Skip to main content
Erschienen in: Cardiovascular Toxicology 1/2019

17.11.2018

Nano-medicine and Vascular Endothelial Dysfunction: Options and Delivery Strategies

verfasst von: Gaurav Taneja, Akash Sud, Narayan Pendse, Bishnu Panigrahi, Ashish Kumar, Arun K. Sharma

Erschienen in: Cardiovascular Toxicology | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

The endothelium is a thin innermost layer of flat cells which release various mediators including endothelin-1 (ET-1), prostanoids, von Willebrand factor (vWF) and endothelium-derived relaxing factor (EDRF; nitric oxide) to regulate vascular tone. Endothelial nitric oxide synthase (eNOS) is a key enzyme that generates nitric oxide (NO). NO maintains vascular homeostasis and cardiac functions by influencing major vascular protective properties such as anti-platelet, anti-proliferative, anti-migratory, antioxidant and anti-inflammatory action in vessels. Abnormal endothelial production and release of NO lead to vascular endothelial dysfunction (VED) and further leads to pathogenesis in myocardial and other tissues. Numerous pharmacological agents such as angiotensin-converting enzyme inhibitors, statins, calcium channel blockers, ET-1 receptor antagonists, insulin sensitizers, antioxidants and supplements like tetrahydrobiopterin, arginine and folate have been implicated in the treatment of VED, but their therapeutic potency was restricted due to some unavoidable adverse effects. The new era with advances in nanotechnology and its ability to target a specific disease, nano-medicine explored an innovative gateway for advanced therapy for VED. The present commentary reveals the various available, pipeline nano-medicine, their interaction with endothelium and in other associated pathological conditions and their delivery strategies for target-specific treatment of VED.
Literatur
1.
Zurück zum Zitat Sena, C. M., Pereira, A. M., & Seiça, R. (2013). Endothelial dysfunction—A major mediator of diabetic vascular disease. Biochimica et Biophysica Acta, 1832, 2216–2231.CrossRefPubMed Sena, C. M., Pereira, A. M., & Seiça, R. (2013). Endothelial dysfunction—A major mediator of diabetic vascular disease. Biochimica et Biophysica Acta, 1832, 2216–2231.CrossRefPubMed
2.
Zurück zum Zitat Rajendran, P., Rengarajan, T., Thangavel, J., Nishigaki, Y., Sakthisekaran, D., Sethi, G., et al. (2013). The vascular endothelium and human disease. International Journal of Biological Sciences, 9, 1057–1069.CrossRefPubMedPubMedCentral Rajendran, P., Rengarajan, T., Thangavel, J., Nishigaki, Y., Sakthisekaran, D., Sethi, G., et al. (2013). The vascular endothelium and human disease. International Journal of Biological Sciences, 9, 1057–1069.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Ignarro, L. J. (2002). Visiting professorial lecture: Nitric oxide in the regulation of vascular function: an historical overview. Journal of Cardiac Surgery, 17, 301–306.CrossRefPubMed Ignarro, L. J. (2002). Visiting professorial lecture: Nitric oxide in the regulation of vascular function: an historical overview. Journal of Cardiac Surgery, 17, 301–306.CrossRefPubMed
4.
Zurück zum Zitat Momi, S., Monopoli, A., Alberti, P. F., Falcinelli, E., Corazzi, T., Conti, V., et al. (2012). Nitric oxide enhances the anti-inflammatory and anti-atherogenic activity of atorvastatin in a mouse model of accelerated atherosclerosis. Cardiovascular Research, 94, 428–438.CrossRefPubMed Momi, S., Monopoli, A., Alberti, P. F., Falcinelli, E., Corazzi, T., Conti, V., et al. (2012). Nitric oxide enhances the anti-inflammatory and anti-atherogenic activity of atorvastatin in a mouse model of accelerated atherosclerosis. Cardiovascular Research, 94, 428–438.CrossRefPubMed
5.
Zurück zum Zitat Förstermann, U., & Sessa, W. C. (2012). Nitric oxide synthases: Regulation and function. European Heart Journal, 33, 829–837.CrossRefPubMed Förstermann, U., & Sessa, W. C. (2012). Nitric oxide synthases: Regulation and function. European Heart Journal, 33, 829–837.CrossRefPubMed
7.
Zurück zum Zitat El Assar, M., Angulo, J., Santos-Ruiz, M., Ruiz de Adana, J. C., Pindado, M. L., Sánchez-Ferrer, A., et al. (2016). Asymmetric dimethylarginine (ADMA) elevation and arginase up-regulation contribute to endothelial dysfunction related to insulin resistance in rats and morbidly obese humans. The Journal of Physiology, 594, 3045–3060.CrossRefPubMedPubMedCentral El Assar, M., Angulo, J., Santos-Ruiz, M., Ruiz de Adana, J. C., Pindado, M. L., Sánchez-Ferrer, A., et al. (2016). Asymmetric dimethylarginine (ADMA) elevation and arginase up-regulation contribute to endothelial dysfunction related to insulin resistance in rats and morbidly obese humans. The Journal of Physiology, 594, 3045–3060.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Pourmand, A., Pourmand, M. R., Wang, J., & Shesser, R. (2012). Application of nanomedicine in emergency medicine; Point-of-care testing and drug delivery in twenty-first century. Daru, 20, 26.CrossRefPubMedPubMedCentral Pourmand, A., Pourmand, M. R., Wang, J., & Shesser, R. (2012). Application of nanomedicine in emergency medicine; Point-of-care testing and drug delivery in twenty-first century. Daru, 20, 26.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Brede, C., & Labhasetwar, V. (2013). Applications of nanoparticles in the detection and treatment of kidney diseases. Advances in Chronic Kidney Disease, 20, 454–465.CrossRefPubMed Brede, C., & Labhasetwar, V. (2013). Applications of nanoparticles in the detection and treatment of kidney diseases. Advances in Chronic Kidney Disease, 20, 454–465.CrossRefPubMed
11.
Zurück zum Zitat Chinen, A. B., Guan, C. M., Ferrer, J. R., Barnaby, S. N., Merkel, T. J., & Mirkin, C. A. (2015). Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chemical Reviews, 115, 10530–10574.CrossRefPubMedPubMedCentral Chinen, A. B., Guan, C. M., Ferrer, J. R., Barnaby, S. N., Merkel, T. J., & Mirkin, C. A. (2015). Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chemical Reviews, 115, 10530–10574.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Barua, S., & Mitragotri, S. (2014). Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today, 9, 223–243.CrossRefPubMedPubMedCentral Barua, S., & Mitragotri, S. (2014). Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today, 9, 223–243.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Zhang, Y., & Yang, W. X. (2016). Tight junction between endothelial cells: The interaction between nanoparticles and blood vessels. Beilstein Journal of Nanotechnology, 7, 675–684.CrossRefPubMedPubMedCentral Zhang, Y., & Yang, W. X. (2016). Tight junction between endothelial cells: The interaction between nanoparticles and blood vessels. Beilstein Journal of Nanotechnology, 7, 675–684.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Rizvi, S. A. A., & Saleh, A. M. (2018). Applications of nanoparticle systems in drug delivery technology. Saudi Pharmaceutical Journal, 26, 64–70.CrossRefPubMed Rizvi, S. A. A., & Saleh, A. M. (2018). Applications of nanoparticle systems in drug delivery technology. Saudi Pharmaceutical Journal, 26, 64–70.CrossRefPubMed
16.
Zurück zum Zitat Jahan, S. T., Sadat, S. M. A., Walliser, M., & Haddadi, A. (2017). Targeted therapeutic nanoparticles: An immense promise to fight against cancer. Journal of drug delivery, 2017, 9090325.CrossRefPubMedPubMedCentral Jahan, S. T., Sadat, S. M. A., Walliser, M., & Haddadi, A. (2017). Targeted therapeutic nanoparticles: An immense promise to fight against cancer. Journal of drug delivery, 2017, 9090325.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Sharma, A. K., Kumar, A., Taneja, G., Nagaich, U., Deep, A., & Rajput, S. K. (2016). Synthesis and preliminary therapeutic evaluation of copper nanoparticles against diabetes mellitus and -induced micro (renal) and macro vascular (vascular endothelial and cardiovascular) abnormalities in rats. RSC Advances, 6, 36870–36880.CrossRef Sharma, A. K., Kumar, A., Taneja, G., Nagaich, U., Deep, A., & Rajput, S. K. (2016). Synthesis and preliminary therapeutic evaluation of copper nanoparticles against diabetes mellitus and -induced micro (renal) and macro vascular (vascular endothelial and cardiovascular) abnormalities in rats. RSC Advances, 6, 36870–36880.CrossRef
18.
Zurück zum Zitat Sharma, A. K., Kumar, A., Kumar, S., Mukherjee, S., Nagpal, D., Nagaich, U., et al. (2017). Preparation and therapeutic evolution of Ficus benjamina solid lipid nanoparticles against alcohol abuse/antabuse induced hepatotoxicity and cardio-renal injury. RSC Advances, 7, 35938–35949.CrossRef Sharma, A. K., Kumar, A., Kumar, S., Mukherjee, S., Nagpal, D., Nagaich, U., et al. (2017). Preparation and therapeutic evolution of Ficus benjamina solid lipid nanoparticles against alcohol abuse/antabuse induced hepatotoxicity and cardio-renal injury. RSC Advances, 7, 35938–35949.CrossRef
19.
Zurück zum Zitat Sharma, A. K., Kumar, A., Taneja, G., Nagaich, U., Deep, A., Datusalia, A. K., et al. (2018). Combined and individual strategy of exercise generated preconditioning and low dose copper nanoparticles serve as superlative approach to ameliorate ISO-induced myocardial infarction in rats. Pharmacological Reports, 70, 789–795.CrossRefPubMed Sharma, A. K., Kumar, A., Taneja, G., Nagaich, U., Deep, A., Datusalia, A. K., et al. (2018). Combined and individual strategy of exercise generated preconditioning and low dose copper nanoparticles serve as superlative approach to ameliorate ISO-induced myocardial infarction in rats. Pharmacological Reports, 70, 789–795.CrossRefPubMed
20.
Zurück zum Zitat Favero, G., Paganelli, C., Buffoli, B., Rodella, L. F., & Rezzani, R. (2014). Endothelium and its alterations in cardiovascular diseases: Life style intervention. Biomed Research International, 2014, 801896.CrossRefPubMedPubMedCentral Favero, G., Paganelli, C., Buffoli, B., Rodella, L. F., & Rezzani, R. (2014). Endothelium and its alterations in cardiovascular diseases: Life style intervention. Biomed Research International, 2014, 801896.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Shah, D. I., & Singh, M. (2006). Involvement of Rho-kinase in experimental vascular endothelial dysfunction. Molecular and Cellular Biochemistry, 283, 191–199.CrossRefPubMed Shah, D. I., & Singh, M. (2006). Involvement of Rho-kinase in experimental vascular endothelial dysfunction. Molecular and Cellular Biochemistry, 283, 191–199.CrossRefPubMed
22.
Zurück zum Zitat Yilmaz, B., Yilmaz, P., Ordueri, E., Celik-Ozenci, C., & Tasatargil, A. (2014). Poly(ADP-ribose) polymerase inhibition improves endothelin-1-induced endothelial dysfunction in rat thoracic aorta. Upsala Journal of Medical Sciences, 119, 215–222.CrossRefPubMedPubMedCentral Yilmaz, B., Yilmaz, P., Ordueri, E., Celik-Ozenci, C., & Tasatargil, A. (2014). Poly(ADP-ribose) polymerase inhibition improves endothelin-1-induced endothelial dysfunction in rat thoracic aorta. Upsala Journal of Medical Sciences, 119, 215–222.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Thiebaut, P. A., Besnier, M., Gomez, E., & Richard, V. (2016). Role of protein tyrosine phosphatase 1B in cardiovascular diseases. Journal of Molecular and Cellular Cardiology, 101, 50–57.CrossRefPubMed Thiebaut, P. A., Besnier, M., Gomez, E., & Richard, V. (2016). Role of protein tyrosine phosphatase 1B in cardiovascular diseases. Journal of Molecular and Cellular Cardiology, 101, 50–57.CrossRefPubMed
24.
Zurück zum Zitat Balakumar, P., Kaur, T., & Singh, M. (2008). Potential target sites to modulate vascular endothelial dysfunction: Current perspectives and future directions. Toxicology, 245, 49–64.CrossRefPubMed Balakumar, P., Kaur, T., & Singh, M. (2008). Potential target sites to modulate vascular endothelial dysfunction: Current perspectives and future directions. Toxicology, 245, 49–64.CrossRefPubMed
25.
Zurück zum Zitat Taneja, G., Mahadevan, N., & Balakumar, P. (2013). Fish oil blunted nicotine-induced vascular endothelial abnormalities possibly via activation of PPARγ-eNOS-NO signals. Cardiovascular Toxicology, 13, 110–122.CrossRefPubMed Taneja, G., Mahadevan, N., & Balakumar, P. (2013). Fish oil blunted nicotine-induced vascular endothelial abnormalities possibly via activation of PPARγ-eNOS-NO signals. Cardiovascular Toxicology, 13, 110–122.CrossRefPubMed
26.
Zurück zum Zitat Daiber, A., Steven, S., Weber, A., Shuvaev, V. V., Muzykantov, V. R., Laher, I., et al. (2017). Targeting vascular (endothelial) dysfunction. British Journal of Pharmacology, 174, 1591–1619.CrossRefPubMed Daiber, A., Steven, S., Weber, A., Shuvaev, V. V., Muzykantov, V. R., Laher, I., et al. (2017). Targeting vascular (endothelial) dysfunction. British Journal of Pharmacology, 174, 1591–1619.CrossRefPubMed
27.
Zurück zum Zitat Guven, A., & Tolun, F. (2012). Effects of smokeless tobacco “Maras Powder” use on nitric oxide and cardiovascular risk parameters. International Journal of Medical Sciences, 9, 786–792.CrossRefPubMedPubMedCentral Guven, A., & Tolun, F. (2012). Effects of smokeless tobacco “Maras Powder” use on nitric oxide and cardiovascular risk parameters. International Journal of Medical Sciences, 9, 786–792.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Tsou, T. C., Tsai, F. Y., Hsieh, Y. W., Li, L. A., Yeh, S. C., & Chang, L. W. (2005). Arsenite induces endothelial cytotoxicity by down-regulation of vascular endothelial nitric oxide synthase. Toxicology and Applied Pharmacology, 208, 277–284.CrossRefPubMed Tsou, T. C., Tsai, F. Y., Hsieh, Y. W., Li, L. A., Yeh, S. C., & Chang, L. W. (2005). Arsenite induces endothelial cytotoxicity by down-regulation of vascular endothelial nitric oxide synthase. Toxicology and Applied Pharmacology, 208, 277–284.CrossRefPubMed
29.
Zurück zum Zitat Bell, S., Daskalopoulou, M., Rapsomanki, E., George, J., Britton, A., Bobak, M., et al. (2017). Association between clinically recorded alcohol consumption and initial presentation of 12 cardiovascular diseases: Population-based cohort study using linked health records. BMJ, 356, 909.CrossRef Bell, S., Daskalopoulou, M., Rapsomanki, E., George, J., Britton, A., Bobak, M., et al. (2017). Association between clinically recorded alcohol consumption and initial presentation of 12 cardiovascular diseases: Population-based cohort study using linked health records. BMJ, 356, 909.CrossRef
30.
Zurück zum Zitat Papaharalambus, C. A., & Griendling, K. K. (2007). Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends in Cardiovascular Medicine, 17, 48–54.CrossRefPubMedPubMedCentral Papaharalambus, C. A., & Griendling, K. K. (2007). Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends in Cardiovascular Medicine, 17, 48–54.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Kiseleva, R. Y., Greineder, C. F., Villa, C. H., Marcos-Contreras, O. A., Hood, E. D., Shuvaev, V. V., et al. (2018). Vascular endothelial effects of collaborative binding to platelet/endothelial cell adhesion molecule-1 (PECAM-1). Science Reports, 8, 1510.CrossRef Kiseleva, R. Y., Greineder, C. F., Villa, C. H., Marcos-Contreras, O. A., Hood, E. D., Shuvaev, V. V., et al. (2018). Vascular endothelial effects of collaborative binding to platelet/endothelial cell adhesion molecule-1 (PECAM-1). Science Reports, 8, 1510.CrossRef
33.
Zurück zum Zitat Maruhashi, T., Kihara, Y., & Higashi, Y. (2018). Assessment of endothelium-independent vasodilation: From methodology to clinical perspectives. Journal of Hypertension, 36, 1460–1467.CrossRefPubMed Maruhashi, T., Kihara, Y., & Higashi, Y. (2018). Assessment of endothelium-independent vasodilation: From methodology to clinical perspectives. Journal of Hypertension, 36, 1460–1467.CrossRefPubMed
34.
Zurück zum Zitat Zimmer, S., Steinmetz, M., Asdonk, T., Motz, I., Coch, C., Hartmann, E., et al. (2011). Activation of endothelial toll-like receptor 3 impairs endothelial function. Circulation Research, 108, 1358–1366.CrossRefPubMed Zimmer, S., Steinmetz, M., Asdonk, T., Motz, I., Coch, C., Hartmann, E., et al. (2011). Activation of endothelial toll-like receptor 3 impairs endothelial function. Circulation Research, 108, 1358–1366.CrossRefPubMed
35.
Zurück zum Zitat Witztum, J. L., & Lichtman, A. H. (2014). The influence of innate and adaptive immune responses on atherosclerosis. Annual Review of Pathology, 9, 73–102.CrossRefPubMed Witztum, J. L., & Lichtman, A. H. (2014). The influence of innate and adaptive immune responses on atherosclerosis. Annual Review of Pathology, 9, 73–102.CrossRefPubMed
36.
Zurück zum Zitat Sharma, A. K., Taneja, G., Khanna, D., & Rajput, S. K. (2015). Reactive oxygen species: Friend or foe? RSC Advances, 5, 57267–57276.CrossRef Sharma, A. K., Taneja, G., Khanna, D., & Rajput, S. K. (2015). Reactive oxygen species: Friend or foe? RSC Advances, 5, 57267–57276.CrossRef
37.
Zurück zum Zitat Baltatu, O. C., Iliescu, R., Zaugg, C. E., Reckelhoff, J. F., Louie, P., Schumacher, C., et al. (2012). Antidiuretic effects of the endothelin receptor antagonist avosentan. Frontiers in Physiology, 3, 103.CrossRefPubMedPubMedCentral Baltatu, O. C., Iliescu, R., Zaugg, C. E., Reckelhoff, J. F., Louie, P., Schumacher, C., et al. (2012). Antidiuretic effects of the endothelin receptor antagonist avosentan. Frontiers in Physiology, 3, 103.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Golomb, B. A., & Evans, M. A. (2008). Statin adverse effects: A review of the literature and evidence for a mitochondrial mechanism. American Journal of Cardiovascular Drugs, 8, 373–418.CrossRefPubMedPubMedCentral Golomb, B. A., & Evans, M. A. (2008). Statin adverse effects: A review of the literature and evidence for a mitochondrial mechanism. American Journal of Cardiovascular Drugs, 8, 373–418.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Shahbazian, H., & Rezaii, I. (2013). Diabetic kidney disease; Review of the current knowledge. Journal of Renal Injury Prevention, 2, 73–80.PubMedPubMedCentral Shahbazian, H., & Rezaii, I. (2013). Diabetic kidney disease; Review of the current knowledge. Journal of Renal Injury Prevention, 2, 73–80.PubMedPubMedCentral
40.
Zurück zum Zitat Izzo, J. L. Jr., & Weir, M. R. (2011). Angiotensin-converting enzyme inhibitors. The Journal of Clinical Hypertension (Greenwich), 13, 667–675.CrossRef Izzo, J. L. Jr., & Weir, M. R. (2011). Angiotensin-converting enzyme inhibitors. The Journal of Clinical Hypertension (Greenwich), 13, 667–675.CrossRef
41.
42.
Zurück zum Zitat Kamaly, N., Xiao, Z., Valencia, P. M., Radovic-Moreno, A. F., & Farokhzad, O. C. (2012). Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chemical Society Reviews, 41, 2971–3010.CrossRefPubMedPubMedCentral Kamaly, N., Xiao, Z., Valencia, P. M., Radovic-Moreno, A. F., & Farokhzad, O. C. (2012). Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chemical Society Reviews, 41, 2971–3010.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Katsuki, S., Matoba, T., Koga, J. I., Nakano, K., & Egashira, K. (2017). Anti-inflammatory nano-medicine for cardiovascular disease. Frontiers in Cardiovascular Medicine, 4, 87.CrossRefPubMedPubMedCentral Katsuki, S., Matoba, T., Koga, J. I., Nakano, K., & Egashira, K. (2017). Anti-inflammatory nano-medicine for cardiovascular disease. Frontiers in Cardiovascular Medicine, 4, 87.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Pelaz, B., Alexiou, C., Alvarez-Puebla, R. A., Alves, F., Andrews, A. M., Ashraf, S., et al. (2017). Diverse applications of nanomedicine. ACS Nano, 11, 2313–2381CrossRefPubMedPubMedCentral Pelaz, B., Alexiou, C., Alvarez-Puebla, R. A., Alves, F., Andrews, A. M., Ashraf, S., et al. (2017). Diverse applications of nanomedicine. ACS Nano, 11, 2313–2381CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Catalan-Figueroa, J., Palma-Florez, S., Alvarez, G., Fritz, H. F., Jara, M. O., & Morales, J. O. (2016). Nanomedicine and nanotoxicology: The pros and cons for neurodegeneration and brain cancer. Nanomedicine (London), 11, 171–187.CrossRef Catalan-Figueroa, J., Palma-Florez, S., Alvarez, G., Fritz, H. F., Jara, M. O., & Morales, J. O. (2016). Nanomedicine and nanotoxicology: The pros and cons for neurodegeneration and brain cancer. Nanomedicine (London), 11, 171–187.CrossRef
46.
Zurück zum Zitat Shuvaev, V. V., Brenner, J. S., & Muzykantov, V. R. (2015). Targeted endothelial nanomedicine for common acute pathological conditions. Journal of Controlled Release, 219, 576–595.CrossRefPubMedPubMedCentral Shuvaev, V. V., Brenner, J. S., & Muzykantov, V. R. (2015). Targeted endothelial nanomedicine for common acute pathological conditions. Journal of Controlled Release, 219, 576–595.CrossRefPubMedPubMedCentral
47.
48.
Zurück zum Zitat Peynshaert, K., Manshian, B. B., Joris, F., Braeckmans, K., De Smedt, S. C., Demeester, J., et al. (2014). Exploiting intrinsic nanoparticle toxicity: The pros and cons of nanoparticle-induced autophagy in biomedical research. Chemical Reviews, 114, 7581–7609.CrossRefPubMed Peynshaert, K., Manshian, B. B., Joris, F., Braeckmans, K., De Smedt, S. C., Demeester, J., et al. (2014). Exploiting intrinsic nanoparticle toxicity: The pros and cons of nanoparticle-induced autophagy in biomedical research. Chemical Reviews, 114, 7581–7609.CrossRefPubMed
49.
Zurück zum Zitat Jatana, S., Palmer, B. C., Phelan, S. J., & DeLouise, L. A. (2017). Immunomodulatory effects of nanoparticles on skin allergy. Scientific Reports, 7, 3979.CrossRefPubMedPubMedCentral Jatana, S., Palmer, B. C., Phelan, S. J., & DeLouise, L. A. (2017). Immunomodulatory effects of nanoparticles on skin allergy. Scientific Reports, 7, 3979.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Tasciotti, E., Cabrera, F. J., Evangelopoulos, M., Martinez, J. O., Thekkedath, U. R., Kloc, M., et al. (2016). The emerging role of nanotechnology in cell and organ transplantation. Transplantation, 100, 1629–1638.CrossRefPubMedPubMedCentral Tasciotti, E., Cabrera, F. J., Evangelopoulos, M., Martinez, J. O., Thekkedath, U. R., Kloc, M., et al. (2016). The emerging role of nanotechnology in cell and organ transplantation. Transplantation, 100, 1629–1638.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Salvador-Morales, C., Zhang, L., Langer, R., & Farokhzad, O. C. (2009). Immunocompatibility properties of lipid-polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials, 30, 2231–2240.CrossRefPubMedPubMedCentral Salvador-Morales, C., Zhang, L., Langer, R., & Farokhzad, O. C. (2009). Immunocompatibility properties of lipid-polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials, 30, 2231–2240.CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Shi, J., Xiao, Z., Votruba, A. R., Vilos, C., & Farokhzad, O. C. (2011). Differentially charged hollow core/shell lipid-polymer-lipid hybrid nanoparticles for small interfering RNA delivery. Angewandte Chemie International Edition England, 50, 7027–7031.CrossRef Shi, J., Xiao, Z., Votruba, A. R., Vilos, C., & Farokhzad, O. C. (2011). Differentially charged hollow core/shell lipid-polymer-lipid hybrid nanoparticles for small interfering RNA delivery. Angewandte Chemie International Edition England, 50, 7027–7031.CrossRef
53.
Zurück zum Zitat Gao, W., Langer, R., & Farokhzad, O. C. (2010). Poly (ethylene glycol) with observable shedding. Angewandte Chemie International Edition England, 49, 6567–6571.CrossRef Gao, W., Langer, R., & Farokhzad, O. C. (2010). Poly (ethylene glycol) with observable shedding. Angewandte Chemie International Edition England, 49, 6567–6571.CrossRef
54.
Zurück zum Zitat Xiao, Z., Levy-Nissenbaum, E., Alexis, F., Lupták, A., Teply, B. A., Chan, J. M., et al. (2012). Engineering of targeted nanoparticles for cancer therapy using internalizing aptamers isolated by cell-uptake selection. ACS Nano, 6, 696–704.CrossRefPubMedPubMedCentral Xiao, Z., Levy-Nissenbaum, E., Alexis, F., Lupták, A., Teply, B. A., Chan, J. M., et al. (2012). Engineering of targeted nanoparticles for cancer therapy using internalizing aptamers isolated by cell-uptake selection. ACS Nano, 6, 696–704.CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Valencia, P. M., Pridgen, E. M., Perea, B., Gadde, S., Sweeney, C., Kantoff, P. W., et al. (2013). Synergistic cytotoxicity of irinotecan and cisplatin in dual-drug targeted polymeric nanoparticles. Nanomedicine (London), 8, 687–698.CrossRef Valencia, P. M., Pridgen, E. M., Perea, B., Gadde, S., Sweeney, C., Kantoff, P. W., et al. (2013). Synergistic cytotoxicity of irinotecan and cisplatin in dual-drug targeted polymeric nanoparticles. Nanomedicine (London), 8, 687–698.CrossRef
56.
Zurück zum Zitat Leuschner, F., Dutta, P., Gorbatov, R., Novobrantseva, T. I., Donahoe, J. S., Courties, G., et al. (2011). Therapeutic siRNA silencing in inflammatory monocytes in mice. Nature Biotechnology, 29, 1005–1010.CrossRefPubMedPubMedCentral Leuschner, F., Dutta, P., Gorbatov, R., Novobrantseva, T. I., Donahoe, J. S., Courties, G., et al. (2011). Therapeutic siRNA silencing in inflammatory monocytes in mice. Nature Biotechnology, 29, 1005–1010.CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Ambesh, P., Campia, U., Obiagwu, C., Bansal, R., Shetty, V., Hollander, G., et al. (2017). Nanomedicine in coronary artery disease. Indian Heart Journal, 69, 244–251.CrossRefPubMedPubMedCentral Ambesh, P., Campia, U., Obiagwu, C., Bansal, R., Shetty, V., Hollander, G., et al. (2017). Nanomedicine in coronary artery disease. Indian Heart Journal, 69, 244–251.CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Broz, P., Ben-Haim, N., Grzelakowski, M., Marsch, S., Meier, W., & Hunziker, P. (2008). Inhibition of macrophage phagocytotic activity by a receptor-targeted polymer vesicle-based drug delivery formulation of pravastatin. Journal of Cardiovascular Pharmacology, 51, 246–252.CrossRefPubMed Broz, P., Ben-Haim, N., Grzelakowski, M., Marsch, S., Meier, W., & Hunziker, P. (2008). Inhibition of macrophage phagocytotic activity by a receptor-targeted polymer vesicle-based drug delivery formulation of pravastatin. Journal of Cardiovascular Pharmacology, 51, 246–252.CrossRefPubMed
59.
Zurück zum Zitat Maracle, C. X., Agca, R., Helder, B., Meeuwsen, J. A. L., Niessen, H. W. M., Biessen, E. A. L., et al. (2018). Noncanonical NF-κB signaling in microvessels of atherosclerotic lesions is associated with inflammation, atheromatous plaque morphology and myocardial infarction. Atherosclerosis, 270, 33–41.CrossRefPubMed Maracle, C. X., Agca, R., Helder, B., Meeuwsen, J. A. L., Niessen, H. W. M., Biessen, E. A. L., et al. (2018). Noncanonical NF-κB signaling in microvessels of atherosclerotic lesions is associated with inflammation, atheromatous plaque morphology and myocardial infarction. Atherosclerosis, 270, 33–41.CrossRefPubMed
60.
Zurück zum Zitat Rhee, J. W., & Wu, J. C. (2013). Advances in nanotechnology for the management of coronary artery disease. Trends in Cardiovascular Medicine, 23, 39–45.CrossRefPubMed Rhee, J. W., & Wu, J. C. (2013). Advances in nanotechnology for the management of coronary artery disease. Trends in Cardiovascular Medicine, 23, 39–45.CrossRefPubMed
61.
Zurück zum Zitat Peters, D., Kastantin, M., Kotamraju, V. R., Karmali, P. P., Gujraty, K., Tirrell, M., et al. (2009). Targeting atherosclerosis by using modular, multifunctional micelles. Proceedings of the National Academy of Sciences USA, 106, 9815–9819.CrossRef Peters, D., Kastantin, M., Kotamraju, V. R., Karmali, P. P., Gujraty, K., Tirrell, M., et al. (2009). Targeting atherosclerosis by using modular, multifunctional micelles. Proceedings of the National Academy of Sciences USA, 106, 9815–9819.CrossRef
62.
Zurück zum Zitat Di Franco, S., Amarelli, C., Montalto, A., Loforte, A., & Musumeci, F. (2018). Biomaterials and heart recovery: Cardiac repair, regeneration and healing in the MCS era: A state of the “heart.”. Journal of Thoracic Disease, 10, 2346–2362.CrossRef Di Franco, S., Amarelli, C., Montalto, A., Loforte, A., & Musumeci, F. (2018). Biomaterials and heart recovery: Cardiac repair, regeneration and healing in the MCS era: A state of the “heart.”. Journal of Thoracic Disease, 10, 2346–2362.CrossRef
63.
Zurück zum Zitat Kim, J. I., Kim, J. Y., & Park, C. H. (2018). Fabrication of transparent hemispherical 3D nanofibrous scaffolds with radially aligned patterns via a novel electrospinning method. Scientific Reports, 8, 3424.CrossRefPubMedPubMedCentral Kim, J. I., Kim, J. Y., & Park, C. H. (2018). Fabrication of transparent hemispherical 3D nanofibrous scaffolds with radially aligned patterns via a novel electrospinning method. Scientific Reports, 8, 3424.CrossRefPubMedPubMedCentral
64.
65.
Zurück zum Zitat Chen, Z., Wang, J., Sun, W., Archibong, E., Kahkoska, A. R., Zhang, X., et al. (2018). Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nature Chemical Biology, 14, 86–93.CrossRefPubMed Chen, Z., Wang, J., Sun, W., Archibong, E., Kahkoska, A. R., Zhang, X., et al. (2018). Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nature Chemical Biology, 14, 86–93.CrossRefPubMed
66.
Zurück zum Zitat Luo, Y. Y., Xiong, X. Y., Tian, Y., Li, Z. L., Gong, Y. C., & Li, Y. P. (2016). A review of biodegradable polymeric systems for oral insulin delivery. Drug Delivery, 23, 1882–1891.CrossRefPubMed Luo, Y. Y., Xiong, X. Y., Tian, Y., Li, Z. L., Gong, Y. C., & Li, Y. P. (2016). A review of biodegradable polymeric systems for oral insulin delivery. Drug Delivery, 23, 1882–1891.CrossRefPubMed
67.
Zurück zum Zitat DiSanto, R. M., Subramanian, V., & Gu, Z. (2015). Recent advances in nanotechnology for diabetes treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 7, 548–564.PubMed DiSanto, R. M., Subramanian, V., & Gu, Z. (2015). Recent advances in nanotechnology for diabetes treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 7, 548–564.PubMed
68.
Zurück zum Zitat Kesharwani, P., Gorain, B., Low, S. Y., Tan, S. A., Ling, E. C. S., Lim, Y. K., et al. (2018). Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Research and Clinical Practice, 136, 52–77.CrossRefPubMed Kesharwani, P., Gorain, B., Low, S. Y., Tan, S. A., Ling, E. C. S., Lim, Y. K., et al. (2018). Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Research and Clinical Practice, 136, 52–77.CrossRefPubMed
69.
Zurück zum Zitat Mohammed, M. A., Syeda, J. T. M., Wasan, K. M., & Wasan, E. K. (2017). An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics, 9, 53.CrossRefPubMedCentral Mohammed, M. A., Syeda, J. T. M., Wasan, K. M., & Wasan, E. K. (2017). An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics, 9, 53.CrossRefPubMedCentral
70.
Zurück zum Zitat Cui, F., Qian, F., Zhao, Z., Yin, L., Tang, C., & Yin, C. (2009). Preparation, characterization, and oral delivery of insulin loaded carboxylated chitosan grafted poly(methyl methacrylate) nanoparticles. Biomacromolecules, 10, 1253–1258.CrossRefPubMed Cui, F., Qian, F., Zhao, Z., Yin, L., Tang, C., & Yin, C. (2009). Preparation, characterization, and oral delivery of insulin loaded carboxylated chitosan grafted poly(methyl methacrylate) nanoparticles. Biomacromolecules, 10, 1253–1258.CrossRefPubMed
71.
Zurück zum Zitat Woldu, M. A., & Lenjisa, J. L. (2014). Nanoparticles and the new era in diabetes management. International Journal of Basic & Clinical Pharmacology, 3, 277–284.CrossRef Woldu, M. A., & Lenjisa, J. L. (2014). Nanoparticles and the new era in diabetes management. International Journal of Basic & Clinical Pharmacology, 3, 277–284.CrossRef
73.
Zurück zum Zitat Solini, A., Giannini, L., Seghieri, M., Vitolo, E., Taddei, S., Ghiadoni, L., et al. (2017). Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: A pilot study. Cardiovascular Diabetology, 16, 138.CrossRefPubMedPubMedCentral Solini, A., Giannini, L., Seghieri, M., Vitolo, E., Taddei, S., Ghiadoni, L., et al. (2017). Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: A pilot study. Cardiovascular Diabetology, 16, 138.CrossRefPubMedPubMedCentral
74.
Zurück zum Zitat Samadder, A., & Khuda-Bukhsh, A. R. (2014). Nanotechnological approaches in diabetes treatment: A new horizon. World Journal of Translational Medicine, 3, 84–95.CrossRef Samadder, A., & Khuda-Bukhsh, A. R. (2014). Nanotechnological approaches in diabetes treatment: A new horizon. World Journal of Translational Medicine, 3, 84–95.CrossRef
75.
Zurück zum Zitat Cetin, M., & Sahin, S. (2016). Microparticulate and nanoparticulate drug delivery systems for metformin hydrochloride. Drug Delivery, 23, 2796–2805.CrossRefPubMed Cetin, M., & Sahin, S. (2016). Microparticulate and nanoparticulate drug delivery systems for metformin hydrochloride. Drug Delivery, 23, 2796–2805.CrossRefPubMed
76.
Zurück zum Zitat Narang, J., Malhotra, N., Singhal, C., Singh, G., & Pundir, C. S. (2018). Prussian blue nanocubes/carbon nanospheres heterostructure composite for biosensing of metformin. International Journal of Nanomedicine, 13, 117–120.CrossRefPubMedPubMedCentral Narang, J., Malhotra, N., Singhal, C., Singh, G., & Pundir, C. S. (2018). Prussian blue nanocubes/carbon nanospheres heterostructure composite for biosensing of metformin. International Journal of Nanomedicine, 13, 117–120.CrossRefPubMedPubMedCentral
77.
Zurück zum Zitat Sharma, A. K., Thanikachalam, P. V., & Rajput, S. K. (2016). Albiglutide: Is a better hope against diabetes mellitus? Biomedicine & Pharmacotherapy, 77, 120–128.CrossRef Sharma, A. K., Thanikachalam, P. V., & Rajput, S. K. (2016). Albiglutide: Is a better hope against diabetes mellitus? Biomedicine & Pharmacotherapy, 77, 120–128.CrossRef
78.
Zurück zum Zitat Beloqui, A., Alhouayek, M., Carradori, D., Vanvarenberg, K., Muccioli, G. G., Cani, P. D., et al. (2016). A mechanistic study on nanoparticle-mediated glucagon-like peptide-1 (GLP-1) secretion from enteroendocrine L cells. Molecular Pharmaceutics, 13, 4222–4230.CrossRefPubMed Beloqui, A., Alhouayek, M., Carradori, D., Vanvarenberg, K., Muccioli, G. G., Cani, P. D., et al. (2016). A mechanistic study on nanoparticle-mediated glucagon-like peptide-1 (GLP-1) secretion from enteroendocrine L cells. Molecular Pharmaceutics, 13, 4222–4230.CrossRefPubMed
79.
Zurück zum Zitat Jean, M., Alameh, M., De Jesus, D., Thibault, M., Lavertu, M., Darras, V., et al. (2012). Chitosan-based therapeutic nanoparticles for combination gene therapy and gene silencing of in vitro cell lines relevant to type 2 diabetes. European Journal of Pharmaceutical Sciences, 45, 138–149.CrossRefPubMed Jean, M., Alameh, M., De Jesus, D., Thibault, M., Lavertu, M., Darras, V., et al. (2012). Chitosan-based therapeutic nanoparticles for combination gene therapy and gene silencing of in vitro cell lines relevant to type 2 diabetes. European Journal of Pharmaceutical Sciences, 45, 138–149.CrossRefPubMed
80.
Zurück zum Zitat O’Sullivan, E. S., Vegas, A., Anderson, D. G., & Weir, G. C. (2011). Islets transplanted in immunoisolation devices: A review of the progress and the challenges that remain. Endocrine Reviews, 32, 827–844.CrossRefPubMedPubMedCentral O’Sullivan, E. S., Vegas, A., Anderson, D. G., & Weir, G. C. (2011). Islets transplanted in immunoisolation devices: A review of the progress and the challenges that remain. Endocrine Reviews, 32, 827–844.CrossRefPubMedPubMedCentral
81.
Zurück zum Zitat Ghosh, K., Kanapathipillai, M., Korin, N., McCarthy, J. R., & Ingber, D. E. (2012). Polymeric nanomaterials for islet targeting and immunotherapeutic delivery. Nano Letters, 12, 203–208.CrossRefPubMed Ghosh, K., Kanapathipillai, M., Korin, N., McCarthy, J. R., & Ingber, D. E. (2012). Polymeric nanomaterials for islet targeting and immunotherapeutic delivery. Nano Letters, 12, 203–208.CrossRefPubMed
82.
Zurück zum Zitat Shaheen, T. I., El-Naggar, M. E., Hussein, J. S., El-Bana, M., Emara, E., El-Khayat, Z., et al. (2016). Antidiabetic assessment; in vivo study of gold and core-shell silver-gold nanoparticles on streptozotocin-induced diabetic rats. Biomedicine & Pharmacotherapy, 83, 865–875.CrossRef Shaheen, T. I., El-Naggar, M. E., Hussein, J. S., El-Bana, M., Emara, E., El-Khayat, Z., et al. (2016). Antidiabetic assessment; in vivo study of gold and core-shell silver-gold nanoparticles on streptozotocin-induced diabetic rats. Biomedicine & Pharmacotherapy, 83, 865–875.CrossRef
83.
Zurück zum Zitat Kim, Ah, Lee, H., Park, S., Lee, J. H., Lee, S., Ihm, B. W., et al. (2009). Enhanced protection of Ins-1 beta cells from apoptosis under hypoxia by delivery of DNA encoding secretion signal peptide-linked exendin-4. Journal of Drug Targeting, 17, 242–248.CrossRefPubMed Kim, Ah, Lee, H., Park, S., Lee, J. H., Lee, S., Ihm, B. W., et al. (2009). Enhanced protection of Ins-1 beta cells from apoptosis under hypoxia by delivery of DNA encoding secretion signal peptide-linked exendin-4. Journal of Drug Targeting, 17, 242–248.CrossRefPubMed
84.
Zurück zum Zitat Goikuria, H., Vandenbroeck, K., & Alloza, I. (2018). Inflammation in human carotid atheroma plaques. Cytokine & Growth Factor Reviews, 39, 62–70.CrossRef Goikuria, H., Vandenbroeck, K., & Alloza, I. (2018). Inflammation in human carotid atheroma plaques. Cytokine & Growth Factor Reviews, 39, 62–70.CrossRef
85.
Zurück zum Zitat Han, Y., Jing, J., Tu, S., Tian, F., Xue, H., Chen, W., et al. (2014). ST elevation acute myocardial infarction accelerates non-culprit coronary lesion atherosclerosis. The International Journal of Cardiovascular Imaging, 30, 253–261.CrossRefPubMed Han, Y., Jing, J., Tu, S., Tian, F., Xue, H., Chen, W., et al. (2014). ST elevation acute myocardial infarction accelerates non-culprit coronary lesion atherosclerosis. The International Journal of Cardiovascular Imaging, 30, 253–261.CrossRefPubMed
86.
Zurück zum Zitat Duivenvoorden, R., Tang, J., Cormode, D. P., Mieszawska, A. J., Izquierdo-Garcia, D., Ozcan, C., et al. (2014). A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nature Communications, 5, 3065.CrossRefPubMed Duivenvoorden, R., Tang, J., Cormode, D. P., Mieszawska, A. J., Izquierdo-Garcia, D., Ozcan, C., et al. (2014). A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nature Communications, 5, 3065.CrossRefPubMed
87.
Zurück zum Zitat Cho, B. H., Park, J. R., Nakamura, M. T., Odintsov, B. M., Wallig, M. A., & Chung, B. H. (2010). Synthetic dimyristoylphosphatidylcholine liposomes assimilating into high-density lipoprotein promote regression of atherosclerotic lesions in cholesterol-fed rabbits. Experimental Biology and Medicine (Maywood), 235, 1194–1203.CrossRef Cho, B. H., Park, J. R., Nakamura, M. T., Odintsov, B. M., Wallig, M. A., & Chung, B. H. (2010). Synthetic dimyristoylphosphatidylcholine liposomes assimilating into high-density lipoprotein promote regression of atherosclerotic lesions in cholesterol-fed rabbits. Experimental Biology and Medicine (Maywood), 235, 1194–1203.CrossRef
88.
Zurück zum Zitat Winter, P. M., Neubauer, A. M., Caruthers, S. D., Harris, T. D., Robertson, J. D., Williams, T. A., et al. (2006). Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 2103–2109.CrossRefPubMed Winter, P. M., Neubauer, A. M., Caruthers, S. D., Harris, T. D., Robertson, J. D., Williams, T. A., et al. (2006). Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 2103–2109.CrossRefPubMed
90.
Zurück zum Zitat Nakashiro, S., Matoba, T., Umezu, R., Koga, J., Tokutome, M., Katsuki, S., et al. (2016). Pioglitazone-incorporated nanoparticles prevent plaque destabilization and rupture by regulating monocyte/macrophage differentiation in ApoE-/- mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 36, 491–500.CrossRefPubMed Nakashiro, S., Matoba, T., Umezu, R., Koga, J., Tokutome, M., Katsuki, S., et al. (2016). Pioglitazone-incorporated nanoparticles prevent plaque destabilization and rupture by regulating monocyte/macrophage differentiation in ApoE-/- mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 36, 491–500.CrossRefPubMed
91.
Zurück zum Zitat Yong, S. B., Kim, H. J., Kim, J. K., Chung, J. Y., & Kim, Y. H. (2017). Human CD64-targeted non-viral siRNA delivery system for blood monocyte gene modulation. Scientific Reports, 7, 42171.CrossRefPubMedPubMedCentral Yong, S. B., Kim, H. J., Kim, J. K., Chung, J. Y., & Kim, Y. H. (2017). Human CD64-targeted non-viral siRNA delivery system for blood monocyte gene modulation. Scientific Reports, 7, 42171.CrossRefPubMedPubMedCentral
92.
Zurück zum Zitat Bartneck, M., Peters, F. M., Warzecha, K. T., Bienert, M., van Bloois, L., Trautwein, C., et al. (2014). Liposomal encapsulation of dexamethasone modulates cytotoxicity, inflammatory cytokine response, and migratory properties of primary human macrophages. Nanomedicine, 10, 1209–1220.CrossRefPubMed Bartneck, M., Peters, F. M., Warzecha, K. T., Bienert, M., van Bloois, L., Trautwein, C., et al. (2014). Liposomal encapsulation of dexamethasone modulates cytotoxicity, inflammatory cytokine response, and migratory properties of primary human macrophages. Nanomedicine, 10, 1209–1220.CrossRefPubMed
93.
Zurück zum Zitat Myerson, J., He, L., Lanza, G., Tollefsen, D., & Wickline, S. (2011). Thrombin-inhibiting perfluorocarbon nanoparticles provide a novel strategy for treatment and magnetic resonance imaging of acute thrombosis. Journal of Thrombosis and Haemostasis, 9, 1292–1300.CrossRefPubMed Myerson, J., He, L., Lanza, G., Tollefsen, D., & Wickline, S. (2011). Thrombin-inhibiting perfluorocarbon nanoparticles provide a novel strategy for treatment and magnetic resonance imaging of acute thrombosis. Journal of Thrombosis and Haemostasis, 9, 1292–1300.CrossRefPubMed
94.
Zurück zum Zitat Pendyala, L. K., Matsumoto, D., Shinke, T., Iwasaki, T., Sugimoto, R., Hou, D., et al. (2012). Nobori stent shows less vascular inflammation and early recovery of endothelial function compared with Cypher stent. JACC Cardiovascular Interventions, 5, 436–444.CrossRefPubMed Pendyala, L. K., Matsumoto, D., Shinke, T., Iwasaki, T., Sugimoto, R., Hou, D., et al. (2012). Nobori stent shows less vascular inflammation and early recovery of endothelial function compared with Cypher stent. JACC Cardiovascular Interventions, 5, 436–444.CrossRefPubMed
95.
Zurück zum Zitat Danenberg, H. D., Fishbein, I., Gao, J., Mönkkönen, J., Reich, R., Gati, I., et al. (2002). Macrophage depletion by clodronate-containing liposomes reduces neointimal formation after balloon injury in rats and rabbits. Circulation, 106, 599–605.CrossRefPubMed Danenberg, H. D., Fishbein, I., Gao, J., Mönkkönen, J., Reich, R., Gati, I., et al. (2002). Macrophage depletion by clodronate-containing liposomes reduces neointimal formation after balloon injury in rats and rabbits. Circulation, 106, 599–605.CrossRefPubMed
96.
Zurück zum Zitat Danenberg, H. D., Golomb, G., Groothuis, A., Gao, J., Epstein, H., Swaminathan, R. V., et al. (2003). Liposomal alendronate inhibits systemic innate immunity and reduces in-stent neointimal hyperplasia in rabbits. Circulation, 108, 2798–2804.CrossRefPubMed Danenberg, H. D., Golomb, G., Groothuis, A., Gao, J., Epstein, H., Swaminathan, R. V., et al. (2003). Liposomal alendronate inhibits systemic innate immunity and reduces in-stent neointimal hyperplasia in rabbits. Circulation, 108, 2798–2804.CrossRefPubMed
97.
Zurück zum Zitat Kolodgie, F. D., John, M., Khurana, C., Farb, A., Wilson, P. S., Acampado, E., et al. (2002). Sustained reduction of in-stent neointimal growth with the use of a novel systemic nanoparticle paclitaxel. Circulation, 106, 1195–1198.CrossRefPubMed Kolodgie, F. D., John, M., Khurana, C., Farb, A., Wilson, P. S., Acampado, E., et al. (2002). Sustained reduction of in-stent neointimal growth with the use of a novel systemic nanoparticle paclitaxel. Circulation, 106, 1195–1198.CrossRefPubMed
98.
Zurück zum Zitat Joner, M., Morimoto, K., Kasukawa, H., Steigerwald, K., Merl, S., Nakazawa, G., et al. (2008). Site-specific targeting of nanoparticle prednisolone reduces in-stent restenosis in a rabbit model of established atheroma. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 1960–1966.CrossRefPubMed Joner, M., Morimoto, K., Kasukawa, H., Steigerwald, K., Merl, S., Nakazawa, G., et al. (2008). Site-specific targeting of nanoparticle prednisolone reduces in-stent restenosis in a rabbit model of established atheroma. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 1960–1966.CrossRefPubMed
99.
Zurück zum Zitat Chan, J. M., Rhee, J.-W., Drum, C. L., Bronson, R. T., Golomb, G., Langer, R., et al. (2011). In vivo prevention of arterial restenosis with paclitaxel-encapsulated targeted lipid–polymeric nanoparticles. Proceedings of the National Academy of Sciences USA, 108, 19347–19352.CrossRef Chan, J. M., Rhee, J.-W., Drum, C. L., Bronson, R. T., Golomb, G., Langer, R., et al. (2011). In vivo prevention of arterial restenosis with paclitaxel-encapsulated targeted lipid–polymeric nanoparticles. Proceedings of the National Academy of Sciences USA, 108, 19347–19352.CrossRef
100.
Zurück zum Zitat Hashi, C. K., Zhu, Y., Yang, G.-Y., Young, W. L., Hsiao, B. S., Wang, K., et al. (2007). Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proceedings of the National Academy of Sciences USA, 104, 11915–11920.CrossRef Hashi, C. K., Zhu, Y., Yang, G.-Y., Young, W. L., Hsiao, B. S., Wang, K., et al. (2007). Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proceedings of the National Academy of Sciences USA, 104, 11915–11920.CrossRef
101.
Zurück zum Zitat Mangge, H., Almer, G., Stelzer, I., Reininghaus, E., & Prassl, R. (2014). Laboratory medicine for molecular imaging of atherosclerosis. Clinica Chimica Acta, 437, 19–24.CrossRef Mangge, H., Almer, G., Stelzer, I., Reininghaus, E., & Prassl, R. (2014). Laboratory medicine for molecular imaging of atherosclerosis. Clinica Chimica Acta, 437, 19–24.CrossRef
102.
Zurück zum Zitat Chung, B. L., Toth, M. J., Toth, K., Kamaly, N., Sei, Y. J., Becraft, J., et al. (2015). Nanomedicines for endothelial disorders. Nano Today, 10, 759–776.CrossRefPubMedPubMedCentral Chung, B. L., Toth, M. J., Toth, K., Kamaly, N., Sei, Y. J., Becraft, J., et al. (2015). Nanomedicines for endothelial disorders. Nano Today, 10, 759–776.CrossRefPubMedPubMedCentral
103.
104.
Zurück zum Zitat Khodabandehlou, K., Masehi-Lano, J. J., Poon, C., Wang, J., & Chung, E. J. (2017). Targeting cell adhesion molecules with nanoparticles using in vivo and flow-based in vitro models of atherosclerosis. Experimental Biology and Medicine (Maywood), 242, 799–812.CrossRef Khodabandehlou, K., Masehi-Lano, J. J., Poon, C., Wang, J., & Chung, E. J. (2017). Targeting cell adhesion molecules with nanoparticles using in vivo and flow-based in vitro models of atherosclerosis. Experimental Biology and Medicine (Maywood), 242, 799–812.CrossRef
105.
Zurück zum Zitat Lobatto, M. E., Fuster, V., Fayad, Z. A., & Mulder, W. J. (2011). Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nature Reviews Drug Discovery, 10, 835–852.CrossRefPubMedPubMedCentral Lobatto, M. E., Fuster, V., Fayad, Z. A., & Mulder, W. J. (2011). Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nature Reviews Drug Discovery, 10, 835–852.CrossRefPubMedPubMedCentral
106.
Zurück zum Zitat Lobatto, M. E., Fayad, Z. A., Silvera, S., Vucic, E., Calcagno, C., Mani, V., et al. (2010). Multimodal clinical imaging to longitudinally assess nano-medical anti-inflammatory treatment in experimental atherosclerosis. Molecular Pharmaceutics, 7, 2020–2029.CrossRefPubMedPubMedCentral Lobatto, M. E., Fayad, Z. A., Silvera, S., Vucic, E., Calcagno, C., Mani, V., et al. (2010). Multimodal clinical imaging to longitudinally assess nano-medical anti-inflammatory treatment in experimental atherosclerosis. Molecular Pharmaceutics, 7, 2020–2029.CrossRefPubMedPubMedCentral
107.
Zurück zum Zitat Cicha, I. (2016). Strategies to enhance nanoparticle-endothelial interactions under flow. Journal of Cellular Biotehnology, 1, 191–208.CrossRef Cicha, I. (2016). Strategies to enhance nanoparticle-endothelial interactions under flow. Journal of Cellular Biotehnology, 1, 191–208.CrossRef
108.
Zurück zum Zitat Kelly, K. A., Allport, J. R., Tsourkas, A., Shinde-Patil, V. R., Josephson, L., & Weissleder, R. (2005). Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circulation Research, 96, 327–336.CrossRefPubMed Kelly, K. A., Allport, J. R., Tsourkas, A., Shinde-Patil, V. R., Josephson, L., & Weissleder, R. (2005). Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circulation Research, 96, 327–336.CrossRefPubMed
109.
Zurück zum Zitat Bhowmick, T., Berk, E., Cui, X., Muzykantov, V. R., & Muro, S. (2012). Effect of flow on endothelial endocytosis of nanocarriers targeted to ICAM-1. Journal of Controlled Release, 157, 485–492.CrossRefPubMed Bhowmick, T., Berk, E., Cui, X., Muzykantov, V. R., & Muro, S. (2012). Effect of flow on endothelial endocytosis of nanocarriers targeted to ICAM-1. Journal of Controlled Release, 157, 485–492.CrossRefPubMed
110.
Zurück zum Zitat Reynolds, P. R., Larkman, D. J., Haskard, D. O., Hajnal, J. V., Kennea, N. L., George, A. J., et al. (2006). Detection of vascular expression of E-selectin in vivo with MR imaging. Radiology, 241, 469–476.CrossRefPubMed Reynolds, P. R., Larkman, D. J., Haskard, D. O., Hajnal, J. V., Kennea, N. L., George, A. J., et al. (2006). Detection of vascular expression of E-selectin in vivo with MR imaging. Radiology, 241, 469–476.CrossRefPubMed
111.
Zurück zum Zitat Elbialy, N. S., Fathy, M. M., & Khalil, W. M. (2015). Doxorubicin loaded magnetic gold nanoparticles for in vivo targeted drug delivery. International Journal of Pharmaceutics, 490, 190–199.CrossRefPubMed Elbialy, N. S., Fathy, M. M., & Khalil, W. M. (2015). Doxorubicin loaded magnetic gold nanoparticles for in vivo targeted drug delivery. International Journal of Pharmaceutics, 490, 190–199.CrossRefPubMed
112.
Zurück zum Zitat Zhang, Y., Li, W., Ou, L., Wang, W., Delyagina, E., Lux, C., et al. (2012). Targeted delivery of human VEGF gene via complexes of magnetic nanoparticle-adenoviral vectors enhanced cardiac regeneration. PLoS ONE, 7, 39490.CrossRef Zhang, Y., Li, W., Ou, L., Wang, W., Delyagina, E., Lux, C., et al. (2012). Targeted delivery of human VEGF gene via complexes of magnetic nanoparticle-adenoviral vectors enhanced cardiac regeneration. PLoS ONE, 7, 39490.CrossRef
113.
Zurück zum Zitat Ma, Y. H., Wu, S. Y., Wu, T., Chang, Y. J., Hua, M. Y., & Chen, J. P. (2009). Magnetically targeted thrombolysis with recombinant tissue plasminogen activator bound to polyacrylic acid-coated nanoparticles. Biomaterials, 30, 3343–3351.CrossRefPubMed Ma, Y. H., Wu, S. Y., Wu, T., Chang, Y. J., Hua, M. Y., & Chen, J. P. (2009). Magnetically targeted thrombolysis with recombinant tissue plasminogen activator bound to polyacrylic acid-coated nanoparticles. Biomaterials, 30, 3343–3351.CrossRefPubMed
114.
Zurück zum Zitat Ma, H. L., Qi, X. R., Ding, W. X., Ding, W. X., Maitani, Y., & Nagai, T. (2008). Magnetic targeting after femoral artery administration and biocompatibility assessment of superparamagnetic iron oxide nanoparticles. Journal of Biomedical Materials Research Part A, 84, 598–606.CrossRefPubMed Ma, H. L., Qi, X. R., Ding, W. X., Ding, W. X., Maitani, Y., & Nagai, T. (2008). Magnetic targeting after femoral artery administration and biocompatibility assessment of superparamagnetic iron oxide nanoparticles. Journal of Biomedical Materials Research Part A, 84, 598–606.CrossRefPubMed
Metadaten
Titel
Nano-medicine and Vascular Endothelial Dysfunction: Options and Delivery Strategies
verfasst von
Gaurav Taneja
Akash Sud
Narayan Pendse
Bishnu Panigrahi
Ashish Kumar
Arun K. Sharma
Publikationsdatum
17.11.2018
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 1/2019
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-018-9491-x

Weitere Artikel der Ausgabe 1/2019

Cardiovascular Toxicology 1/2019 Zur Ausgabe