Skip to main content
Erschienen in: BMC Cancer 1/2020

Open Access 01.12.2020 | Research article

Nomogram for individually predicting overall survival in rectal neuroendocrine tumours

verfasst von: Xingyu Feng, Gengzhou Wei, Wei Wang, Yu Zhang, Yujie Zeng, Minhu Chen, Ye Chen, Jie Chen, Zhiwei Zhou, Yong Li

Erschienen in: BMC Cancer | Ausgabe 1/2020

Abstract

Background

This study aimed to develop a nomogram that predicts the overall survival (OS) of rectal neuroendocrine tumours (NETs).

Methods

We retrospectively analysed 310 patients with rectal neuroendocrine tumours in 5 hospitals in southern China. All of the patients were assigned to the training set. A multivariable analysis using Cox proportional hazards regression was performed using the training set, and a nomogram was constructed. It was validated on a dataset obtained from the Surveillance, Epidemiology, and End Result (SEER) database of America (n = 547).

Results

In the training set, the nomogram exhibited improved discrimination power compared with the WHO grade guidelines (Herrell’s C-index, 0.872 vs 0.794; p < 0.001) and was also better than the seventh AJCC TNM classification (Herrell’s C-index, 0.872 vs 0.817; p < 0.001). In the SEER validation dataset, the discrimination was also excellent (C-index, 0.648 vs 0.583, p < 0.001 and 0.648 vs 0.603, p = 0.016, respectively, compared with G grade and TNM classification). Calibration of the nomogram predicted individual survival corresponding closely with the actual survival.

Conclusions

We developed a nomogram predicting 1- and 3-year OS of patients with rectal neuroendocrine tumours. Validation revealed excellent discrimination and calibration, suggesting good clinical utility.
Hinweise
Xingyu Feng and Gengzhou Wei contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
NETs
Neuroendocrine tumours
SEER
Surveillance, Epidemiology, and End Result
TNM
Tumour Node Metastasis
AJCC
American Joint Committee on Cancer
ENETS
European Neuroendocrine Tumour Society
NCCN
National Comprehensive Cancer Network
OS
Overall survival

Background

Neuroendocrine tumours (NETs) represent a relatively rare neoplastic tumor which are originating from neuroendocrine cells and peptidergic neurons. In recent years, the incidence of NETs has been increasing [1, 2]. The incidence of rectal neuroendocrine tumours is the highest within the gastrointestinal tract [3] and has significantly increased [1]. However, outcomes of patients with rectal NETs remain uncertain.
Currently, the most commonly used predictive systems for NETs are the AJCC and the European Neuroendocrine Tumour Society (ENETS) TNM staging systems or the WHO grade guidelines, which are based on the mitotic count and Ki67 proliferative index. These systems lack other clinicopathological features that can influence outcomes such as age, sex, and tumour size. Thus, our objective is to create a system that takes clinicopathological features into consideration, hoping it will provide a more accurate prognosis and have utility in clinical practice and medical decision making.
A nomogram is a pictorial representation of a complex mathematical formula [4]. Medical nomograms are good methods for predicting outcomes among patients with cancer [5]. Many take clinical variables such as tumour grade, tumour size, and patient age and build prognostic models that predict the risk of cancer recurrence or mortality for individuals. A nomogram is a graphical calculation instrument based on any type of function including logistic regression and Cox PHs regression models. When we build a nomogram, each variable is listed separately with a corresponding number of points assigned to a particular magnitude of the variable, and the cumulative point score for all of the variables is matched to a scale of outcomes.
In the past few years, Nomogram have been a well-established method for predicting prognostic factors of tumors [610]. To date, however, none have researched rectal NETs. With this study, we have designed a nomogram that focuses on rectal NETs. It was developed using the data from a relatively large cohort of patients who were treated in five hospitals in southern China. This nomogram can predict individual 1- and 3-year overall survival rates. It was validated with a dataset from SEER.

Materials and methods

We retrospectively analysed the data of 442 patients with rectal NETs who were treated in 5 hospitals in southern China. However, 102 patients were lost to follow up before 3 years, and 30 patients had missing values; therefore, these 132 patients were excluded. Thus, a total of 310 patients were included in this study from Sun Yat-sen University Cancer Center (SYSUCC, n = 143), the First Affiliated Hospital of Sun Yat-Sen University (SYSUFH, n = 56), Guangdong General Hospital (GGH, n = 54), Nanfang Hospital of Southern Medical University (SMUNH, n = 44), and Sun Yet-san Memorial Hospital of Sun Yat-sen University (SYSUMH, n = 13) from November 1993 to December 2013.
The variables evaluated were age, sex, tumour sizes, surgery procedure, G grade, the depth of tumour invasion (T), the number of metastatic lymph nodes (N), distant metastases (M), and TNM stage. All patients were followed for at least 3 years. An endoscopy with rectal magnetic resonance imaging (MRI) or endoscopic ultrasonography (EUS) at 6 and 12 months were required during the first year of follow-up. After that, the patients were followed every 6 to 12 months. Abdominal and pelvic multiphasic computed tomography (CT) or MRI were required. Measurement of the biochemical marker chromogranin A was considered if the patients had clinical symptoms.
All 310 patients were assigned to the training set. A multivariable analysis using Cox PHs regression was performed using the training set, and the nomogram was constructed.
For the validation dataset, we collected data from the SEER database. We included data from 547 patients treated from 2005 to 2013 who were diagnosed with rectal NETs and had follow-up for at least 3 years.

Methods

Construction of the nomogram

We use the dataset from the 5 hospitals in China as the training set. Continuous variables such as tumour size were fitted to a smoothed restricted cubic splines [11].
The classification of categorical variables was determined by their clinical significance, and they had been divided before the construction of the nomogram. A univariate and multivariable Cox proportional hazards models were made to select the characteristics related to the survival time. By identifying characteristics predictive for overall survival in the multivariate Cox model, a nomogram was constructed to predict 1- and 3-year OS rates.

Validation of the nomogram

Nomogram validation included two components by using the SEER external validation set. First, Discrimination was evaluated using a concordance index (C-index), which estimates the probability of concordance between predicted and observed responses. Harrell’s C-index, which is appropriate for censored data, was used to evaluate the discrimination [12]. The 95% confidence interval for Harrell’s C index can be obtained by adding and subtracting 1.96 × Se (Standard error) from the C index. The second component was calibration which was.
performed by grouping all patients according to the predicted quartile nomogram and then comparing the mean value of the group with the corresponding actual survival OS (calculated by kaplan-Meier method). All analyses were performed using SPSS version 20 (IBM, Armonk, NY, USA) and R version 2.13.2 (http://​www.​r-project.​org) via the design and survival packages. A P-value of < 0.05 was considered significant.

Results

Clinicopathologic characteristics of the patients

A total of 310 patients in China and 547 patients from the SEER databases with rectal NETs were included in this study. All patients were followed for at least 3 years. The longest follow-up time was 224 months. The median survival time was 44 months. A total of 35 and 146 patients died in the training and validation datasets, respectively. The clinicopathologic characteristics of the patients in the training dataset and validation dataset are listed in Table 1.
Table 1
The clinicopathologic characteristics of the training and validation sets
Variable
Training Set
(n = 310)
Validation Set
(n = 547)
No. of patients
%
No. of patients
%
Median age (years)
49.1 ± 13.6
 
58.7 ± 13.1
 
Sex
 Male
195
62.9
276
50.5
 Female
115
37.1
271
49.5
Surgical treatment
 Endoscopic resection
139
44.8
 Transanal excision
50
16.1
 Radical resection
89
28.7
 No surgical treatment
33
10.6
Tumour Size (cm)
< 2
250
80.6
286
52.3
2–4
28
9.0
98
17.9
> 4
32
10.3
163
29.8
G classification
 G1
235
75.8
226
41.3
 G2
45
14.5
59
10.8
 G3
30
9.7
262
47.9
T Staging
 T1
231
74.5
303
55.2
 T2
38
12.3
81
14.8
 T3
31
10.0
100
18.3
 T4
10
3.2
64
11.7
N Staging
 N0
264
85.2
353
64.7
 N1
46
14.8
194
35.3
M Staging
 M0
277
89.4
423
77.3
 M1
33
10.6
124
22.7
TNM Staging
I
220
71.0
267
48.8
II
31
10.0
48
8.8
III
26
8.4
108
19.7
IV
33
10.6
124
22.7
TNM Tumour node metastasis

Independent prognostic factors in the training dataset

The univariate analysis demonstrated that age, sex, surgical treatment, grade, tumour size, T staging, N staging, M staging and TNM stage were statistically significant (Table 2). When we put these variables into the Cox PHs regression model, we found that age, sex, tumour size and TNM stage were independently correlated with prognosis. Table 3 shows the results of the variable selection with hazard ratios and P-values.
Table 2
Univariate analysis of the clinicopathological features of the training set
Variable
HR
P-value
95% CIs
Lower
Upper
Age (years old)
 ≤ 50
1
   
 > 50
2.874
0.001
1.512
5.463
Sex
 Male
1
   
 Female
0.487
0.037
0.247
0.959
Surgical treatment
 Yes
1
   
 No
0.055
< 0.001
0.027
0.111
Tumour size (cm)
 < 1
1
   
 1–2
1.672
0.396
0.510
5.481
 > 2
23.327
< 0.001
9.125
59.635
G grade
 G1
1
   
 G2
2.542
0.042
1.036
6.238
 G3
25.403
< 0.001
13.082
49.327
T staging
 T1
1
   
 T2
3.303
< 0.001
1.221
8.937
 T3
21.354
< 0.001
10.324
44.171
 T4
26.040
< 0.001
10.007
67.764
N staging
 N0
1
   
 N1
10.053
< 0.001
5.582
18.105
M staging
 M0
1
   
 M1
9.701
< 0.001
5.389
17.464
TNM stage
 I
1
   
 II
2.199
0.237
0.595
8.130
 III
15.105
< 0.001
6.527
34.956
 IV
22.365
< 0.001
10.149
49.285
HR Hazard ratios, CI Confidence interval, TNM Tumour node metastasis
Table 3
Selected variables according to the Cox proportional hazards regression model
Variable
HR
P-value
95% CIs
Lower
Upper
Age (years old)
 ≤ 50
1
   
 > 50
2.047
0.040
1.034
4.055
Tumour size (cm)
 < 1
1
   
 1–2
1.596
0.449
0.476
5.356
 > 2
5.350
0.005
1.663
17.208
G grade
 G1
1
   
 G2
0.734
0.533
0.278
1.941
 G3
4.154
0.001
1.770
9.750
TNM stage
 I
1
   
 II
0.592
0.471
0.142
2.460
 III
2.771
0.054
0.983
7.807
 IV
5.676
< 0.001
2.150
14.981
HR Hazard ratios, CI Confidence interval, TNM Tumour node metastasis

Prognostic nomogram for OS

A nomogram was constructed based on the results of the Cox proportional hazards regression predicting 1- and 3-year overall survival (Fig. 1). Each point can be determined by drawing a line straight upward from each variable to the point axis. The total points are then calculated by summing each point to indicate the probability of 1- and 3-year survival.

Comparison of predictive accuracy for OS between the nomogram and the TNM staging system or G grade system

The concordance index of the nomogram was 0.872 (95% CI, 0.806–0.938) for predicting the OS of the rectal NETS, which was superior to both predictions based on the seventh AJCC TNM classification and WHO grade guidelines, with concordance indices of 0.794 (95% CI, 0.721–0.866; p < 0.001) and 0.817 (95% CI, 0.752–0.881; p < 0.001), respectively. In the SEER validation sets, discrimination was also excellent. The C-index was 0.648 (95% CI, 0.611–0.684), which was superior to both predictions based on the seventh AJCC TNM classification and WHO grade guidelines, with concordance indices of 0.603 (95% CI, 0.571–0.635; p = 0.016) and 0.583 (95% CI, 0.547–0.619; p < 0.001), respectively.

Comparison of the accuracy between the prediction by the nomogram and the actual observation for OS

Figure 2 is a calibration diagram of nomogram. The x-axis represents the predicted survival rate calculated by nomogram, and the y-axis represents the actual survival rate estimated by Kaplan Meier. The graph shows that the actual survival rate is closely related to the predicted survival rate and is always within the error range of 10%.

Discussion

Neuroendocrine tumour (NETs) is a relatively rare tumour, and the incidence of neuroendocrine tumours in the United States was 5.25/100000 [1] in 2004. According to the SEER database, the incidence of gastrointestinal NETs has been increasing in recent years [13]. The incidence of rectal NETS rates is the highest in the gastrointestinal tract, accounting for approximately 29% [3] of gastrointestinal NETs. However, most NETs seem to be sporadic, and risk factors for sporadic NETs are poorly understood.
There are few studies that focus on rectal NETs and these studies all contain limited patient cohorts [1416]. Our study included 310 patients with rectal NETs and is the largest Chinese cohort so far.
With the application and popularization of endoscopic techniques, rectal neuroendocrine tumours are diagnosed earlier currently, and most of them are treated with endoscopic surgery. Of course, if the tumour size is large or there are metastatic lymph nodes, more extensive surgery is indicated. We can see that the tumour size or lymph node involvement will influence the surgical procedure and influence patient outcomes. However, there are several other clinicopathological features that can influence patients’ outcomes. According to published data and our analysis, grade, the depth of tumour invasion (T), the number of metastatic lymph nodes (N), distant metastases (M) and age at diagnosis are factors that influence outcomes. Chi et al. [17] found that tumour grade was an independent prognostic factor, while Weinstock et al. [14] found that tumour stage was an independent prognostic factor, and Chagpar et al. [18] found that the depth of tumour invasion, tumour size, lymph node metastasis and distant metastasis were independent prognostic factors.
When we discuss prognosis, all of the elements above should be taken into consideration. However, the most common predictive systems, namely, the TNM classification and grade, only focus on a portion of these variables and sometimes these two classifications conflict. For example, if a patient has a grade 1 tumour with liver metastasis, according to the grade predictive system, this patient is low-grade and has a good prognosis. In contrast, when we put this patient into the TNM system, it is a late-stage tumour and the patient has a poor prognosis. Clearly, these two systems are limited in predicting patient outcomes.
However, nomograms can take these variables into account in a Cox PHs regression. However, only a few nomogram studies have focused on NETs. Modlin et al. [19] focused on small-intestinal neuroendocrine tumours and Ye L et al. [20] built a nomogram to predict outcomes for pancreatic neuroendocrine tumours. However, these studies have relatively small samples and do not include rectal NETs. This study presents the first nomogram for predicting the survival of patients with rectal NETs.
This nomogram includes both grade and TNM stage, thereby addressing some of the limitations of the other predictive models. As expected, the predictive accuracy of the nomogram was superior to both the predictions of the TNM classification and the WHO grade guidelines, with concordance indices of 0.872 compared with 0.794 and 0.817, p < 0.001, respectively.
As for age and tumour size, we found that they were both important elements that influence prognosis. Zhang X et al. [21] reported that young age was a favourable prognostic factor, while Li P et al. [22] reported that lymph node metastasis was related to the tumour diameter and furthermore influenced the prognosis of rectal NETs. In our study, we found that patients likely had a decreased rate of survival with increasing tumour size.
It seems that Ki-67 or mitotic rate per 10 high-power fields could be better variables because they are continuous variables that have a wider range of values and can be more individual compared with the categorical variables. However, we combined these two variables as grade in order to simplify this model and to make sure this nomogram can be used easily.
This study has some limitations. One is that we did not include functional status or treatment as variables. According to the NCCN guidelines, patients with metastatic neuroendocrine tumours and carcinoid syndrome should be treated with somatostatin analogues [23]. However, even though our 5 hospitals are the largest medical centres in southern China, medical resources are limited. Some patients could not wait to receive continuous therapy and went to other hospitals for treatment. Others declined treatment secondary to cost or due to a lack of understanding. Given these limitations, we opted to not include these variables to not compromise the current form of the nomogram.
Another limitation was that most of the patients were diagnosed within the last 3 years as this disease has become more widely recognized. With the routine use of endoscopy, the incidence of rectal NETs has been increasing in recent years, but given the lack of patients with long-term follow-up, we could not include the 5-year overall survival rate. With time, we can collect more patients and variables and improve upon the nomogram.

Conclusion

We have developed an individualized nomogram for precisely predicting OS for patients with rectal NETs. Its advantages as a prognostic tool when compared to traditional TNM staging systems or WHO grade classifications should allow it to make a significant clinical impact in the near future.

Acknowledgements

We would like to thank all of the participants that contributed to this work.
This study was approved by the Ethics Committee of Sun Yat-sen University Cancer Center, the First Affiliated Hospital of Sun Yat-Sen University, Guangdong General Hospital, Nanfang Hospital of Southern Medical University and Sun Yat-sen Memorial Hospital of Sun Yat-sen University, and written informed consent was obtained from all patients prior to surgery. All procedures performed in the studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Yao JC, Hassan M, Phan A, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26(18):3063–72.PubMedCrossRef Yao JC, Hassan M, Phan A, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26(18):3063–72.PubMedCrossRef
2.
Zurück zum Zitat Modlin IM, Oberg K, Chung DC, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol. 2008;9(1):61–72.PubMedCrossRef Modlin IM, Oberg K, Chung DC, et al. Gastroenteropancreatic neuroendocrine tumours. Lancet Oncol. 2008;9(1):61–72.PubMedCrossRef
3.
Zurück zum Zitat Lawrence B, Gustafsson BI, Chan A, Svejda B, Kidd M, Modlin IM. The epidemiology of gastroenteropancreatic neuroendocrine tumors. Endocrin Metab Clin. 2011;40(1):1–18, vii.CrossRef Lawrence B, Gustafsson BI, Chan A, Svejda B, Kidd M, Modlin IM. The epidemiology of gastroenteropancreatic neuroendocrine tumors. Endocrin Metab Clin. 2011;40(1):1–18, vii.CrossRef
4.
Zurück zum Zitat Grimes DA. The nomogram epidemic: resurgence of a medical relic. Ann Intern Med. 2008;149(4):273–5.PubMedCrossRef Grimes DA. The nomogram epidemic: resurgence of a medical relic. Ann Intern Med. 2008;149(4):273–5.PubMedCrossRef
5.
Zurück zum Zitat Shariat SF, Karakiewicz PI, Suardi N, Kattan MW. Comparison of nomograms with other methods for predicting outcomes in prostate cancer: a critical analysis of the literature. Clin Cancer Res. 2008;14(14):4400–7.PubMedCrossRef Shariat SF, Karakiewicz PI, Suardi N, Kattan MW. Comparison of nomograms with other methods for predicting outcomes in prostate cancer: a critical analysis of the literature. Clin Cancer Res. 2008;14(14):4400–7.PubMedCrossRef
6.
Zurück zum Zitat Wierda WG, O'brien S, Wang X, et al. Prognostic nomogram and index for overall survival in previously untreated patients with chronic lymphocytic leukemia. Blood. 2007;109(11):4679–85.PubMedCrossRef Wierda WG, O'brien S, Wang X, et al. Prognostic nomogram and index for overall survival in previously untreated patients with chronic lymphocytic leukemia. Blood. 2007;109(11):4679–85.PubMedCrossRef
7.
Zurück zum Zitat Han DS, Suh YS, Kong SH, et al. Nomogram predicting long-term survival after d2 gastrectomy for gastric cancer. J Clin Oncol. 2012;30(31):3834–40.PubMedCrossRef Han DS, Suh YS, Kong SH, et al. Nomogram predicting long-term survival after d2 gastrectomy for gastric cancer. J Clin Oncol. 2012;30(31):3834–40.PubMedCrossRef
8.
Zurück zum Zitat Wang SJ, Lemieux A, Kalpathy-Cramer J, et al. Nomogram for predicting the benefit of adjuvant chemoradiotherapy for resected gallbladder cancer. J Clin Oncol. 2011;29(35):4627–32.PubMedPubMedCentralCrossRef Wang SJ, Lemieux A, Kalpathy-Cramer J, et al. Nomogram for predicting the benefit of adjuvant chemoradiotherapy for resected gallbladder cancer. J Clin Oncol. 2011;29(35):4627–32.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Weiser MR, Landmann RG, Kattan MW, et al. Individualized prediction of colon cancer recurrence using a nomogram. J Clin Oncol. 2008;26(3):380–5.PubMedCrossRef Weiser MR, Landmann RG, Kattan MW, et al. Individualized prediction of colon cancer recurrence using a nomogram. J Clin Oncol. 2008;26(3):380–5.PubMedCrossRef
10.
Zurück zum Zitat Hirabayashi S, Kosugi S, Isobe Y, et al. Development and external validation of a nomogram for overall survival after curative resection in serosa-negative, locally advanced gastric cancer. Ann Oncol. 2014;25(6):1179–84.PubMedCrossRef Hirabayashi S, Kosugi S, Isobe Y, et al. Development and external validation of a nomogram for overall survival after curative resection in serosa-negative, locally advanced gastric cancer. Ann Oncol. 2014;25(6):1179–84.PubMedCrossRef
11.
Zurück zum Zitat Hess KR. Assessing time-by-covariate interactions in proportional hazards regression models using cubic spline functions. Stat Med. 1994;13(10):1045–62.PubMedCrossRef Hess KR. Assessing time-by-covariate interactions in proportional hazards regression models using cubic spline functions. Stat Med. 1994;13(10):1045–62.PubMedCrossRef
12.
Zurück zum Zitat Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15(4):361–87.CrossRefPubMed Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15(4):361–87.CrossRefPubMed
13.
Zurück zum Zitat Tsikitis VL, Wertheim BC, Guerrero MA. Trends of incidence and survival of gastrointestinal neuroendocrine tumors in the United States: a seer analysis. J Cancer. 2012;3:292–302.PubMedPubMedCentralCrossRef Tsikitis VL, Wertheim BC, Guerrero MA. Trends of incidence and survival of gastrointestinal neuroendocrine tumors in the United States: a seer analysis. J Cancer. 2012;3:292–302.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Weinstock B, Ward SC, Harpaz N, Warner RR, Itzkowitz S, Kim MK. Clinical and prognostic features of rectal neuroendocrine tumors. Neuroendocrinology. 2013;98(3):180–7.PubMedCrossRef Weinstock B, Ward SC, Harpaz N, Warner RR, Itzkowitz S, Kim MK. Clinical and prognostic features of rectal neuroendocrine tumors. Neuroendocrinology. 2013;98(3):180–7.PubMedCrossRef
15.
Zurück zum Zitat Sung HY, Kim SW, Kang WK, et al. Long-term prognosis of an endoscopically treated rectal neuroendocrine tumor: 10-year experience in a single institution. Eur J Gastroenterol Hepatol. 2012;24(8):978–83.PubMedCrossRef Sung HY, Kim SW, Kang WK, et al. Long-term prognosis of an endoscopically treated rectal neuroendocrine tumor: 10-year experience in a single institution. Eur J Gastroenterol Hepatol. 2012;24(8):978–83.PubMedCrossRef
16.
Zurück zum Zitat De Mestier L, Brixi H, Gincul R, Ponchon T, Cadiot G. Updating the management of patients with rectal neuroendocrine tumors. Endoscopy. 2013;45(12):1039–46.PubMedCrossRef De Mestier L, Brixi H, Gincul R, Ponchon T, Cadiot G. Updating the management of patients with rectal neuroendocrine tumors. Endoscopy. 2013;45(12):1039–46.PubMedCrossRef
17.
Zurück zum Zitat Chi Y, Du F, Zhao H, Wang JW, Cai JQ. Characteristics and long-term prognosis of patients with rectal neuroendocrine tumors. World J Gastroenterol. 2014;20(43):16252–7.PubMedPubMedCentralCrossRef Chi Y, Du F, Zhao H, Wang JW, Cai JQ. Characteristics and long-term prognosis of patients with rectal neuroendocrine tumors. World J Gastroenterol. 2014;20(43):16252–7.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Chagpar R, Chiang YJ, Xing Y, et al. Neuroendocrine tumors of the colon and rectum: prognostic relevance and comparative performance of current staging systems. Ann Surg Oncol. 2013;20(4):1170–8.PubMedCrossRef Chagpar R, Chiang YJ, Xing Y, et al. Neuroendocrine tumors of the colon and rectum: prognostic relevance and comparative performance of current staging systems. Ann Surg Oncol. 2013;20(4):1170–8.PubMedCrossRef
19.
Zurück zum Zitat Modlin IM, Gustafsson BI, Pavel M, Svejda B, Lawrence B, Kidd M. A nomogram to assess small-intestinal neuroendocrine tumor (‘carcinoid’) survival. Neuroendocrinology. 2010;92(3):143–57.PubMedCrossRef Modlin IM, Gustafsson BI, Pavel M, Svejda B, Lawrence B, Kidd M. A nomogram to assess small-intestinal neuroendocrine tumor (‘carcinoid’) survival. Neuroendocrinology. 2010;92(3):143–57.PubMedCrossRef
20.
Zurück zum Zitat Ye L, Ye H, Zhou Q, et al. A retrospective cohort study of pancreatic neuroendocrine tumors at single institution over 15 years: new proposal for low- and high-grade groups, validation of a nomogram for prognosis, and novel follow-up strategy for liver metastases. Int J Surg. 2016;29:108–17.PubMedCrossRef Ye L, Ye H, Zhou Q, et al. A retrospective cohort study of pancreatic neuroendocrine tumors at single institution over 15 years: new proposal for low- and high-grade groups, validation of a nomogram for prognosis, and novel follow-up strategy for liver metastases. Int J Surg. 2016;29:108–17.PubMedCrossRef
21.
Zurück zum Zitat Zhang X, Ma L, Bao H, Zhang J, Wang Z, Gong P. Clinical, pathological and prognostic characteristics of gastroenteropancreatic neuroendocrine neoplasms in China: a retrospective study. BMC Endocr Disord. 2014;14:54.PubMedPubMedCentralCrossRef Zhang X, Ma L, Bao H, Zhang J, Wang Z, Gong P. Clinical, pathological and prognostic characteristics of gastroenteropancreatic neuroendocrine neoplasms in China: a retrospective study. BMC Endocr Disord. 2014;14:54.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Li P, Wu F, Zhao H, et al. Analysis of the factors affecting lymph node metastasis and the prognosis of rectal neuroendocrine tumors. Int J Clin Exp Pathol. 2015;8(10):13331–8.PubMedPubMedCentral Li P, Wu F, Zhao H, et al. Analysis of the factors affecting lymph node metastasis and the prognosis of rectal neuroendocrine tumors. Int J Clin Exp Pathol. 2015;8(10):13331–8.PubMedPubMedCentral
23.
Zurück zum Zitat Oberg K. Consensus report on the use of somatostatin analogs for the management of neuroendocrine tumors of the gastroenteropancreatic system. Ann Oncol. 2004;15(6):966–73.PubMedCrossRef Oberg K. Consensus report on the use of somatostatin analogs for the management of neuroendocrine tumors of the gastroenteropancreatic system. Ann Oncol. 2004;15(6):966–73.PubMedCrossRef
Metadaten
Titel
Nomogram for individually predicting overall survival in rectal neuroendocrine tumours
verfasst von
Xingyu Feng
Gengzhou Wei
Wei Wang
Yu Zhang
Yujie Zeng
Minhu Chen
Ye Chen
Jie Chen
Zhiwei Zhou
Yong Li
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2020
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-020-07328-9

Weitere Artikel der Ausgabe 1/2020

BMC Cancer 1/2020 Zur Ausgabe

CAR-M-Zellen: Warten auf das große Fressen

22.05.2024 Onkologische Immuntherapie Nachrichten

Auch myeloide Immunzellen lassen sich mit chimären Antigenrezeptoren gegen Tumoren ausstatten. Solche CAR-Fresszell-Therapien werden jetzt für solide Tumoren entwickelt. Künftig soll dieser Prozess nicht mehr ex vivo, sondern per mRNA im Körper der Betroffenen erfolgen.

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

Alphablocker schützt vor Miktionsproblemen nach der Biopsie

16.05.2024 alpha-1-Rezeptorantagonisten Nachrichten

Nach einer Prostatabiopsie treten häufig Probleme beim Wasserlassen auf. Ob sich das durch den periinterventionellen Einsatz von Alphablockern verhindern lässt, haben australische Mediziner im Zuge einer Metaanalyse untersucht.

Antikörper-Wirkstoff-Konjugat hält solide Tumoren in Schach

16.05.2024 Zielgerichtete Therapie Nachrichten

Trastuzumab deruxtecan scheint auch jenseits von Lungenkrebs gut gegen solide Tumoren mit HER2-Mutationen zu wirken. Dafür sprechen die Daten einer offenen Pan-Tumor-Studie.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.