Skip to main content
Erschienen in: Pediatric Radiology 7/2023

20.10.2022 | Improving Protocols

Pediatric magnetic resonance imaging: faster is better

verfasst von: Sebastian Gallo-Bernal, M. Alejandra Bedoya, Michael S. Gee, Camilo Jaimes

Erschienen in: Pediatric Radiology | Ausgabe 7/2023

Einloggen, um Zugang zu erhalten

Abstract

Magnetic resonance imaging (MRI) has emerged as the preferred imaging modality for evaluating a wide range of pediatric medical conditions. Nevertheless, the long acquisition times associated with this technique can limit its widespread use in young children, resulting in motion-degraded or non-diagnostic studies. As a result, sedation or general anesthesia is often necessary to obtain diagnostic images, which has implications for the safety profile of MRI, the cost of the exam and the radiology department’s clinical workflow. Over the last decade, several techniques have been developed to increase the speed of MRI, including parallel imaging, single-shot acquisition, controlled aliasing techniques, compressed sensing and artificial-intelligence-based reconstructions. These are advantageous because shorter examinations decrease the need for sedation and the severity of motion artifacts, increase scanner throughput, and improve system efficiency. In this review we discuss a framework for image acceleration in children that includes the synergistic use of state-of-the-art MRI hardware and optimized pulse sequences. The discussion is framed within the context of pediatric radiology and incorporates the authors’ experience in deploying these techniques in routine clinical practice.
Literatur
1.
Zurück zum Zitat MacKenzie JD, Vasanawala SS (2008) Advances in pediatric MR imaging. Magn Reson Imaging Clin N Am 16:385–402PubMedCrossRef MacKenzie JD, Vasanawala SS (2008) Advances in pediatric MR imaging. Magn Reson Imaging Clin N Am 16:385–402PubMedCrossRef
2.
Zurück zum Zitat Jaimes C, Gee MS (2016) Strategies to minimize sedation in pediatric body magnetic resonance imaging. Pediatr Radiol 46:916–927PubMedCrossRef Jaimes C, Gee MS (2016) Strategies to minimize sedation in pediatric body magnetic resonance imaging. Pediatr Radiol 46:916–927PubMedCrossRef
3.
Zurück zum Zitat Jaimes C, Robson CD, Machado-Rivas F et al (2021) Success of nonsedated neuroradiologic MRI in children 1–7 years old. AJR Am J Roentgenol 216:1370–1377PubMedCrossRef Jaimes C, Robson CD, Machado-Rivas F et al (2021) Success of nonsedated neuroradiologic MRI in children 1–7 years old. AJR Am J Roentgenol 216:1370–1377PubMedCrossRef
4.
Zurück zum Zitat Michael R (2008) Potential of MR-imaging in the paediatric abdomen. Eur J Radiol 68:235–244PubMedCrossRef Michael R (2008) Potential of MR-imaging in the paediatric abdomen. Eur J Radiol 68:235–244PubMedCrossRef
5.
Zurück zum Zitat Harrington SG, Jaimes C, Weagle KM et al (2022) Strategies to perform magnetic resonance imaging in infants and young children without sedation. Pediatr Radiol 52:374–381PubMedCrossRef Harrington SG, Jaimes C, Weagle KM et al (2022) Strategies to perform magnetic resonance imaging in infants and young children without sedation. Pediatr Radiol 52:374–381PubMedCrossRef
6.
Zurück zum Zitat Grande F del, Guggenberger R, Fritz J (2021) Rapid musculoskeletal MRI in 2021: value and optimized use of widely accessible techniques. AJR Am J Roentgenol 216:704–717 Grande F del, Guggenberger R, Fritz J (2021) Rapid musculoskeletal MRI in 2021: value and optimized use of widely accessible techniques. AJR Am J Roentgenol 216:704–717
7.
Zurück zum Zitat Khodarahmi I, Fritz J (2021) The value of 3 tesla field strength for musculoskeletal magnetic resonance imaging. Investig Radiol 56:749–763CrossRef Khodarahmi I, Fritz J (2021) The value of 3 tesla field strength for musculoskeletal magnetic resonance imaging. Investig Radiol 56:749–763CrossRef
8.
Zurück zum Zitat Merkle EM, Dale BM (2006) Abdominal MRI at 3.0 T: the basics revisited. AJR Am J Roentgenol 186:1524–1532PubMedCrossRef Merkle EM, Dale BM (2006) Abdominal MRI at 3.0 T: the basics revisited. AJR Am J Roentgenol 186:1524–1532PubMedCrossRef
9.
Zurück zum Zitat Barth MM, Smith MP, Pedrosa I et al (2007) Body MR imaging at 3.0 T: understanding the opportunities and challenges. Radiographics 27:1445–1462PubMedCrossRef Barth MM, Smith MP, Pedrosa I et al (2007) Body MR imaging at 3.0 T: understanding the opportunities and challenges. Radiographics 27:1445–1462PubMedCrossRef
10.
Zurück zum Zitat Tanenbaum LN (2006) Clinical 3T MR imaging: mastering the challenges. Magn Reson Imaging Clin N Am 14:1–15PubMedCrossRef Tanenbaum LN (2006) Clinical 3T MR imaging: mastering the challenges. Magn Reson Imaging Clin N Am 14:1–15PubMedCrossRef
11.
Zurück zum Zitat Kozak BM, Jaimes C, Kirsch J, Gee MS (2020) MRI techniques to decrease imaging times in children. Radiographics 40:485–502PubMedCrossRef Kozak BM, Jaimes C, Kirsch J, Gee MS (2020) MRI techniques to decrease imaging times in children. Radiographics 40:485–502PubMedCrossRef
12.
13.
Zurück zum Zitat Winkler SA, Corea J, Lechêne B et al (2019) Evaluation of a flexible 12-channel screen-printed pediatric MRI coil. Radiology 291:180–185PubMedCrossRef Winkler SA, Corea J, Lechêne B et al (2019) Evaluation of a flexible 12-channel screen-printed pediatric MRI coil. Radiology 291:180–185PubMedCrossRef
14.
Zurück zum Zitat Lopez Rios N, Foias A, Lodygensky G et al (2018) Size-adaptable 13-channel receive array for brain MRI in human neonates at 3 T. NMR Biomed 31:e3944PubMedCrossRef Lopez Rios N, Foias A, Lodygensky G et al (2018) Size-adaptable 13-channel receive array for brain MRI in human neonates at 3 T. NMR Biomed 31:e3944PubMedCrossRef
15.
Zurück zum Zitat Glockner JF, Hu HH, Stanley DW et al (2005) Parallel MR imaging: a user’s guide. Radiographics 25:1279–1297PubMedCrossRef Glockner JF, Hu HH, Stanley DW et al (2005) Parallel MR imaging: a user’s guide. Radiographics 25:1279–1297PubMedCrossRef
17.
Zurück zum Zitat Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210PubMedCrossRef Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210PubMedCrossRef
18.
Zurück zum Zitat Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962PubMedCrossRef Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962PubMedCrossRef
20.
Zurück zum Zitat King KF (2004) ASSET — parallel imaging on the GE scanner. Presented at the Second International Workshop on Parallel MRI, Zurich, Switzerland King KF (2004) ASSET — parallel imaging on the GE scanner. Presented at the Second International Workshop on Parallel MRI, Zurich, Switzerland
21.
Zurück zum Zitat Aja-Fernández S, Vegas-Sánchez-Ferrero G, Tristán-Vega A (2014) Noise estimation in parallel MRI: GRAPPA and SENSE. Magn Reson Imaging 32:281–290PubMedCrossRef Aja-Fernández S, Vegas-Sánchez-Ferrero G, Tristán-Vega A (2014) Noise estimation in parallel MRI: GRAPPA and SENSE. Magn Reson Imaging 32:281–290PubMedCrossRef
22.
Zurück zum Zitat Robson PM, Grant AK, Madhuranthakam AJ et al (2008) Comprehensive quantification of signal-to-noise ratio and g-factor for image-based and k-space-based parallel imaging reconstructions. Magn Reson Med 60:895–907PubMedPubMedCentralCrossRef Robson PM, Grant AK, Madhuranthakam AJ et al (2008) Comprehensive quantification of signal-to-noise ratio and g-factor for image-based and k-space-based parallel imaging reconstructions. Magn Reson Med 60:895–907PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Barth M, Breuer F, Koopmans PJ et al (2016) Simultaneous multislice (SMS) imaging techniques. Magn Reson Med 75:63–81PubMedCrossRef Barth M, Breuer F, Koopmans PJ et al (2016) Simultaneous multislice (SMS) imaging techniques. Magn Reson Med 75:63–81PubMedCrossRef
24.
Zurück zum Zitat Jaimes C, Kirsch JE, Gee MS (2018) Fast, free-breathing and motion-minimized techniques for pediatric body magnetic resonance imaging. Pediatr Radiol 48:1197–1208PubMedCrossRef Jaimes C, Kirsch JE, Gee MS (2018) Fast, free-breathing and motion-minimized techniques for pediatric body magnetic resonance imaging. Pediatr Radiol 48:1197–1208PubMedCrossRef
25.
Zurück zum Zitat Obele CC, Glielmi C, Ream J et al (2015) Simultaneous multislice accelerated free-breathing diffusion-weighted imaging of the liver at 3T. Abdom Imaging 40:2323–2330PubMedCrossRef Obele CC, Glielmi C, Ream J et al (2015) Simultaneous multislice accelerated free-breathing diffusion-weighted imaging of the liver at 3T. Abdom Imaging 40:2323–2330PubMedCrossRef
26.
Zurück zum Zitat Setsompop K, Cohen-Adad J, Gagoski BA et al (2012) Improving diffusion MRI using simultaneous multi-slice echo planar imaging. Neuroimage 63:569–580PubMedCrossRef Setsompop K, Cohen-Adad J, Gagoski BA et al (2012) Improving diffusion MRI using simultaneous multi-slice echo planar imaging. Neuroimage 63:569–580PubMedCrossRef
27.
Zurück zum Zitat Longo MG, Fagundes J, Huang S et al (2017) Simultaneous multislice-based 5-minute lumbar spine MRI protocol: initial experience in a clinical setting. J Neuroimaging 27:442–446PubMedCrossRef Longo MG, Fagundes J, Huang S et al (2017) Simultaneous multislice-based 5-minute lumbar spine MRI protocol: initial experience in a clinical setting. J Neuroimaging 27:442–446PubMedCrossRef
28.
Zurück zum Zitat Gao F, Wen Z, Dou S et al (2021) High-resolution simultaneous multi-slice accelerated turbo spin-echo musculoskeletal imaging: a head-to-head comparison with routine turbo spin-echo imaging. Front Physiol 12:759888PubMedPubMedCentralCrossRef Gao F, Wen Z, Dou S et al (2021) High-resolution simultaneous multi-slice accelerated turbo spin-echo musculoskeletal imaging: a head-to-head comparison with routine turbo spin-echo imaging. Front Physiol 12:759888PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Benali S, Johnston PR, Gholipour A et al (2018) Simultaneous multi-slice accelerated turbo spin echo of the knee in pediatric patients. Skelet Radiol 47:821–831CrossRef Benali S, Johnston PR, Gholipour A et al (2018) Simultaneous multi-slice accelerated turbo spin echo of the knee in pediatric patients. Skelet Radiol 47:821–831CrossRef
30.
Zurück zum Zitat Breuer FA, Blaimer M, Heidemann RM et al (2005) Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging. Magn Reson Med 53:684–691PubMedCrossRef Breuer FA, Blaimer M, Heidemann RM et al (2005) Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging. Magn Reson Med 53:684–691PubMedCrossRef
31.
Zurück zum Zitat Yutzy SR, Seiberlich N, Duerk JL, Griswold MA (2011) Improvements in multislice parallel imaging using radial CAIPIRINHA. Magn Reson Med 65:1630–1637PubMedPubMedCentralCrossRef Yutzy SR, Seiberlich N, Duerk JL, Griswold MA (2011) Improvements in multislice parallel imaging using radial CAIPIRINHA. Magn Reson Med 65:1630–1637PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Bilgic B, Gagoski BA, Cauley SF et al (2015) Wave-CAIPI for highly accelerated 3D imaging. Magn Reson Med 73:2152–2162PubMedCrossRef Bilgic B, Gagoski BA, Cauley SF et al (2015) Wave-CAIPI for highly accelerated 3D imaging. Magn Reson Med 73:2152–2162PubMedCrossRef
33.
Zurück zum Zitat Moriguchi H, Duerk JL (2006) Bunched phase encoding (BPE): a new fast data acquisition method in MRI. Magn Reson Med 55:633–648PubMedCrossRef Moriguchi H, Duerk JL (2006) Bunched phase encoding (BPE): a new fast data acquisition method in MRI. Magn Reson Med 55:633–648PubMedCrossRef
34.
Zurück zum Zitat Polak D, Cauley S, Huang SY et al (2019) Highly-accelerated volumetric brain examination using optimized Wave-CAIPI encoding. J Magn Reson Imaging 50:961–974PubMedPubMedCentralCrossRef Polak D, Cauley S, Huang SY et al (2019) Highly-accelerated volumetric brain examination using optimized Wave-CAIPI encoding. J Magn Reson Imaging 50:961–974PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Tabari A, Conklin J, Figueiro Longo MG et al (2021) Comparison of ultrafast wave-controlled aliasing in parallel imaging (CAIPI) magnetization-prepared rapid acquisition gradient echo (MP-RAGE) and standard MP-RAGE in non-sedated children: initial clinical experience. Pediatr Radiol 51:2009–2017PubMedCrossRef Tabari A, Conklin J, Figueiro Longo MG et al (2021) Comparison of ultrafast wave-controlled aliasing in parallel imaging (CAIPI) magnetization-prepared rapid acquisition gradient echo (MP-RAGE) and standard MP-RAGE in non-sedated children: initial clinical experience. Pediatr Radiol 51:2009–2017PubMedCrossRef
36.
Zurück zum Zitat Conklin J, Tabari A, Longo MGF et al (2022) Evaluation of highly accelerated wave controlled aliasing in parallel imaging (Wave-CAIPI) susceptibility-weighted imaging in the non-sedated pediatric setting: a pilot study. Pediatr Radiol 52:1115–1124PubMedCrossRef Conklin J, Tabari A, Longo MGF et al (2022) Evaluation of highly accelerated wave controlled aliasing in parallel imaging (Wave-CAIPI) susceptibility-weighted imaging in the non-sedated pediatric setting: a pilot study. Pediatr Radiol 52:1115–1124PubMedCrossRef
37.
Zurück zum Zitat Richter JAJ, Wech T, Weng AM et al (2020) Free-breathing self-gated 4D lung MRI using Wave-CAIPI. Magn Reson Med 84:3223–3233PubMedCrossRef Richter JAJ, Wech T, Weng AM et al (2020) Free-breathing self-gated 4D lung MRI using Wave-CAIPI. Magn Reson Med 84:3223–3233PubMedCrossRef
38.
Zurück zum Zitat Richter JAJ, Wech T, Weng AM et al (2021) Accelerated aortic 4D flow MRI with Wave-CAIPI. Magn Reson Med 85:2595–2607PubMedCrossRef Richter JAJ, Wech T, Weng AM et al (2021) Accelerated aortic 4D flow MRI with Wave-CAIPI. Magn Reson Med 85:2595–2607PubMedCrossRef
39.
Zurück zum Zitat Jaimes C, Yang E, Connaughton P et al (2020) Diagnostic equivalency of fast T2 and FLAIR sequences for pediatric brain MRI: a pilot study. Pediatr Radiol 50:550–559PubMedCrossRef Jaimes C, Yang E, Connaughton P et al (2020) Diagnostic equivalency of fast T2 and FLAIR sequences for pediatric brain MRI: a pilot study. Pediatr Radiol 50:550–559PubMedCrossRef
40.
Zurück zum Zitat Catasca JV, Mirowitz SA (1994) T2-weighted MR imaging of the abdomen: fast spin-echo vs. conventional spin-echo sequences. AJR Am J Roentgenol 162:61–67 Catasca JV, Mirowitz SA (1994) T2-weighted MR imaging of the abdomen: fast spin-echo vs. conventional spin-echo sequences. AJR Am J Roentgenol 162:61–67
41.
Zurück zum Zitat Dietrich O (2007) Single-shot pulse sequences. In: Schoenberg SO, Dietrich O, Reiser MF (eds) Parallel imaging in clinical MR applications. Springer, Berlin, pp 119–126CrossRef Dietrich O (2007) Single-shot pulse sequences. In: Schoenberg SO, Dietrich O, Reiser MF (eds) Parallel imaging in clinical MR applications. Springer, Berlin, pp 119–126CrossRef
42.
Zurück zum Zitat Yang RK, Roth CG, Ward RJ et al (2010) Optimizing abdominal MR imaging: approaches to common problems. Radiographics 30:185–199PubMedCrossRef Yang RK, Roth CG, Ward RJ et al (2010) Optimizing abdominal MR imaging: approaches to common problems. Radiographics 30:185–199PubMedCrossRef
43.
Zurück zum Zitat Gallagher TA, Nemeth AJ, Hacein-Bey L (2008) An introduction to the Fourier transform: relationship to MRI. AJR Am J Roentgenol 190:1396–1405PubMedCrossRef Gallagher TA, Nemeth AJ, Hacein-Bey L (2008) An introduction to the Fourier transform: relationship to MRI. AJR Am J Roentgenol 190:1396–1405PubMedCrossRef
44.
Zurück zum Zitat Semelka RC, Kelekis NL, Thomasson D et al (1996) HASTE MR imaging: description of technique and preliminary results in the abdomen. J Magn Reson Imaging 6:698–699PubMedCrossRef Semelka RC, Kelekis NL, Thomasson D et al (1996) HASTE MR imaging: description of technique and preliminary results in the abdomen. J Magn Reson Imaging 6:698–699PubMedCrossRef
45.
Zurück zum Zitat Ruangwattanapaisarn N, Loening AM, Saranathan M et al (2015) Faster pediatric 3-T abdominal magnetic resonance imaging: comparison between conventional and variable refocusing flip-angle single-shot fast spin-echo sequences. Pediatr Radiol 45:847–854PubMedCrossRef Ruangwattanapaisarn N, Loening AM, Saranathan M et al (2015) Faster pediatric 3-T abdominal magnetic resonance imaging: comparison between conventional and variable refocusing flip-angle single-shot fast spin-echo sequences. Pediatr Radiol 45:847–854PubMedCrossRef
46.
Zurück zum Zitat Chavhan GB, Babyn PS, Vasanawala SS (2013) Abdominal MR imaging in children: motion compensation, sequence optimization, and protocol organization. Radiographics 33:703–719PubMedCrossRef Chavhan GB, Babyn PS, Vasanawala SS (2013) Abdominal MR imaging in children: motion compensation, sequence optimization, and protocol organization. Radiographics 33:703–719PubMedCrossRef
47.
Zurück zum Zitat James K, Duffy P, Kavanagh RG et al (2020) Fast acquisition abdominal MRI study for the investigation of suspected acute appendicitis in paediatric patients. Insights Imaging 11:78PubMedPubMedCentralCrossRef James K, Duffy P, Kavanagh RG et al (2020) Fast acquisition abdominal MRI study for the investigation of suspected acute appendicitis in paediatric patients. Insights Imaging 11:78PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Ha JY, Baek HJ, Ryu KH et al (2020) One-minute ultrafast brain MRI with full basic sequences: can it be a promising way forward for pediatric neuroimaging? AJR Am J Roentgenol 215:198–205PubMedCrossRef Ha JY, Baek HJ, Ryu KH et al (2020) One-minute ultrafast brain MRI with full basic sequences: can it be a promising way forward for pediatric neuroimaging? AJR Am J Roentgenol 215:198–205PubMedCrossRef
49.
Zurück zum Zitat Robson CD, MacDougall RD, Madsen JR et al (2017) Neuroimaging of children with surgically treated hydrocephalus: a practical approach. AJR Am J Roentgenol 208:413–419PubMedCrossRef Robson CD, MacDougall RD, Madsen JR et al (2017) Neuroimaging of children with surgically treated hydrocephalus: a practical approach. AJR Am J Roentgenol 208:413–419PubMedCrossRef
51.
52.
Zurück zum Zitat Bieri O, Scheffler K (2013) Fundamentals of balanced steady state free precession MRI. J Magn Reson Imaging 38:2–11PubMedCrossRef Bieri O, Scheffler K (2013) Fundamentals of balanced steady state free precession MRI. J Magn Reson Imaging 38:2–11PubMedCrossRef
53.
Zurück zum Zitat Fujita S, Hagiwara A, Hori M et al (2019) 3D quantitative synthetic MRI-derived cortical thickness and subcortical brain volumes: scan–rescan repeatability and comparison with conventional T1-weighted images. J Magn Reson Imaging 50:1834–1842PubMedPubMedCentralCrossRef Fujita S, Hagiwara A, Hori M et al (2019) 3D quantitative synthetic MRI-derived cortical thickness and subcortical brain volumes: scan–rescan repeatability and comparison with conventional T1-weighted images. J Magn Reson Imaging 50:1834–1842PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Dias SC, Olsen ØE (2012) Isotropic 3-D T2-weighted spin-echo for abdominal and pelvic MRI in children. Pediatr Radiol 42:1385–1390PubMedCrossRef Dias SC, Olsen ØE (2012) Isotropic 3-D T2-weighted spin-echo for abdominal and pelvic MRI in children. Pediatr Radiol 42:1385–1390PubMedCrossRef
55.
Zurück zum Zitat Fujita S, Hagiwara A, Takei N et al (2021) Accelerated isotropic multiparametric imaging by high spatial resolution 3D-QALAS with compressed sensing: a phantom, volunteer, and patient study. Investig Radiol 56:292–300CrossRef Fujita S, Hagiwara A, Takei N et al (2021) Accelerated isotropic multiparametric imaging by high spatial resolution 3D-QALAS with compressed sensing: a phantom, volunteer, and patient study. Investig Radiol 56:292–300CrossRef
56.
Zurück zum Zitat Serai SD, Hu HH, Ahmad R et al (2020) Newly developed methods for reducing motion artifacts in pediatric abdominal MRI: tips and pearls. AJR Am J Roentgenol 214:1042–1053PubMedCrossRef Serai SD, Hu HH, Ahmad R et al (2020) Newly developed methods for reducing motion artifacts in pediatric abdominal MRI: tips and pearls. AJR Am J Roentgenol 214:1042–1053PubMedCrossRef
57.
Zurück zum Zitat Hamlet SM, Haggerty CM, Suever JD et al (2016) An interactive videogame designed to improve respiratory navigator efficiency in children undergoing cardiovascular magnetic resonance. J Cardiovasc Magn Reson 18:54PubMedPubMedCentralCrossRef Hamlet SM, Haggerty CM, Suever JD et al (2016) An interactive videogame designed to improve respiratory navigator efficiency in children undergoing cardiovascular magnetic resonance. J Cardiovasc Magn Reson 18:54PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Feng L, Axel L, Chandarana H et al (2016) XD-GRASP: golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn Reson Med 75:775–788PubMedCrossRef Feng L, Axel L, Chandarana H et al (2016) XD-GRASP: golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn Reson Med 75:775–788PubMedCrossRef
59.
Zurück zum Zitat Chandarana H, Block TK, Rosenkrantz AB et al (2011) Free-breathing radial 3D fat-suppressed T1-weighted gradient echo sequence. Investig Radiol 46:648–653CrossRef Chandarana H, Block TK, Rosenkrantz AB et al (2011) Free-breathing radial 3D fat-suppressed T1-weighted gradient echo sequence. Investig Radiol 46:648–653CrossRef
60.
Zurück zum Zitat Chandarana H, Block KT, Winfeld MJ et al (2014) Free-breathing contrast-enhanced T1-weighted gradient-echo imaging with radial k-space sampling for paediatric abdominopelvic MRI. Eur Radiol 24:320–326PubMedCrossRef Chandarana H, Block KT, Winfeld MJ et al (2014) Free-breathing contrast-enhanced T1-weighted gradient-echo imaging with radial k-space sampling for paediatric abdominopelvic MRI. Eur Radiol 24:320–326PubMedCrossRef
61.
Zurück zum Zitat Chandarana H, Feng L, Ream J et al (2015) Respiratory motion-resolved compressed sensing reconstruction of free-breathing radial acquisition for dynamic liver magnetic resonance imaging. Investig Radiol 50:749–756CrossRef Chandarana H, Feng L, Ream J et al (2015) Respiratory motion-resolved compressed sensing reconstruction of free-breathing radial acquisition for dynamic liver magnetic resonance imaging. Investig Radiol 50:749–756CrossRef
62.
Zurück zum Zitat Feng L, Grimm R, Block KT et al (2014) Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med 72:707–717PubMedCrossRef Feng L, Grimm R, Block KT et al (2014) Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med 72:707–717PubMedCrossRef
63.
Zurück zum Zitat Chandarana H, Feng L, Block TK et al (2013) Free-breathing contrast-enhanced multiphase MRI of the liver using a combination of compressed sensing, parallel imaging, and golden-angle radial sampling. Investig Radiol 48:10–16CrossRef Chandarana H, Feng L, Block TK et al (2013) Free-breathing contrast-enhanced multiphase MRI of the liver using a combination of compressed sensing, parallel imaging, and golden-angle radial sampling. Investig Radiol 48:10–16CrossRef
65.
Zurück zum Zitat Geethanath S, Reddy R, Konar AS et al (2013) Compressed sensing MRI: a review. Crit Rev Biomed Eng 41:183–204PubMedCrossRef Geethanath S, Reddy R, Konar AS et al (2013) Compressed sensing MRI: a review. Crit Rev Biomed Eng 41:183–204PubMedCrossRef
68.
Zurück zum Zitat Zhang T, Yousaf U, Hsiao A et al (2015) Clinical performance of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced pediatric abdominal MR angiography. Pediatr Radiol 45:1635–1643PubMedPubMedCentralCrossRef Zhang T, Yousaf U, Hsiao A et al (2015) Clinical performance of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced pediatric abdominal MR angiography. Pediatr Radiol 45:1635–1643PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Naresh NK, Malone L, Fujiwara T et al (2021) Use of compressed sensing to reduce scan time and breath-holding for cardiac cine balanced steady-state free precession magnetic resonance imaging in children and young adults. Pediatr Radiol 51:1192–1201PubMedCrossRef Naresh NK, Malone L, Fujiwara T et al (2021) Use of compressed sensing to reduce scan time and breath-holding for cardiac cine balanced steady-state free precession magnetic resonance imaging in children and young adults. Pediatr Radiol 51:1192–1201PubMedCrossRef
71.
Zurück zum Zitat Shankar RV, Hu HH, Bikkamane Jayadev N et al (2019) 2-D magnetic resonance spectroscopic imaging of the pediatric brain using compressed sensing. Pediatr Radiol 49:1798–1808CrossRef Shankar RV, Hu HH, Bikkamane Jayadev N et al (2019) 2-D magnetic resonance spectroscopic imaging of the pediatric brain using compressed sensing. Pediatr Radiol 49:1798–1808CrossRef
72.
Zurück zum Zitat Lin DJ, Johnson PM, Knoll F, Lui YW (2021) Artificial intelligence for MR image reconstruction: an overview for clinicians. J Magn Reson Imaging 53:1015–1028PubMedCrossRef Lin DJ, Johnson PM, Knoll F, Lui YW (2021) Artificial intelligence for MR image reconstruction: an overview for clinicians. J Magn Reson Imaging 53:1015–1028PubMedCrossRef
74.
Zurück zum Zitat Zhu B, Liu JZ, Cauley SF et al (2018) Image reconstruction by domain-transform manifold learning. Nature 555:487–492PubMedCrossRef Zhu B, Liu JZ, Cauley SF et al (2018) Image reconstruction by domain-transform manifold learning. Nature 555:487–492PubMedCrossRef
75.
Zurück zum Zitat Jung W, Kim J, Ko J et al (2022) highly accelerated 3D MPRAGE using deep neural network–based reconstruction for brain imaging in children and young adults. Eur Radiol 32:5468–5479PubMedCrossRef Jung W, Kim J, Ko J et al (2022) highly accelerated 3D MPRAGE using deep neural network–based reconstruction for brain imaging in children and young adults. Eur Radiol 32:5468–5479PubMedCrossRef
76.
Zurück zum Zitat Recht MP, Zbontar J, Sodickson DK et al (2020) Using deep learning to accelerate knee MRI at 3 T: results of an interchangeability study. AJR Am J Roentgenol 215:1421–1429PubMedPubMedCentralCrossRef Recht MP, Zbontar J, Sodickson DK et al (2020) Using deep learning to accelerate knee MRI at 3 T: results of an interchangeability study. AJR Am J Roentgenol 215:1421–1429PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Chen F, Taviani V, Malkiel I et al (2018) Variable-density single-shot fast spin-echo MRI with deep learning reconstruction by using variational networks. Radiology 289:366–373PubMedCrossRef Chen F, Taviani V, Malkiel I et al (2018) Variable-density single-shot fast spin-echo MRI with deep learning reconstruction by using variational networks. Radiology 289:366–373PubMedCrossRef
78.
Zurück zum Zitat Bash S, Wang L, Airriess C et al (2021) Deep learning enables 60% accelerated volumetric brain MRI while preserving quantitative performance: a prospective, multicenter, multireader trial. AJNR Am J Neuroradiol 42:2130–2137PubMedPubMedCentralCrossRef Bash S, Wang L, Airriess C et al (2021) Deep learning enables 60% accelerated volumetric brain MRI while preserving quantitative performance: a prospective, multicenter, multireader trial. AJNR Am J Neuroradiol 42:2130–2137PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Tanenbaum LN, Tsiouris AJ, Johnson AN et al (2017) Synthetic MRI for clinical neuroimaging: results of the magnetic resonance image compilation (MAGiC) prospective, multicenter, multireader trial. AJNR Am J Neuroradiol 38:1103–1110PubMedPubMedCentralCrossRef Tanenbaum LN, Tsiouris AJ, Johnson AN et al (2017) Synthetic MRI for clinical neuroimaging: results of the magnetic resonance image compilation (MAGiC) prospective, multicenter, multireader trial. AJNR Am J Neuroradiol 38:1103–1110PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Ji S, Yang D, Lee J et al (2022) Synthetic MRI: technologies and applications in neuroradiology. J Magn Reson Imaging 55:1013–1025PubMedCrossRef Ji S, Yang D, Lee J et al (2022) Synthetic MRI: technologies and applications in neuroradiology. J Magn Reson Imaging 55:1013–1025PubMedCrossRef
82.
Zurück zum Zitat Delgado AF, Kits A, Bystam J et al (2019) Diagnostic performance of a new multicontrast one-minute full brain exam (EPIMix) in neuroradiology: a prospective study. J Magn Reson Imaging 50:1824–1833PubMedCrossRef Delgado AF, Kits A, Bystam J et al (2019) Diagnostic performance of a new multicontrast one-minute full brain exam (EPIMix) in neuroradiology: a prospective study. J Magn Reson Imaging 50:1824–1833PubMedCrossRef
83.
Zurück zum Zitat Skare S, Sprenger T, Norbeck O et al (2018) A 1-minute full brain MR exam using a multicontrast EPI sequence. Magn Reson Med 79:3045–3054PubMedCrossRef Skare S, Sprenger T, Norbeck O et al (2018) A 1-minute full brain MR exam using a multicontrast EPI sequence. Magn Reson Med 79:3045–3054PubMedCrossRef
84.
Zurück zum Zitat D’Arco F, Mertiri L, de Graaf P et al (2022) Guidelines for magnetic resonance imaging in pediatric head and neck pathologies: a multicentre international consensus paper. Neuroradiology 64:1081–1100PubMedCrossRef D’Arco F, Mertiri L, de Graaf P et al (2022) Guidelines for magnetic resonance imaging in pediatric head and neck pathologies: a multicentre international consensus paper. Neuroradiology 64:1081–1100PubMedCrossRef
85.
Zurück zum Zitat Sprenger T, Kits A, Norbeck O et al (2022) NeuroMix — a single-scan brain exam. Magn Reson Med 87:2178–2193PubMedCrossRef Sprenger T, Kits A, Norbeck O et al (2022) NeuroMix — a single-scan brain exam. Magn Reson Med 87:2178–2193PubMedCrossRef
86.
Zurück zum Zitat Clifford B, Conklin J, Huang SY et al (2022) An artificial intelligence-accelerated 2-minute multi-shot echo planar imaging protocol for comprehensive high-quality clinical brain imaging. Magn Reson Med 87:2453–2463PubMedCrossRef Clifford B, Conklin J, Huang SY et al (2022) An artificial intelligence-accelerated 2-minute multi-shot echo planar imaging protocol for comprehensive high-quality clinical brain imaging. Magn Reson Med 87:2453–2463PubMedCrossRef
Metadaten
Titel
Pediatric magnetic resonance imaging: faster is better
verfasst von
Sebastian Gallo-Bernal
M. Alejandra Bedoya
Michael S. Gee
Camilo Jaimes
Publikationsdatum
20.10.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Radiology / Ausgabe 7/2023
Print ISSN: 0301-0449
Elektronische ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-022-05529-x

Weitere Artikel der Ausgabe 7/2023

Pediatric Radiology 7/2023 Zur Ausgabe

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.