hawwari A, Qarni AA, Iqbal J, Alharbi NK. Lipid raft integrity and cellular cholesterol homeostasis are critical for SARS-CoV-2 entry into cells. Nutrients. 2022;14(16):3417.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Rodrigues-Diez RR, Tejera-Muñoz A, Marquez-Exposito L, Rayego-Mateos S, Santos Sanchez L, Marchant V, Tejedor Santamaria L, Ramos AM, Ortiz A, Egido J. Statins: could an old friend help in the fight against COVID-19? Br J Pharmacol. 2020;177(21):4873–86.PubMedPubMedCentralCrossRef Rodrigues-Diez RR, Tejera-Muñoz A, Marquez-Exposito L, Rayego-Mateos S, Santos Sanchez L, Marchant V, Tejedor Santamaria L, Ramos AM, Ortiz A, Egido J. Statins: could an old friend help in the fight against COVID-19? Br J Pharmacol. 2020;177(21):4873–86.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Törnquist K, Asghar MY, Srinivasan V, Korhonen L, Lindholm D. Sphingolipids as modulators of SARS-CoV-2 infection. Front Cell Dev Biol. 2021;9:1574.CrossRef Törnquist K, Asghar MY, Srinivasan V, Korhonen L, Lindholm D. Sphingolipids as modulators of SARS-CoV-2 infection. Front Cell Dev Biol. 2021;9:1574.CrossRef
90.
Zurück zum Zitat Schneider-Schaulies J, Schneider-Schaulies S. Sphingolipids in viral infection. Biol Chem. 2015;396(6–7):585–95.PubMedCrossRef Schneider-Schaulies J, Schneider-Schaulies S. Sphingolipids in viral infection. Biol Chem. 2015;396(6–7):585–95.PubMedCrossRef
91.
Zurück zum Zitat Alkafaas SS, Loutfy SA, Diab T, Hessien M. Vasopressin induces apoptosis but does not enhance the antiproliferative effect of dynamin 2 or PI3K/Akt inhibition in luminal A breast cancer cells. Med Oncol. 2022;40(1):35.PubMedPubMedCentralCrossRef Alkafaas SS, Loutfy SA, Diab T, Hessien M. Vasopressin induces apoptosis but does not enhance the antiproliferative effect of dynamin 2 or PI3K/Akt inhibition in luminal A breast cancer cells. Med Oncol. 2022;40(1):35.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Moya M, Dautry-Varsat A, Goud B, Louvard D, Boquet P. Inhibition of coated pit formation in Hep2 cells blocks the cytotoxicity of diphtheria toxin but not that of ricin toxin. J Cell Biol. 1985;101(2):548–59.PubMedCrossRef Moya M, Dautry-Varsat A, Goud B, Louvard D, Boquet P. Inhibition of coated pit formation in Hep2 cells blocks the cytotoxicity of diphtheria toxin but not that of ricin toxin. J Cell Biol. 1985;101(2):548–59.PubMedCrossRef
93.
Zurück zum Zitat Hansen SH, Sandvig K, van Deurs B. The preendosomal compartment comprises distinct coated and noncoated endocytic vesicle populations. J Cell Biol. 1991;113(4):731–41.PubMedCrossRef Hansen SH, Sandvig K, van Deurs B. The preendosomal compartment comprises distinct coated and noncoated endocytic vesicle populations. J Cell Biol. 1991;113(4):731–41.PubMedCrossRef
94.
Zurück zum Zitat Alkafaas SS, Abdallah AM, Ghosh S, Loutfy SA, ElKaffas SS, Abdel Fattah NF, Hessien M: Insight into the role of clathrin‐mediated endocytosis inhibitors in SARS‐CoV‐2 infection. Reviews in Medical Virology 2022:e2403. Alkafaas SS, Abdallah AM, Ghosh S, Loutfy SA, ElKaffas SS, Abdel Fattah NF, Hessien M: Insight into the role of clathrin‐mediated endocytosis inhibitors in SARS‐CoV‐2 infection. Reviews in Medical Virology 2022:e2403.
95.
Zurück zum Zitat Scott CC, Vacca F, Gruenberg J. Endosome maturation, transport and functions. Semin Cell Dev Biol. 2014;31:2–10. Scott CC, Vacca F, Gruenberg J. Endosome maturation, transport and functions. Semin Cell Dev Biol. 2014;31:2–10.
96.
Zurück zum Zitat Preston JE, Abbott NJ, Begley DJ. Transcytosis of macromolecules at the blood–brain barrier. Adv Pharmacol. 2014;71:147–63.PubMedCrossRef Preston JE, Abbott NJ, Begley DJ. Transcytosis of macromolecules at the blood–brain barrier. Adv Pharmacol. 2014;71:147–63.PubMedCrossRef
97.
98.
Zurück zum Zitat Irannejad R, von Zastrow M. GPCR signaling along the endocytic pathway. Curr Opin Cell Biol. 2014;27:109–16.PubMedCrossRef Irannejad R, von Zastrow M. GPCR signaling along the endocytic pathway. Curr Opin Cell Biol. 2014;27:109–16.PubMedCrossRef
100.
Zurück zum Zitat Sandvig K, Van Deurs B. Selective modulation of the endocytic uptake of ricin and fluid phase markers without alteration in transferrin endocytosis. J Biol Chem. 1990;265(11):6382–8.PubMedCrossRef Sandvig K, Van Deurs B. Selective modulation of the endocytic uptake of ricin and fluid phase markers without alteration in transferrin endocytosis. J Biol Chem. 1990;265(11):6382–8.PubMedCrossRef
102.
103.
Zurück zum Zitat Kirkham M, Fujita A, Chadda R, Nixon SJ, Kurzchalia TV, Sharma DK, Pagano RE, Hancock JF, Mayor S, Parton RG. Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. J Cell Biol. 2005;168(3):465–76.PubMedPubMedCentralCrossRef Kirkham M, Fujita A, Chadda R, Nixon SJ, Kurzchalia TV, Sharma DK, Pagano RE, Hancock JF, Mayor S, Parton RG. Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. J Cell Biol. 2005;168(3):465–76.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Donaldson JG, Jackson CL. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol. 2011;12(6):362–75.PubMedPubMedCentralCrossRef Donaldson JG, Jackson CL. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol. 2011;12(6):362–75.PubMedPubMedCentralCrossRef
105.
106.
Zurück zum Zitat Glebov OO, Bright NA, Nichols BJ. Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat Cell Biol. 2006;8(1):46–54.PubMedCrossRef Glebov OO, Bright NA, Nichols BJ. Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat Cell Biol. 2006;8(1):46–54.PubMedCrossRef
107.
Zurück zum Zitat Frick M, Bright NA, Riento K, Bray A, Merrified C, Nichols BJ. Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding. Curr Biol. 2007;17(13):1151–6.PubMedCrossRef Frick M, Bright NA, Riento K, Bray A, Merrified C, Nichols BJ. Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding. Curr Biol. 2007;17(13):1151–6.PubMedCrossRef
108.
109.
Zurück zum Zitat Kumari S, Mg S, Mayor S. Endocytosis unplugged: multiple ways to enter the cell. Cell Res. 2010;20(3):256–75.PubMedCrossRef Kumari S, Mg S, Mayor S. Endocytosis unplugged: multiple ways to enter the cell. Cell Res. 2010;20(3):256–75.PubMedCrossRef
110.
Zurück zum Zitat Huang H, Li Y, Sadaoka T, Tang H, Yamamoto T, Yamanishi K, Mori Y. Human herpesvirus 6 envelope cholesterol is required for virus entry. J Gen Virol. 2006;87(2):277–85.PubMedCrossRef Huang H, Li Y, Sadaoka T, Tang H, Yamamoto T, Yamanishi K, Mori Y. Human herpesvirus 6 envelope cholesterol is required for virus entry. J Gen Virol. 2006;87(2):277–85.PubMedCrossRef
111.
Zurück zum Zitat Nomura R, Kiyota A, Suzaki E, Kataoka K, Ohe Y, Miyamoto K, Senda T, Fujimoto T. Human coronavirus 229E binds to CD13 in rafts and enters the cell through caveolae. J Virol. 2004;78(16):8701–8.PubMedPubMedCentralCrossRef Nomura R, Kiyota A, Suzaki E, Kataoka K, Ohe Y, Miyamoto K, Senda T, Fujimoto T. Human coronavirus 229E binds to CD13 in rafts and enters the cell through caveolae. J Virol. 2004;78(16):8701–8.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Choi KS, Aizaki H, Lai MM. Murine coronavirus requires lipid rafts for virus entry and cell-cell fusion but not for virus release. J Virol. 2005;79(15):9862–71.PubMedPubMedCentralCrossRef Choi KS, Aizaki H, Lai MM. Murine coronavirus requires lipid rafts for virus entry and cell-cell fusion but not for virus release. J Virol. 2005;79(15):9862–71.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Mathewson AC, Bishop A, Yao Y, Kemp F, Ren J, Chen H, Xu X, Berkhout B, van der Hoek L, Jones IM. Interaction of severe acute respiratory syndrome-coronavirus and NL63 coronavirus spike proteins with angiotensin converting enzyme-2. J Gen Virol. 2008;89(Pt 11):2741.PubMedPubMedCentralCrossRef Mathewson AC, Bishop A, Yao Y, Kemp F, Ren J, Chen H, Xu X, Berkhout B, van der Hoek L, Jones IM. Interaction of severe acute respiratory syndrome-coronavirus and NL63 coronavirus spike proteins with angiotensin converting enzyme-2. J Gen Virol. 2008;89(Pt 11):2741.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Gopal P, Rehman RU, Chadha KS, Qiu M, Colella R. Matrigel influences morphology and cathepsin B distribution of prostate cancer PC3 cells. Oncol Rep. 2006;16(2):313–20.PubMed Gopal P, Rehman RU, Chadha KS, Qiu M, Colella R. Matrigel influences morphology and cathepsin B distribution of prostate cancer PC3 cells. Oncol Rep. 2006;16(2):313–20.PubMed
115.
Zurück zum Zitat Liu C, Zhou Q, Li Y, Garner LV, Watkins SP, Carter LJ, Smoot J, Gregg AC, Daniels AD, Jervey S. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. In.: ACS Publications; 2020.CrossRef Liu C, Zhou Q, Li Y, Garner LV, Watkins SP, Carter LJ, Smoot J, Gregg AC, Daniels AD, Jervey S. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. In.: ACS Publications; 2020.CrossRef
116.
Zurück zum Zitat Nicolau DV Jr, Burrage K, Parton RG, Hancock JF. Identifying optimal lipid raft characteristics required to promote nanoscale protein-protein interactions on the plasma membrane. Mol Cell Biol. 2006;26(1):313–23.PubMedPubMedCentralCrossRef Nicolau DV Jr, Burrage K, Parton RG, Hancock JF. Identifying optimal lipid raft characteristics required to promote nanoscale protein-protein interactions on the plasma membrane. Mol Cell Biol. 2006;26(1):313–23.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Base estructural para el reconocimiento de SARS-CoV-2 por la enzima convertidora de angiotensina 2 (ACE2) humana completa. Science. 2020;367:1444–8.ADSPubMedPubMedCentralCrossRef Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Base estructural para el reconocimiento de SARS-CoV-2 por la enzima convertidora de angiotensina 2 (ACE2) humana completa. Science. 2020;367:1444–8.ADSPubMedPubMedCentralCrossRef
118.
Zurück zum Zitat Guo H, Huang M, Yuan Q, Wei Y, Gao Y, Mao L, Gu L, Tan YW, Zhong Y, Liu D. The important role of lipid raft-mediated attachment in the infection of cultured cells by coronavirus infectious bronchitis virus beaudette strain. PLoS ONE. 2017;12(1): e0170123.PubMedPubMedCentralCrossRef Guo H, Huang M, Yuan Q, Wei Y, Gao Y, Mao L, Gu L, Tan YW, Zhong Y, Liu D. The important role of lipid raft-mediated attachment in the infection of cultured cells by coronavirus infectious bronchitis virus beaudette strain. PLoS ONE. 2017;12(1): e0170123.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Barman S, Nayak DP. Lipid raft disruption by cholesterol depletion enhances influenza A virus budding from MDCK cells. J Virol. 2007;81(22):12169–78.PubMedPubMedCentralCrossRef Barman S, Nayak DP. Lipid raft disruption by cholesterol depletion enhances influenza A virus budding from MDCK cells. J Virol. 2007;81(22):12169–78.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Bailly C, Vergoten G. Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacol Ther. 2020;214: 107618.PubMedPubMedCentralCrossRef Bailly C, Vergoten G. Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacol Ther. 2020;214: 107618.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Fecchi K, Anticoli S, Peruzzu D, Iessi E, Gagliardi MC, Matarrese P, Ruggieri A. Coronavirus interplay with lipid rafts and autophagy unveils promising therapeutic targets. Front Microbiol. 1821;2020:11. Fecchi K, Anticoli S, Peruzzu D, Iessi E, Gagliardi MC, Matarrese P, Ruggieri A. Coronavirus interplay with lipid rafts and autophagy unveils promising therapeutic targets. Front Microbiol. 1821;2020:11.
122.
123.
Zurück zum Zitat Kornhuber J, Muehlbacher M, Trapp S, Pechmann S, Friedl A, Reichel M, Mühle C, Terfloth L, Groemer TW, Spitzer GM, et al. Identification of Novel Functional Inhibitors of Acid Sphingomyelinase. PLOS ONE. 2011;6(8):1–13. Kornhuber J, Muehlbacher M, Trapp S, Pechmann S, Friedl A, Reichel M, Mühle C, Terfloth L, Groemer TW, Spitzer GM, et al. Identification of Novel Functional Inhibitors of Acid Sphingomyelinase. PLOS ONE. 2011;6(8):1–13.
124.
Zurück zum Zitat Heinrich M, Wickel M, Schneider-Brachert W, Sandberg C, Gahr J, Schwandner R, Weber T, Brunner J, Krönke M, Schütze S. Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J. 1999;18(19):5252–63.PubMedPubMedCentralCrossRef Heinrich M, Wickel M, Schneider-Brachert W, Sandberg C, Gahr J, Schwandner R, Weber T, Brunner J, Krönke M, Schütze S. Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J. 1999;18(19):5252–63.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Carpinteiro A, Gripp B, Hoffmann M, Pöhlmann S, Hoertel N, Edwards MJ, Kamler M, Kornhuber J, Becker KA, Gulbins E. Inhibition of acid sphingomyelinase by ambroxol prevents SARS-CoV-2 entry into epithelial cells. J Biol Chem. 2021;296:1–12. Carpinteiro A, Gripp B, Hoffmann M, Pöhlmann S, Hoertel N, Edwards MJ, Kamler M, Kornhuber J, Becker KA, Gulbins E. Inhibition of acid sphingomyelinase by ambroxol prevents SARS-CoV-2 entry into epithelial cells. J Biol Chem. 2021;296:1–12.
126.
Zurück zum Zitat Pitson SM. Regulation of sphingosine kinase and sphingolipid signaling. Trends Biochem Sci. 2011;36(2):97–107.PubMedCrossRef Pitson SM. Regulation of sphingosine kinase and sphingolipid signaling. Trends Biochem Sci. 2011;36(2):97–107.PubMedCrossRef
127.
Zurück zum Zitat Kornhuber J, Tripal P, Reichel M, Terfloth L, Bleich S, Wiltfang J, Gulbins E. Identification of new functional inhibitors of acid sphingomyelinase using a structure− property− activity relation model. J Med Chem. 2008;51(2):219–37.PubMedCrossRef Kornhuber J, Tripal P, Reichel M, Terfloth L, Bleich S, Wiltfang J, Gulbins E. Identification of new functional inhibitors of acid sphingomyelinase using a structure− property− activity relation model. J Med Chem. 2008;51(2):219–37.PubMedCrossRef
128.
Zurück zum Zitat Villoutreix BO, Krishnamoorthy R, Tamouza R, Leboyer M, Beaune P. Chemoinformatic analysis of psychotropic and antihistaminic drugs in the light of experimental anti-SARS-CoV-2 activities. Advances and applications in bioinformatics and chemistry: AABC. 2021;14:71.PubMedPubMedCentralCrossRef Villoutreix BO, Krishnamoorthy R, Tamouza R, Leboyer M, Beaune P. Chemoinformatic analysis of psychotropic and antihistaminic drugs in the light of experimental anti-SARS-CoV-2 activities. Advances and applications in bioinformatics and chemistry: AABC. 2021;14:71.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Hoertel N, Sánchez-Rico M, Gulbins E, Kornhuber J, Carpinteiro A, Abellán M, de la Muela P, Vernet R, Beeker N, Neuraz A. Association between FIASMA psychotropic medications and reduced risk of intubation or death in individuals with psychiatric disorders hospitalized for severe COVID-19: an observational multicenter study. Transl Psychiatry. 2022;12(1):1–11.CrossRef Hoertel N, Sánchez-Rico M, Gulbins E, Kornhuber J, Carpinteiro A, Abellán M, de la Muela P, Vernet R, Beeker N, Neuraz A. Association between FIASMA psychotropic medications and reduced risk of intubation or death in individuals with psychiatric disorders hospitalized for severe COVID-19: an observational multicenter study. Transl Psychiatry. 2022;12(1):1–11.CrossRef
130.
Zurück zum Zitat Zhou Y, Hou Y, Shen J, Mehra R, Kallianpur A, Culver DA, Gack MU, Farha S, Zein J, Comhair S, et al. A network medicine approach to investigation and population-based validation of disease manifestations and drug repurposing for COVID-19. PLoS Biol. 2020;18(11): e3000970.PubMedPubMedCentralCrossRef Zhou Y, Hou Y, Shen J, Mehra R, Kallianpur A, Culver DA, Gack MU, Farha S, Zein J, Comhair S, et al. A network medicine approach to investigation and population-based validation of disease manifestations and drug repurposing for COVID-19. PLoS Biol. 2020;18(11): e3000970.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Weston S, Coleman CM, Haupt R, Logue J, Matthews K, Li Y, Reyes HM, Weiss SR, Frieman MB. Broad anti-coronavirus activity of food and drug administration-approved drugs against SARS-CoV-2 in vitro and SARS-CoV in vivo. J Virol. 2020;94(21):e01218–01220.PubMedPubMedCentralCrossRef Weston S, Coleman CM, Haupt R, Logue J, Matthews K, Li Y, Reyes HM, Weiss SR, Frieman MB. Broad anti-coronavirus activity of food and drug administration-approved drugs against SARS-CoV-2 in vitro and SARS-CoV in vivo. J Virol. 2020;94(21):e01218–01220.PubMedPubMedCentralCrossRef
132.
133.
Zurück zum Zitat Ruan Z, Liu C, Guo Y, He Z, Huang X, Jia X, Yang T. SARS-CoV-2 and SARS-CoV: Virtual screening of potential inhibitors targeting RNA-dependent RNA polymerase activity (NSP12). J Med Virol. 2021;93(1):389–400.PubMedCrossRef Ruan Z, Liu C, Guo Y, He Z, Huang X, Jia X, Yang T. SARS-CoV-2 and SARS-CoV: Virtual screening of potential inhibitors targeting RNA-dependent RNA polymerase activity (NSP12). J Med Virol. 2021;93(1):389–400.PubMedCrossRef
134.
Zurück zum Zitat Sauvat A, Ciccosanti F, Colavita F, Di Rienzo M, Castilletti C, Capobianchi MR, Kepp O, Zitvogel L, Fimia GM, Piacentini M. On-target versus off-target effects of drugs inhibiting the replication of SARS-CoV-2. Cell Death Dis. 2020;11(8):1–11.CrossRef Sauvat A, Ciccosanti F, Colavita F, Di Rienzo M, Castilletti C, Capobianchi MR, Kepp O, Zitvogel L, Fimia GM, Piacentini M. On-target versus off-target effects of drugs inhibiting the replication of SARS-CoV-2. Cell Death Dis. 2020;11(8):1–11.CrossRef
135.
Zurück zum Zitat Chen CZ, Shinn P, Itkin Z, Eastman RT, Bostwick R, Rasmussen L, Huang R, Shen M, Hu X, Wilson KM. Drug repurposing screen for compounds inhibiting the cytopathic effect of SARS-CoV-2. Front Pharmacol. 2021;11:592737.PubMedPubMedCentralCrossRef Chen CZ, Shinn P, Itkin Z, Eastman RT, Bostwick R, Rasmussen L, Huang R, Shen M, Hu X, Wilson KM. Drug repurposing screen for compounds inhibiting the cytopathic effect of SARS-CoV-2. Front Pharmacol. 2021;11:592737.PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Yang L. Pei R-j, Li H, Ma X-n, Zhou Y, Zhu F-h, He P-l, Tang W, Zhang Y-c, Xiong J: Identification of SARS-CoV-2 entry inhibitors among already approved drugs. Acta Pharmacol Sin. 2021;42(8):1347–53.PubMedCrossRef Yang L. Pei R-j, Li H, Ma X-n, Zhou Y, Zhu F-h, He P-l, Tang W, Zhang Y-c, Xiong J: Identification of SARS-CoV-2 entry inhibitors among already approved drugs. Acta Pharmacol Sin. 2021;42(8):1347–53.PubMedCrossRef
137.
Zurück zum Zitat Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O’Meara MJ, Rezelj VV, Guo JZ, Swaney DL. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459–68.ADSPubMedPubMedCentralCrossRef Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O’Meara MJ, Rezelj VV, Guo JZ, Swaney DL. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459–68.ADSPubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Le Corre P, Loas G. Repurposing functional inhibitors of acid sphingomyelinase (fiasmas): an opportunity against SARS-CoV-2 infection? J Clin Pharm Ther. 2021;46(5):1213–9. Le Corre P, Loas G. Repurposing functional inhibitors of acid sphingomyelinase (fiasmas): an opportunity against SARS-CoV-2 infection? J Clin Pharm Ther. 2021;46(5):1213–9.
139.
Zurück zum Zitat Jade D, Ayyamperumal S, Tallapaneni V, Nanjan CMJ, Barge S, Mohan S, Nanjan MJ. Virtual high throughput screening: Potential inhibitors for SARS-CoV-2 PLPRO and 3CLPRO proteases. Eur J Pharmacol. 2021;901:174082.PubMedPubMedCentralCrossRef Jade D, Ayyamperumal S, Tallapaneni V, Nanjan CMJ, Barge S, Mohan S, Nanjan MJ. Virtual high throughput screening: Potential inhibitors for SARS-CoV-2 PLPRO and 3CLPRO proteases. Eur J Pharmacol. 2021;901:174082.PubMedPubMedCentralCrossRef
140.
Zurück zum Zitat Le BL, Andreoletti G, Oskotsky T, Vallejo-Gracia A, Rosales R, Yu K, Kosti I, Leon KE, Bunis DG, Li C. Transcriptomics-based drug repositioning pipeline identifies therapeutic candidates for COVID-19. Sci Rep. 2021;11(1):1–14.CrossRef Le BL, Andreoletti G, Oskotsky T, Vallejo-Gracia A, Rosales R, Yu K, Kosti I, Leon KE, Bunis DG, Li C. Transcriptomics-based drug repositioning pipeline identifies therapeutic candidates for COVID-19. Sci Rep. 2021;11(1):1–14.CrossRef
141.
Zurück zum Zitat Imamura K, Sakurai Y, Enami T, Shibukawa R, Nishi Y, Ohta A, Shu T, Kawaguchi J, Okada S, Hoenen T. iPSC screening for drug repurposing identifies anti-RNA virus agents modulating host cell susceptibility. FEBS Open Bio. 2021;11(5):1452–64.PubMedPubMedCentralCrossRef Imamura K, Sakurai Y, Enami T, Shibukawa R, Nishi Y, Ohta A, Shu T, Kawaguchi J, Okada S, Hoenen T. iPSC screening for drug repurposing identifies anti-RNA virus agents modulating host cell susceptibility. FEBS Open Bio. 2021;11(5):1452–64.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Xiong H-L, Cao J-L, Shen C-G, Ma J, Qiao X-Y, Shi T-S, Ge S-X, Ye H-M, Zhang J, Yuan Q. Several FDA-approved drugs effectively inhibit SARS-CoV-2 infection in vitro. Front Pharmacol. 2021;11:609592.PubMedPubMedCentralCrossRef Xiong H-L, Cao J-L, Shen C-G, Ma J, Qiao X-Y, Shi T-S, Ge S-X, Ye H-M, Zhang J, Yuan Q. Several FDA-approved drugs effectively inhibit SARS-CoV-2 infection in vitro. Front Pharmacol. 2021;11:609592.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Fred SM, Kuivanen S, Ugurlu H, Casarotto PC, Levanov L, Saksela K, Vapalahti O, Castrén E. Antidepressant and Antipsychotic Drugs Reduce Viral Infection by SARS-CoV-2 and Fluoxetine Shows Antiviral Activity Against the Novel Variants in vitro. Front Pharmacol. 2021;12: 755600.PubMedCrossRef Fred SM, Kuivanen S, Ugurlu H, Casarotto PC, Levanov L, Saksela K, Vapalahti O, Castrén E. Antidepressant and Antipsychotic Drugs Reduce Viral Infection by SARS-CoV-2 and Fluoxetine Shows Antiviral Activity Against the Novel Variants in vitro. Front Pharmacol. 2021;12: 755600.PubMedCrossRef
144.
Zurück zum Zitat Hoertel N, Sánchez-Rico M, Vernet R, Beeker N, Jannot A-S, Neuraz A, Salamanca E, Paris N, Daniel C, Gramfort A. Association between antidepressant use and reduced risk of intubation or death in hospitalized patients with COVID-19: results from an observational study. Mol Psychiatry. 2021;26(9):5199–212.PubMedCrossRef Hoertel N, Sánchez-Rico M, Vernet R, Beeker N, Jannot A-S, Neuraz A, Salamanca E, Paris N, Daniel C, Gramfort A. Association between antidepressant use and reduced risk of intubation or death in hospitalized patients with COVID-19: results from an observational study. Mol Psychiatry. 2021;26(9):5199–212.PubMedCrossRef
145.
Zurück zum Zitat Carpinteiro A, Edwards MJ, Hoffmann M, Kochs G, Gripp B, Weigang S, Adams C, Carpinteiro E, Gulbins A, Keitsch S. Pharmacological inhibition of acid sphingomyelinase prevents uptake of SARS-CoV-2 by epithelial cells. Cell Reports Medicine. 2020;1(8):100142.PubMedPubMedCentralCrossRef Carpinteiro A, Edwards MJ, Hoffmann M, Kochs G, Gripp B, Weigang S, Adams C, Carpinteiro E, Gulbins A, Keitsch S. Pharmacological inhibition of acid sphingomyelinase prevents uptake of SARS-CoV-2 by epithelial cells. Cell Reports Medicine. 2020;1(8):100142.PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Gelemanović A, Vidović T, Stepanić V, Trajković K. Identification of 37 heterogeneous drug candidates for treatment of COVID-19 via a rational transcriptomics-based drug repurposing approach. Pharmaceuticals. 2021;14(2):87.PubMedPubMedCentralCrossRef Gelemanović A, Vidović T, Stepanić V, Trajković K. Identification of 37 heterogeneous drug candidates for treatment of COVID-19 via a rational transcriptomics-based drug repurposing approach. Pharmaceuticals. 2021;14(2):87.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Ge S, Lu J, Hou Y, Lv Y, Wang C, He H. Azelastine inhibits viropexis of SARS-CoV-2 spike pseudovirus by binding to SARS-CoV-2 entry receptor ACE2. Virology. 2021;560:110–5.PubMedCrossRef Ge S, Lu J, Hou Y, Lv Y, Wang C, He H. Azelastine inhibits viropexis of SARS-CoV-2 spike pseudovirus by binding to SARS-CoV-2 entry receptor ACE2. Virology. 2021;560:110–5.PubMedCrossRef
148.
Zurück zum Zitat Gurung AB, Ali MA, Lee J, Farah MA, Al-Anazi KM. The potential of Paritaprevir and Emetine as inhibitors of SARS-CoV-2 RdRp. Saudi J Biol Sci. 2021;28(2):1426–32.PubMedCrossRef Gurung AB, Ali MA, Lee J, Farah MA, Al-Anazi KM. The potential of Paritaprevir and Emetine as inhibitors of SARS-CoV-2 RdRp. Saudi J Biol Sci. 2021;28(2):1426–32.PubMedCrossRef
149.
Zurück zum Zitat Das S, Sarmah S, Lyndem S, Singha Roy A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J Biomol Struct Dyn. 2021;39(9):3347–57.PubMed Das S, Sarmah S, Lyndem S, Singha Roy A. An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J Biomol Struct Dyn. 2021;39(9):3347–57.PubMed
150.
Zurück zum Zitat Hajjo R, Tropsha A. A systems biology workflow for drug and vaccine repurposing: identifying small-molecule BCG mimics to reduce or prevent COVID-19 mortality. Pharm Res. 2020;37(11):1–15.CrossRef Hajjo R, Tropsha A. A systems biology workflow for drug and vaccine repurposing: identifying small-molecule BCG mimics to reduce or prevent COVID-19 mortality. Pharm Res. 2020;37(11):1–15.CrossRef
151.
Zurück zum Zitat Klutzny S, Lesche R, Keck M, Kaulfuss S, Schlicker A, Christian S, Sperl C, Neuhaus R, Mowat J, Steckel M, et al. Functional inhibition of acid sphingomyelinase by Fluphenazine triggers hypoxia-specific tumor cell death. Cell Death Dis. 2017;8(3):e2709. Klutzny S, Lesche R, Keck M, Kaulfuss S, Schlicker A, Christian S, Sperl C, Neuhaus R, Mowat J, Steckel M, et al. Functional inhibition of acid sphingomyelinase by Fluphenazine triggers hypoxia-specific tumor cell death. Cell Death Dis. 2017;8(3):e2709.
152.
Zurück zum Zitat Lenze EJ, Mattar C, Zorumski CF, Stevens A, Schweiger J, Nicol GE, Miller JP, Yang L, Yingling M, Avidan MS. Fluvoxamine vs placebo and clinical deterioration in outpatients with symptomatic COVID-19: a randomized clinical trial. JAMA. 2020;324(22):2292–300.PubMedPubMedCentralCrossRef Lenze EJ, Mattar C, Zorumski CF, Stevens A, Schweiger J, Nicol GE, Miller JP, Yang L, Yingling M, Avidan MS. Fluvoxamine vs placebo and clinical deterioration in outpatients with symptomatic COVID-19: a randomized clinical trial. JAMA. 2020;324(22):2292–300.PubMedPubMedCentralCrossRef
153.
Zurück zum Zitat Nazeam J, Mohammed EZ, Raafat M, Houssein M, Elkafoury A, Hamdy D, Jamil L. Based on principles and insights of covid-19 epidemiology, genome sequencing, and pathogenesis: Retrospective analysis of sinigrin and prolixinrx (fluphenazine) provides off-label drug candidates. Slas Discovery. 2020;25(10):1123–40.PubMedPubMedCentralCrossRef Nazeam J, Mohammed EZ, Raafat M, Houssein M, Elkafoury A, Hamdy D, Jamil L. Based on principles and insights of covid-19 epidemiology, genome sequencing, and pathogenesis: Retrospective analysis of sinigrin and prolixinrx (fluphenazine) provides off-label drug candidates. Slas Discovery. 2020;25(10):1123–40.PubMedPubMedCentralCrossRef
154.
Zurück zum Zitat Reznikov LR, Norris MH, Vashisht R, Bluhm AP, Li D, Liao YJ, Brown A, Butte AJ, Ostrov DA. Identification of antiviral antihistamines for COVID-19 repurposing. Biochem Biophys Res Commun. 2021;538:173–9.PubMedCrossRef Reznikov LR, Norris MH, Vashisht R, Bluhm AP, Li D, Liao YJ, Brown A, Butte AJ, Ostrov DA. Identification of antiviral antihistamines for COVID-19 repurposing. Biochem Biophys Res Commun. 2021;538:173–9.PubMedCrossRef
155.
Zurück zum Zitat Norinder U, Tuck A, Norgren K, Kos VM. Existing highly accumulating lysosomotropic drugs with potential for repurposing to target COVID-19. Biomed Pharmacother. 2020;130: 110582.PubMedPubMedCentralCrossRef Norinder U, Tuck A, Norgren K, Kos VM. Existing highly accumulating lysosomotropic drugs with potential for repurposing to target COVID-19. Biomed Pharmacother. 2020;130: 110582.PubMedPubMedCentralCrossRef
156.
Zurück zum Zitat Schloer S, Brunotte L, Goretzko J, Mecate-Zambrano A, Korthals N, Gerke V, Ludwig S, Rescher U. Targeting the endolysosomal host-SARS-CoV-2 interface by clinically licensed functional inhibitors of acid sphingomyelinase (FIASMA) including the antidepressant fluoxetine. Emerging microbes & infections. 2020;9(1):2245–55.CrossRef Schloer S, Brunotte L, Goretzko J, Mecate-Zambrano A, Korthals N, Gerke V, Ludwig S, Rescher U. Targeting the endolysosomal host-SARS-CoV-2 interface by clinically licensed functional inhibitors of acid sphingomyelinase (FIASMA) including the antidepressant fluoxetine. Emerging microbes & infections. 2020;9(1):2245–55.CrossRef
157.
Zurück zum Zitat Jeon S, Ko M, Lee J, Choi I, Byun SY, Park S, Shum D, Kim S. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob Agents Chemother. 2020;64(7):e00819–00820.PubMedPubMedCentralCrossRef Jeon S, Ko M, Lee J, Choi I, Byun SY, Park S, Shum D, Kim S. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob Agents Chemother. 2020;64(7):e00819–00820.PubMedPubMedCentralCrossRef
158.
Zurück zum Zitat Hou Y, Ge S, Li X, Wang C, He H, He L. Testing of the inhibitory effects of loratadine and desloratadine on SARS-CoV-2 spike pseudotyped virus viropexis. Chem Biol Interact. 2021;338: 109420.PubMedPubMedCentralCrossRef Hou Y, Ge S, Li X, Wang C, He H, He L. Testing of the inhibitory effects of loratadine and desloratadine on SARS-CoV-2 spike pseudotyped virus viropexis. Chem Biol Interact. 2021;338: 109420.PubMedPubMedCentralCrossRef
159.
Zurück zum Zitat Chavarría AP, Vázquez RRV, Cherit JGD, Bello HH, Suastegui HC, Moreno-Castañeda L, Estrada GA, Hernández F, González-Marcos O, Saucedo-Orozco H. Antioxidants and pentoxifylline as coadjuvant measures to standard therapy to improve prognosis of patients with pneumonia by COVID-19. Comput Struct Biotechnol J. 2021;19:1379–90.PubMedPubMedCentralCrossRef Chavarría AP, Vázquez RRV, Cherit JGD, Bello HH, Suastegui HC, Moreno-Castañeda L, Estrada GA, Hernández F, González-Marcos O, Saucedo-Orozco H. Antioxidants and pentoxifylline as coadjuvant measures to standard therapy to improve prognosis of patients with pneumonia by COVID-19. Comput Struct Biotechnol J. 2021;19:1379–90.PubMedPubMedCentralCrossRef
160.
Zurück zum Zitat Jehi L, Ji X, Milinovich A, Erzurum S, Rubin BP, Gordon S, Young JB, Kattan MW. Individualizing Risk Prediction for Positive Coronavirus Disease 2019 Testing: Results From 11,672 Patients. Chest. 2020;158(4):1364–75.PubMedPubMedCentralCrossRef Jehi L, Ji X, Milinovich A, Erzurum S, Rubin BP, Gordon S, Young JB, Kattan MW. Individualizing Risk Prediction for Positive Coronavirus Disease 2019 Testing: Results From 11,672 Patients. Chest. 2020;158(4):1364–75.PubMedPubMedCentralCrossRef
161.
Zurück zum Zitat Plaze M, Attali D, Prot M, Petit A-C, Blatzer M, Vinckier F, Levillayer L, Chiaravalli J, Perin-Dureau F, Cachia A. Inhibition of the replication of SARS-CoV-2 in human cells by the FDA-approved drug chlorpromazine. Int J Antimicrob Agents. 2021;57(3): 106274.PubMedCrossRef Plaze M, Attali D, Prot M, Petit A-C, Blatzer M, Vinckier F, Levillayer L, Chiaravalli J, Perin-Dureau F, Cachia A. Inhibition of the replication of SARS-CoV-2 in human cells by the FDA-approved drug chlorpromazine. Int J Antimicrob Agents. 2021;57(3): 106274.PubMedCrossRef
162.
Zurück zum Zitat Vatansever EC, Yang KS, Drelich AK, Kratch KC, Cho C-C, Kempaiah KR, Hsu JC, Mellott DM, Xu S. Tseng C-TK: Bepridil is potent against SARS-CoV-2 in vitro. Proc Natl Acad Sci. 2021;118(10): e2012201118.PubMedPubMedCentralCrossRef Vatansever EC, Yang KS, Drelich AK, Kratch KC, Cho C-C, Kempaiah KR, Hsu JC, Mellott DM, Xu S. Tseng C-TK: Bepridil is potent against SARS-CoV-2 in vitro. Proc Natl Acad Sci. 2021;118(10): e2012201118.PubMedPubMedCentralCrossRef
163.
Zurück zum Zitat O’Donovan SM, Imami A, Eby H, Henkel ND, Creeden JF, Asah S, Zhang X, Wu X, Alnafisah R, Taylor RT. Identification of candidate repurposable drugs to combat COVID-19 using a signature-based approach. Sci Rep. 2021;11(1):1–12.CrossRef O’Donovan SM, Imami A, Eby H, Henkel ND, Creeden JF, Asah S, Zhang X, Wu X, Alnafisah R, Taylor RT. Identification of candidate repurposable drugs to combat COVID-19 using a signature-based approach. Sci Rep. 2021;11(1):1–12.CrossRef
164.
Zurück zum Zitat Xiao X, Wang C, Chang D, Wang Y, Dong X, Jiao T, Zhao Z, Ren L, Dela Cruz CS, Sharma L. Identification of potent and safe antiviral therapeutic candidates against SARS-CoV-2. Front Immunol. 2020;11:586572.PubMedPubMedCentralCrossRef Xiao X, Wang C, Chang D, Wang Y, Dong X, Jiao T, Zhao Z, Ren L, Dela Cruz CS, Sharma L. Identification of potent and safe antiviral therapeutic candidates against SARS-CoV-2. Front Immunol. 2020;11:586572.PubMedPubMedCentralCrossRef
165.
Zurück zum Zitat Udrea A-M, Avram S, Nistorescu S, Pascu M-L, Romanitan MO. Laser irradiated phenothiazines: New potential treatment for COVID-19 explored by molecular docking. J Photochem Photobiol, B. 2020;211:111997.PubMedCrossRef Udrea A-M, Avram S, Nistorescu S, Pascu M-L, Romanitan MO. Laser irradiated phenothiazines: New potential treatment for COVID-19 explored by molecular docking. J Photochem Photobiol, B. 2020;211:111997.PubMedCrossRef
166.
Zurück zum Zitat Chen CZ, Xu M, Pradhan M, Gorshkov K, Petersen JD, Straus MR, Zhu W, Shinn P, Guo H, Shen M. Identifying SARS-CoV-2 entry inhibitors through drug repurposing screens of SARS-S and MERS-S pseudotyped particles. ACS Pharmacol Transl Sci. 2020;3(6):1165–75.PubMedPubMedCentralCrossRef Chen CZ, Xu M, Pradhan M, Gorshkov K, Petersen JD, Straus MR, Zhu W, Shinn P, Guo H, Shen M. Identifying SARS-CoV-2 entry inhibitors through drug repurposing screens of SARS-S and MERS-S pseudotyped particles. ACS Pharmacol Transl Sci. 2020;3(6):1165–75.PubMedPubMedCentralCrossRef
167.
Zurück zum Zitat Hurwitz R, Ferlinz K, Sandhoff K. The tricyclic antidepressant desipramine causes proteolytic degradation of lysosomal sphingomyelinase in human fibroblasts. Bio Chem Hoppe-Seyler. 1994;375(7):447–50.CrossRef Hurwitz R, Ferlinz K, Sandhoff K. The tricyclic antidepressant desipramine causes proteolytic degradation of lysosomal sphingomyelinase in human fibroblasts. Bio Chem Hoppe-Seyler. 1994;375(7):447–50.CrossRef
168.
Zurück zum Zitat MOE V. Chemical Computing Group Inc., Montreal, Canada. In.; 2010. MOE V. Chemical Computing Group Inc., Montreal, Canada. In.; 2010.
169.
Zurück zum Zitat Al-Qaisi ZH, Al-Garawi ZS, Al-Karawi AJM, Hammood AJ, Abdallah AM, Clegg W, Mohamed GG. Antiureolytic activity of new water-soluble thiadiazole derivatives: Spectroscopic, DFT, and molecular docking studies. Spectrochim Acta Part A Mol Biomol Spectrosc. 2022;272: 120971.CrossRef Al-Qaisi ZH, Al-Garawi ZS, Al-Karawi AJM, Hammood AJ, Abdallah AM, Clegg W, Mohamed GG. Antiureolytic activity of new water-soluble thiadiazole derivatives: Spectroscopic, DFT, and molecular docking studies. Spectrochim Acta Part A Mol Biomol Spectrosc. 2022;272: 120971.CrossRef
170.
Zurück zum Zitat Wang X, Lu J, Ge S, Hou Y, Hu T, Lv Y, Wang C, He H. Astemizole as a drug to inhibit the effect of SARS-COV-2 in vitro. Microb Pathog. 2021;156: 104929.PubMedPubMedCentralCrossRef Wang X, Lu J, Ge S, Hou Y, Hu T, Lv Y, Wang C, He H. Astemizole as a drug to inhibit the effect of SARS-COV-2 in vitro. Microb Pathog. 2021;156: 104929.PubMedPubMedCentralCrossRef
171.
Zurück zum Zitat Janabi AHD. Molecular Docking Analysis of Anti-Severe Acute Respiratory Syndrome-Coronavirus 2 Ligands against Spike Glycoprotein and the 3-Chymotrypsin-Like Protease. J Med Signals Sens. 2021;11(1):31–6.PubMedPubMedCentralCrossRef Janabi AHD. Molecular Docking Analysis of Anti-Severe Acute Respiratory Syndrome-Coronavirus 2 Ligands against Spike Glycoprotein and the 3-Chymotrypsin-Like Protease. J Med Signals Sens. 2021;11(1):31–6.PubMedPubMedCentralCrossRef
172.
Zurück zum Zitat Darquennes G, Le Corre P, Le Moine O, Loas G. Association between Functional Inhibitors of Acid Sphingomyelinase (FIASMAs) and Reduced Risk of Death in COVID-19 Patients: A Retrospective Cohort Study. Pharmaceuticals (Basel). 2021;14(3):226.PubMedCrossRef Darquennes G, Le Corre P, Le Moine O, Loas G. Association between Functional Inhibitors of Acid Sphingomyelinase (FIASMAs) and Reduced Risk of Death in COVID-19 Patients: A Retrospective Cohort Study. Pharmaceuticals (Basel). 2021;14(3):226.PubMedCrossRef
173.
Zurück zum Zitat Castaldo N, Aimo A, Castiglione V, Padalino C, Emdin M, Tascini C. Safety and Efficacy of Amiodarone in a Patient With COVID-19. JACC Case Rep. 2020;2(9):1307–10.PubMedPubMedCentralCrossRef Castaldo N, Aimo A, Castiglione V, Padalino C, Emdin M, Tascini C. Safety and Efficacy of Amiodarone in a Patient With COVID-19. JACC Case Rep. 2020;2(9):1307–10.PubMedPubMedCentralCrossRef
174.
Zurück zum Zitat Hoertel N, Sánchez-Rico M, Gulbins E, Kornhuber J, Carpinteiro A, Lenze EJ, Reiersen AM, Abellán M, de la Muela P, Vernet R, et al. Association Between FIASMAs and Reduced Risk of Intubation or Death in Individuals Hospitalized for Severe COVID-19: An Observational Multicenter Study. Clin Pharmacol Ther. 2021;110(6):1498–511.PubMedCrossRef Hoertel N, Sánchez-Rico M, Gulbins E, Kornhuber J, Carpinteiro A, Lenze EJ, Reiersen AM, Abellán M, de la Muela P, Vernet R, et al. Association Between FIASMAs and Reduced Risk of Intubation or Death in Individuals Hospitalized for Severe COVID-19: An Observational Multicenter Study. Clin Pharmacol Ther. 2021;110(6):1498–511.PubMedCrossRef
175.
Zurück zum Zitat i Y, Chen J, Pang L, Chen C, Ye J, Liu H, Chen H, Zhang S, Liu S, Liu B, et al. The Acid Sphingomyelinase Inhibitor Amitriptyline Ameliorates TNF-α-Induced Endothelial Dysfunction. Cardiovasc Drugs Ther. 2022:1–14. i Y, Chen J, Pang L, Chen C, Ye J, Liu H, Chen H, Zhang S, Liu S, Liu B, et al. The Acid Sphingomyelinase Inhibitor Amitriptyline Ameliorates TNF-α-Induced Endothelial Dysfunction. Cardiovasc Drugs Ther. 2022:1–14.
176.
Zurück zum Zitat Sencanski M, Perovic V, Pajovic SB, Adzic M, Paessler S, Glisic S. Drug Repurposing for Candidate SARS-CoV-2 Main Protease Inhibitors by a Novel In Silico Method. Molecules. 2020;25(17):3830.PubMedPubMedCentralCrossRef Sencanski M, Perovic V, Pajovic SB, Adzic M, Paessler S, Glisic S. Drug Repurposing for Candidate SARS-CoV-2 Main Protease Inhibitors by a Novel In Silico Method. Molecules. 2020;25(17):3830.PubMedPubMedCentralCrossRef
177.
Zurück zum Zitat Loas G, Le Corre P. Update on Functional Inhibitors of Acid Sphingomyelinase (FIASMAs) in SARS-CoV-2 Infection. Pharmaceuticals (Basel). 2021;14(7):691.PubMedCrossRef Loas G, Le Corre P. Update on Functional Inhibitors of Acid Sphingomyelinase (FIASMAs) in SARS-CoV-2 Infection. Pharmaceuticals (Basel). 2021;14(7):691.PubMedCrossRef
178.
Zurück zum Zitat Vatansever EC, Yang KS, Drelich AK, Kratch KC, Cho CC, Kempaiah KR, Hsu JC, Mellott DM, Xu S, Tseng CK, et al. Bepridil is potent against SARS-CoV-2 in vitro. Proc Natl Acad Sci U S A. 2021;118(10):1–8. Vatansever EC, Yang KS, Drelich AK, Kratch KC, Cho CC, Kempaiah KR, Hsu JC, Mellott DM, Xu S, Tseng CK, et al. Bepridil is potent against SARS-CoV-2 in vitro. Proc Natl Acad Sci U S A. 2021;118(10):1–8.
179.
Zurück zum Zitat Jeon S, Ko M, Lee J, Choi I, Byun SY, Park S, Shum D, Kim S. Identification of Antiviral Drug Candidates against SARS-CoV-2 from FDA-Approved Drugs. Antimicrob Agents Chemother. 2020;64(7):1–9. Jeon S, Ko M, Lee J, Choi I, Byun SY, Park S, Shum D, Kim S. Identification of Antiviral Drug Candidates against SARS-CoV-2 from FDA-Approved Drugs. Antimicrob Agents Chemother. 2020;64(7):1–9.
180.
Zurück zum Zitat Jade D, Ayyamperumal S, Tallapaneni V, Joghee Nanjan CM, Barge S, Mohan S, Nanjan MJ. Virtual high throughput screening: Potential inhibitors for SARS-CoV-2 PL(PRO) and 3CL(PRO) proteases. Eur J Pharmacol. 2021;901: 174082.PubMedPubMedCentralCrossRef Jade D, Ayyamperumal S, Tallapaneni V, Joghee Nanjan CM, Barge S, Mohan S, Nanjan MJ. Virtual high throughput screening: Potential inhibitors for SARS-CoV-2 PL(PRO) and 3CL(PRO) proteases. Eur J Pharmacol. 2021;901: 174082.PubMedPubMedCentralCrossRef
181.
Zurück zum Zitat Yuan S, Yin X, Meng X, Chan JF, Ye ZW, Riva L, Pache L, Chan CC, Lai PM, Chan CC, et al. Clofazimine broadly inhibits coronaviruses including SARS-CoV-2. Nature. 2021;593(7859):418–23.ADSPubMedCrossRef Yuan S, Yin X, Meng X, Chan JF, Ye ZW, Riva L, Pache L, Chan CC, Lai PM, Chan CC, et al. Clofazimine broadly inhibits coronaviruses including SARS-CoV-2. Nature. 2021;593(7859):418–23.ADSPubMedCrossRef
182.
Zurück zum Zitat Sauvat A, Ciccosanti F, Colavita F, Di Rienzo M, Castilletti C, Capobianchi MR, Kepp O, Zitvogel L, Fimia GM, Piacentini M, et al. On-target versus off-target effects of drugs inhibiting the replication of SARS-CoV-2. Cell Death Dis. 2020;11(8):656.PubMedPubMedCentralCrossRef Sauvat A, Ciccosanti F, Colavita F, Di Rienzo M, Castilletti C, Capobianchi MR, Kepp O, Zitvogel L, Fimia GM, Piacentini M, et al. On-target versus off-target effects of drugs inhibiting the replication of SARS-CoV-2. Cell Death Dis. 2020;11(8):656.PubMedPubMedCentralCrossRef
183.
Zurück zum Zitat Barnard DL, Day CW, Bailey K, Heiner M, Montgomery R, Lauridsen L, Jung KH, Li JK, Chan PK, Sidwell RW. Is the anti-psychotic, 10-(3-(dimethylamino)propyl)phenothiazine (promazine), a potential drug with which to treat SARS infections? Lack of efficacy of promazine on SARS-CoV replication in a mouse model. Antiviral Res. 2008;79(2):105–13.PubMedPubMedCentralCrossRef Barnard DL, Day CW, Bailey K, Heiner M, Montgomery R, Lauridsen L, Jung KH, Li JK, Chan PK, Sidwell RW. Is the anti-psychotic, 10-(3-(dimethylamino)propyl)phenothiazine (promazine), a potential drug with which to treat SARS infections? Lack of efficacy of promazine on SARS-CoV replication in a mouse model. Antiviral Res. 2008;79(2):105–13.PubMedPubMedCentralCrossRef
184.
Zurück zum Zitat Weston S, Coleman CM, Haupt R, Logue J, Matthews K, Li Y, Reyes HM, Weiss SR, Frieman MB. Broad Anti-coronavirus Activity of Food and Drug Administration-Approved Drugs against SARS-CoV-2 In Vitro and SARS-CoV In Vivo. J Virol. 2020;94(21):e01218–20.PubMedPubMedCentralCrossRef Weston S, Coleman CM, Haupt R, Logue J, Matthews K, Li Y, Reyes HM, Weiss SR, Frieman MB. Broad Anti-coronavirus Activity of Food and Drug Administration-Approved Drugs against SARS-CoV-2 In Vitro and SARS-CoV In Vivo. J Virol. 2020;94(21):e01218–20.PubMedPubMedCentralCrossRef
185.
Zurück zum Zitat Chen CZ, Shinn P, Itkin Z, Eastman RT, Bostwick R, Rasmussen L, Huang R, Shen M, Hu X, Wilson KM, et al. Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2. Front Pharmacol. 2020;11: 592737.PubMedCrossRef Chen CZ, Shinn P, Itkin Z, Eastman RT, Bostwick R, Rasmussen L, Huang R, Shen M, Hu X, Wilson KM, et al. Drug Repurposing Screen for Compounds Inhibiting the Cytopathic Effect of SARS-CoV-2. Front Pharmacol. 2020;11: 592737.PubMedCrossRef
186.
Zurück zum Zitat Carpinteiro A, Edwards MJ, Hoffmann M, Kochs G, Gripp B, Weigang S, Adams C, Carpinteiro E, Gulbins A, Keitsch S, et al. Pharmacological Inhibition of Acid Sphingomyelinase Prevents Uptake of SARS-CoV-2 by Epithelial Cells. Cell Rep Med. 2020;1(8): 100142.PubMedPubMedCentralCrossRef Carpinteiro A, Edwards MJ, Hoffmann M, Kochs G, Gripp B, Weigang S, Adams C, Carpinteiro E, Gulbins A, Keitsch S, et al. Pharmacological Inhibition of Acid Sphingomyelinase Prevents Uptake of SARS-CoV-2 by Epithelial Cells. Cell Rep Med. 2020;1(8): 100142.PubMedPubMedCentralCrossRef
187.
Zurück zum Zitat Morin-Dewaele M, Bartier S, Berry F, Brillet R, López-Molina DS, Nguyễn CT, Maille P, Sereno K, Nevers Q, Softic L, et al. Desloratadine, an FDA-approved cationic amphiphilic drug, inhibits SARS-CoV-2 infection in cell culture and primary human nasal epithelial cells by blocking viral entry. Sci Rep. 2022;12(1):21053.ADSPubMedPubMedCentralCrossRef Morin-Dewaele M, Bartier S, Berry F, Brillet R, López-Molina DS, Nguyễn CT, Maille P, Sereno K, Nevers Q, Softic L, et al. Desloratadine, an FDA-approved cationic amphiphilic drug, inhibits SARS-CoV-2 infection in cell culture and primary human nasal epithelial cells by blocking viral entry. Sci Rep. 2022;12(1):21053.ADSPubMedPubMedCentralCrossRef
188.
Zurück zum Zitat Le BL, Andreoletti G, Oskotsky T, Vallejo-Gracia A, Rosales R, Yu K, Kosti I, Leon KE, Bunis DG, Li C, et al. Transcriptomics-based drug repositioning pipeline identifies therapeutic candidates for COVID-19. Sci Rep. 2021;11(1):12310.ADSPubMedPubMedCentralCrossRef Le BL, Andreoletti G, Oskotsky T, Vallejo-Gracia A, Rosales R, Yu K, Kosti I, Leon KE, Bunis DG, Li C, et al. Transcriptomics-based drug repositioning pipeline identifies therapeutic candidates for COVID-19. Sci Rep. 2021;11(1):12310.ADSPubMedPubMedCentralCrossRef
189.
Zurück zum Zitat Ge S, Wang X, Hou Y, Lv Y, Wang C, He H. Repositioning of histamine H(1) receptor antagonist: Doxepin inhibits viropexis of SARS-CoV-2 Spike pseudovirus by blocking ACE2. Eur J Pharmacol. 2021;896:173897.PubMedPubMedCentralCrossRef Ge S, Wang X, Hou Y, Lv Y, Wang C, He H. Repositioning of histamine H(1) receptor antagonist: Doxepin inhibits viropexis of SARS-CoV-2 Spike pseudovirus by blocking ACE2. Eur J Pharmacol. 2021;896:173897.PubMedPubMedCentralCrossRef
190.
Zurück zum Zitat Choy KT, Wong AY, Kaewpreedee P, Sia SF, Chen D, Hui KPY, Chu DKW, Chan MCW, Cheung PP, Huang X, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. 2020;178:104786.PubMedPubMedCentralCrossRef Choy KT, Wong AY, Kaewpreedee P, Sia SF, Chen D, Hui KPY, Chu DKW, Chan MCW, Cheung PP, Huang X, et al. Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. 2020;178:104786.PubMedPubMedCentralCrossRef
191.
Zurück zum Zitat Duarte RRR, Copertino DC Jr, Iñiguez LP, Marston JL, Bram Y, Han Y, Schwartz RE, Chen S, Nixon DF, Powell TR. Identifying FDA-approved drugs with multimodal properties against COVID-19 using a data-driven approach and a lung organoid model of SARS-CoV-2 entry. Mol Med. 2021;27(1):105.PubMedPubMedCentralCrossRef Duarte RRR, Copertino DC Jr, Iñiguez LP, Marston JL, Bram Y, Han Y, Schwartz RE, Chen S, Nixon DF, Powell TR. Identifying FDA-approved drugs with multimodal properties against COVID-19 using a data-driven approach and a lung organoid model of SARS-CoV-2 entry. Mol Med. 2021;27(1):105.PubMedPubMedCentralCrossRef
192.
Zurück zum Zitat Sahoo BM, Bhattamisra SK, Das S, Tiwari A, Tiwari V, Kumar M, Singh S. Computational Approach to Combat COVID-19 Infection: Emerging Tools for Accelerating Drug Research. Curr Drug Discov Technol. 2022;19(3):40–53. Sahoo BM, Bhattamisra SK, Das S, Tiwari A, Tiwari V, Kumar M, Singh S. Computational Approach to Combat COVID-19 Infection: Emerging Tools for Accelerating Drug Research. Curr Drug Discov Technol. 2022;19(3):40–53.
193.
Zurück zum Zitat Norinder U, Tuck A, Norgren K, Munic Kos V. Existing highly accumulating lysosomotropic drugs with potential for repurposing to target COVID-19. Biomed Pharmacother. 2020;130: 110582.PubMedPubMedCentralCrossRef Norinder U, Tuck A, Norgren K, Munic Kos V. Existing highly accumulating lysosomotropic drugs with potential for repurposing to target COVID-19. Biomed Pharmacother. 2020;130: 110582.PubMedPubMedCentralCrossRef
194.
Zurück zum Zitat Cheng F, Rao S, Mehra R. COVID-19 treatment: Combining anti-inflammatory and antiviral therapeutics using a network-based approach. Cleve Clin J Med. 2020:1–6. Cheng F, Rao S, Mehra R. COVID-19 treatment: Combining anti-inflammatory and antiviral therapeutics using a network-based approach. Cleve Clin J Med. 2020:1–6.
195.
Zurück zum Zitat Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020;6:14.PubMedPubMedCentralCrossRef Zhou Y, Hou Y, Shen J, Huang Y, Martin W, Cheng F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020;6:14.PubMedPubMedCentralCrossRef
196.
Zurück zum Zitat Gelemanović A, Vidović T, Stepanić V, Trajković K. Identification of 37 Heterogeneous Drug Candidates for Treatment of COVID-19 via a Rational Transcriptomics-Based Drug Repurposing Approach. Pharmaceuticals (Basel). 2021;14(2):87.PubMedCrossRef Gelemanović A, Vidović T, Stepanić V, Trajković K. Identification of 37 Heterogeneous Drug Candidates for Treatment of COVID-19 via a Rational Transcriptomics-Based Drug Repurposing Approach. Pharmaceuticals (Basel). 2021;14(2):87.PubMedCrossRef
197.
Zurück zum Zitat Naz A, Asif S, Alwutayd KM, Sarfaraz S, Abbasi SW, Abbasi A, Alenazi AM, Hasan ME. Repurposing FIASMAs against Acid Sphingomyelinase for COVID-19: A Computational Molecular Docking and Dynamic Simulation Approach. Molecules. 2023;28(7):2989.PubMedPubMedCentralCrossRef Naz A, Asif S, Alwutayd KM, Sarfaraz S, Abbasi SW, Abbasi A, Alenazi AM, Hasan ME. Repurposing FIASMAs against Acid Sphingomyelinase for COVID-19: A Computational Molecular Docking and Dynamic Simulation Approach. Molecules. 2023;28(7):2989.PubMedPubMedCentralCrossRef
198.
Zurück zum Zitat Liu DY, Liu JC, Liang S, Meng XH, Greenbaum J, Xiao HM, Tan LJ, Deng HW. Drug Repurposing for COVID-19 Treatment by Integrating Network Pharmacology and Transcriptomics. Pharmaceutics. 2021;13(4):545.PubMedPubMedCentralCrossRef Liu DY, Liu JC, Liang S, Meng XH, Greenbaum J, Xiao HM, Tan LJ, Deng HW. Drug Repurposing for COVID-19 Treatment by Integrating Network Pharmacology and Transcriptomics. Pharmaceutics. 2021;13(4):545.PubMedPubMedCentralCrossRef
199.
Zurück zum Zitat Touret F, Gilles M, Barral K, Nougairède A, van Helden J, Decroly E, de Lamballerie X, Coutard B. In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication. Sci Rep. 2020;10(1):13093.ADSPubMedPubMedCentralCrossRef Touret F, Gilles M, Barral K, Nougairède A, van Helden J, Decroly E, de Lamballerie X, Coutard B. In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication. Sci Rep. 2020;10(1):13093.ADSPubMedPubMedCentralCrossRef
200.
Zurück zum Zitat O’Donovan SM, Imami A, Eby H, Henkel ND, Creeden JF, Asah S, Zhang X, Wu X, Alnafisah R, Taylor RT, et al. Identification of candidate repurposable drugs to combat COVID-19 using a signature-based approach. Sci Rep. 2021;11(1):4495.ADSPubMedPubMedCentralCrossRef O’Donovan SM, Imami A, Eby H, Henkel ND, Creeden JF, Asah S, Zhang X, Wu X, Alnafisah R, Taylor RT, et al. Identification of candidate repurposable drugs to combat COVID-19 using a signature-based approach. Sci Rep. 2021;11(1):4495.ADSPubMedPubMedCentralCrossRef
201.
Zurück zum Zitat Udrea AM, Avram S, Nistorescu S, Pascu ML, Romanitan MO. Laser irradiated phenothiazines: New potential treatment for COVID-19 explored by molecular docking. J Photochem Photobiol B. 2020;211:111997.PubMedPubMedCentralCrossRef Udrea AM, Avram S, Nistorescu S, Pascu ML, Romanitan MO. Laser irradiated phenothiazines: New potential treatment for COVID-19 explored by molecular docking. J Photochem Photobiol B. 2020;211:111997.PubMedPubMedCentralCrossRef
202.
Zurück zum Zitat Daisy AH, Daniel JBC, Rasmus M, Yuling H, Liuliu Y, Megan LW, Alexander L, Kasopefoluwa YO, Christian S, Benhur L, et al. Modulating the transcriptional landscape of SARS-CoV-2 as an effective method for developing antiviral compounds. bioRxiv. 2020:1–27. Daisy AH, Daniel JBC, Rasmus M, Yuling H, Liuliu Y, Megan LW, Alexander L, Kasopefoluwa YO, Christian S, Benhur L, et al. Modulating the transcriptional landscape of SARS-CoV-2 as an effective method for developing antiviral compounds. bioRxiv. 2020:1–27.
Metadaten
Titel
Molecular docking as a tool for the discovery of novel insight about the role of acid sphingomyelinase inhibitors in SARS- CoV-2 infectivity
verfasst von
Samar Sami Alkafaas
Abanoub Mosaad Abdallah
Mai H. Hassan
Aya Misbah Hussien
Sara Samy Elkafas
Samah A. Loutfy
Abanoub Mikhail
Omnia G. Murad
Mohamed I. Elsalahaty
Mohamed Hessien
Rami M. Elshazli
Fatimah A. Alsaeed
Ahmed Ezzat Ahmed
Hani K. Kamal
Wael Hafez
Mohamed T. El-Saadony
Khaled A. El-Tarabily
Soumya Ghosh
Publikationsdatum
01.12.2024
Verlag
BioMed Central
Erschienen in
BMC Public Health / Ausgabe 1/2024
Elektronische ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-024-17747-z

Weitere Artikel der Ausgabe 1/2024

BMC Public Health 1/2024 Zur Ausgabe