Skip to main content
Erschienen in: European Journal of Orthopaedic Surgery & Traumatology 7/2023

Open Access 31.03.2023 | General Review

Periprosthetic patella fractures in total knee replacement and revision surgeries: how to diagnose and treat this rare but potentially devastating complication—a review of the current literature

verfasst von: Virginia Masoni, Fortunato Giustra, Francesco Bosco, Lorenzo Lo Carmine, Marcello Capella, Giorgio Cacciola, Salvatore Risitano, Luigi Sabatini, Alessandro Massè

Erschienen in: European Journal of Orthopaedic Surgery & Traumatology | Ausgabe 7/2023

Abstract

Purpose

Periprosthetic patella fractures (PPPFs) are infrequent but potentially devastating complications after total knee arthroplasty (TKA) and revision TKA (rTKA). These fractures may occur both in resurfaced and un-resurfaced patella. This review summarizes the current literature on PPPFs to help orthopedic surgeons diagnose and treat this uncommon but extremely challenging TKA complication.

Methods

A comprehensive search was performed in three databases: PubMed, SCOPUS, and EMBASE. All relevant information was retrieved and summarized in this narrative review.

Results

In the studies analyzed, there is a general trend in favor of nonsurgical treatment, except for implant loosening or extensor lag with extensor apparatus disruption, because surgery is often associated with poor clinical outcomes and high complication rates.

Conclusion

PPPF is a rare but catastrophic event in TKA and rTKA, occurring mainly in a reconstructed patella. Patient-, implant-, and surgical technique-related factors contribute to its multifactorial etiopathogenesis. Prevention plays a crucial role in reducing the PPPFs rate. Conservative management is the treatment of choice due to high surgery complication rates unless implant loosening, or extensor apparatus disruption occurs.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
PPPFs
Periprosthetic patellar fractures
TKA
Total knee arthroplasty
TKR
Total knee replacement
rTKA
Revision total knee arthroplasty
RA
Rheumatoid arthritis
mm
Millimeters
cm
Centimeters
MA
Medial arthrotomy
VMO
Vastus medialis oblique
CT
Computed tomography
Tc99m
Technetium-99-metastable
ROM
Range of motion
ORIF
Open reduction and internal fixation
PROMs
Patient-reported outcome measures
PS
Posterior-stabilized
CR
Cruciate retaining
PMMA
Poly-methyl-methacrylate
AP
Anteroposterior

Introduction

Periprosthetic patella fractures (PPPF) are a challenging complication in total knee arthroplasty (TKA) and revision TKA (rTKA). In the literature, PPPFs are reported on average in 1.19% of TKAs; in 99% of cases, these occur in patients undergoing patellar replacement [15]. Currently, no PPPFs classification system is universally validated; the most widely used are those of Goldberg et al. [6] and Ortiguera and Berry [1]. The pathogenesis is multifactorial, and many different predisposing risk factors are reported in the literature [3, 4, 79]. Most fractures are not associated with direct trauma but are discovered during follow-up [4]. Several treatment algorithms are described, but there has yet to be a universal consensus about the optimal management of these fractures [1, 4, 610]. A conservative approach is usually reserved for nondisplaced, stable implant fractures; surgical procedures are planned for patellar implant mobilization or extensor apparatus disruption with poor outcomes and high complication rates [14, 69]. This study aims to analyze the current literature on PPPFs, focusing on predisposing risk factors and preventive strategies to support the orthopedic surgeon in properly managing this rare but devastating complication in TKAs.

Search strategy

A comprehensive narrative review of the current literature on PPPFs examining epidemiology, risk factors, clinical manifestations, classification systems, diagnosis, management, outcomes, and preventive strategies was performed. The search was conducted using the PubMed, EMBASE, and SCOPUS databases.

Epidemiology

The PPPFs are a patellar complication in TKA [11] and represent the second most common periprosthetic fracture around the knee, after supracondylar femur fractures [12]. The PPPFs may occur in both resurfaced and non-resurfaced patella. Resurfacing is one of the most important predisposing factors, with a PPPFs prevalence of about 0.2–21% higher in the resurfaced patella than in the non-resurfaced one (Fig. 1) [3, 4, 8, 9]. Chalidis et al. [4] in their systematic review, reported a rate of 0.9% (5 cases) of fractures that occurred in a non-resurfaced patella, while the remaining 577 cases (99.1%) occurred in a patella resurfaced (Fig. 2).
PPPFs may occur intraoperatively, but in most cases, they are observed in the postoperative follow-up with an incidence that increases sharply during rTKA [35, 13]. In the Mayo Clinic joint registry, Berry reported that PPPFs are more frequent in rTKA than in primary TKA [5]. Furthermore, PPPFs usually occur in the first few years after TKA [14]. Chalidis et al. [4] described a mean time from surgery to fracture occurrence of 18.5 months.
Several studies recorded a male prevalence and identified the male sex as an independent risk factor [1, 3, 8]. Ortiguera and Berry [1] reported a prevalence of 1.01% and 0.40% in men and women, respectively, consistent with Parvizi et al. [3] series, where PPPFs occurred with a 2:1 ratio of males to females. These data differ from other periprosthetic knee fractures, which frequently occur in osteoporotic women [1, 8, 12]. The reason is unclear, but a possible cause is that men usually have a higher body weight and activity level, leading to greater forces damaging the extensor apparatus [1, 3, 8, 9]. Contrary to previous papers, other authors [6, 14] have reported a female prevalence, explained by a higher osteoporosis rate in women.

Risk factors

The PPPFs may be traumatic or not [14, 810]. Although the literature seems to be a trend to atraumatic causes, there is much heterogeneity [14, 810, 14]. Chalidis et al. [4] described only 11.7% of cases associated with a traumatic event, whereas the recent case series by Govil et al. [14] reported that 66% of PPPFs were trauma related. The traumatic fracture may occur due to direct trauma, such as a fall on the knee, or indirect one, for example, an eccentric muscle contraction [1, 9, 15]. Ortiguera and Berry described several indirect mechanisms, like standing from a deep-seated position, hyperflexion, and knee overload [1]. Excluding traumatic cases, the literature strongly accords that the PPPF etiology is multifactorial [3, 4, 8, 9]. Nontraumatic PPPFs, therefore, are much more common than traumatic PPPFs, and most of them are related to fatigue fractures due to thinning of the native bone by loosening the patellar component or excessive original resection resulting from failure with the surgical technique. Several authors [3, 4, 8, 9] classified risk factors into three main groups: patient-related, implant-related, and surgical technique-related risk factors (Table 1).
Table 1
Summary of risk factors for atraumatic periprosthetic patellar fractures following TKA
Patient-related risk factors
Implant-related risk factors
Surgical technique-related risk factors
• Osteoporosis and osteopenia [3, 4]
• Resurfaced patella [3, 4, 8, 9]
• Patellar devascularization [4, 8, 9]
• Obesity [3, 4]
• Single central peg [3, 8, 9]
- Excessive fat pad removal
• Male sex [3, 8]
• Press-fit, cementless implant [3, 4, 8, 9]
- Excessive lateral meniscal removal
• Rheumatoid arthritis [8, 9]
• Inset design [3, 4]
- Lateral release
• High activity level [3, 4, 8]
• PMMA necrosis [3, 4, 8, 9]
- MA
• Poor bone stock [3, 4, 8, 9]
• PS TKA [3, 4, 8, 9]
• Excessive resection [3, 4, 8, 9]
• Bone cysts [3, 4, 8, 9]
• Metal-backed prosthesis [3, 4, 8, 9]
• Unsuitable thickness [8, 9]
• Excessive range of motion [3, 4, 9]
 
• Component mispositioning [3, 4, 8, 9]
• Previous surgery (revision) [3, 4, 8, 9]
 
- Femoral component in excessive flexion
  
• Large AP diameter of femoral component [3, 4, 8, 9]
  
• Patellar maltracking [9, 10]
  
• Limb malalignment [810]
PMMA poly-methyl-methacrylate, MA medial arthrotomy, PS posterior-stabilized, TKA total knee arthroplasty, AP anteroposterior
Male sex seems to be a predisposing factor, whereas, regarding age, there is no definite tendency [3, 4, 8]. It is established that elderly patients have a higher risk of falls and osteoporosis [12]; Govil et al. [14] reported older age as a risk factor for PPPF, while Parvizi et al. [3] underlined that a young, active patient usually has a high degree of activity predisposing to a traumatic event. Moreover, a high activity level with knee hyperflexion is associated with a greater PPPF risk [3, 4, 9]. Osteoporosis, osteolysis, bone loss, and bone cysts are all associated with an increased PPPF risk. Lastly, rheumatoid arthritis (RA) is an independent predisposing factor because affected patients usually have poor bone quality due to the disease and the steroid medications assumed [3, 4, 8, 9].
The most common implant-related PPPF predisposing factor is patellar resurfacing [3, 4, 8]. Currently, the literature needs to be more consistent on the appropriateness of patellar resurfacing during TKA. Although there is no evidence that resurfacing has a clinically significant difference in patient-reported outcome measures (PROMs), it is a cost-effective procedure that reduces re-intervention rates and is associated with few complications [16, 17]. Implant design has a key role. Single central pin and cementless metal-supported patellar prosthesis are considered important stress factors; for these reasons, a three-pin patellar component with an all-polyethylene dome implanted with cement was introduced [3, 4, 8, 9]. Finally, more constrained implants are characterized by a PPPF higher risk [4, 9, 14].
Surgery-related factors include the phases from the patella exposure to the prosthetic knee implantation. One of the main issues analyzed in the literature is patella devascularization which may lead to osteonecrosis and increased fracture risk [3, 4, 8, 9, 18, 19]. Devascularization could result from several surgical procedures, particularly medial parapatellar arthrotomy (MPA), infrapatellar fat pad excision, and lateral release [3, 4, 8, 9, 18].
The patella blood supply is derived from an extraosseous peripatellar anastomotic ring from which intraosseous vessels flow [18, 19]. Lazaro et al. [18] demonstrated that MPA completely disrupts medial patellar blood flow leaving vascularization to the lateral vessels only; the authors additionally described the presence of the supreme geniculate artery within the vastus medialis oblique (VMO) discouraging a midvastus approach and suggested a subvastus approach. Moreover, leaving at least one centimeter from the patellar margin could result in less compromised blood flow [18]. Excessive fat pad excision may contribute to patella devascularization because its removal interrupts the inferior polar vessels and the transverse infrapatellar branch. For this reason, the authors suggest removing only the necessary fat pad for obtaining good tibial exposure [18]. Finally, Lazaro et al. proposed preserving the peripheral border of the lateral meniscus not to damage the inferolateral geniculate artery [18].
The lateral release is also associated with devascularization [3, 4, 18]. Chalidis et al. [4] reported 51.2% of PPPF related to this procedure. Lazaro et al. [18] described a sacrifice of lateral geniculate arteries when performing extended-release. Therefore, the authors proposed to leave a lateral border around the patella of at least 15 mm and to complete the release distal to the superolateral border of the patella and proximal to the joint line. To preserve the prepatellar vessels, all tissue flaps created during the surgical procedure should be superficial to the anterior patellar periosteum [18].
Conversely, Hempfing et al. [20] did not report a significant patellar blood flow reduction due to soft tissue dissection, but the authors described a correlation between 100° knee flexion, patellar eversion, and decreased blood flow. The same results were described by Stoffel et al. [21] in their paper. Technically, eversion is used to improve exposure. Stoffel et al. measured, through Doppler ultrasound, 87% ischemia grade during eversion compared with 47% in a slight retraction; therefore, the authors recommended only slight retraction for patella exposure [21]. Many authors considered thermal necrosis associated with cement polymerization another important risk factor for PPPF [4, 8, 9, 14].
Patella thickness is another important risk factor. Surgeons should restore the native thickness, avoiding over-sectioning, rising fracture risk, and under-sectioning, leading to overload with flexion loss and increased joint reaction forces [3, 4, 8, 9, 22, 23]. Reuben et al. [24] described a residual patellar thickness of at least 15 mm as the minimum bone reserve to avoid overstressing and fracture risk.
A correct TKA implant positioning and extensor mechanism alignment are essential to avoid increased joint reaction forces and the PPPFs risk; a flexed femoral component or large anteroposterior diameter predisposes to PPPFs [3, 8, 9, 14, 25]. Seo et al. reported an increased fracture risk in significant preoperative mechanical malalignment, shorter postoperative patellar tendon length, and lower postoperative Insall-Salvati ratio [26]. Finally, the literature agrees that rTKA is a well-known independent PPF risk factor [35].

Clinical manifestation and diagnosis

PPPFs may be asymptomatic at clinical presentation and be discovered on radiographs during outpatient follow-up [1, 4, 810]. Chalidis et al. [4] reported that more than 80% of PPPFs are diagnosed when symptoms occur, mainly consisting of anterior knee pain associated with swelling and patellar tenderness [9, 14]. Patients may complain of other manifestations, such as knee instability with extensor system weakness [9]. Diagnosis is usually made by anteroposterior and lateral X-ray view and Merchant X-ray view [9, 12, 14]. A CT scan may be performed to evaluate better any implant loosening and fracture morphology [12, 14]. Technetium-99m (Tc-99m) bone scan could be performed to discover occult fractures or to distinguish an old fracture from a recent one [9, 14]. Finally, the patient’s history, blood tests, and comparison with previous radiographs are critical in directing the surgeon to aseptic loosening, infection-related loosening, or upcoming implant failure [12].

Classification systems

Several classification systems for PPPFs are described in the literature, but the most widely used are those of Goldberg et al. [6] and Ortiguera and Berry [1].
Goldberg’s classification categorizes fractures according to fracture pattern, extensor mechanism integrity, and patellar component stability (Fig. 3). Type I is characterized by patellar fractures with intact extensor apparatus and implant stability, while in type II, one or both previously mentioned elements are damaged. Type III is divided into IIIa, in which the fracture of the inferior pole of the patella is associated with a patellar tendon injury, and IIIb, in which the same fracture pattern has an intact patellar tendon. Type IV consists of patellar fracture-dislocations [6].
Ortiguera and Berry’s classification is the most recent (Fig. 4) (Table 2); it considers the amount of residual patellar bone, implant stability, and extensor apparatus integrity. Type I fractures have a stable implant and an intact extensor apparatus; type II disrupts the extensor mechanism; type III has a mobilized implant but an intact extensor apparatus. The latter group is further divided into IIIa, characterized by a good amount of residual bone reserve for revision, and IIIb, with poor bone reserve, defined as a bone thickness of < 10 mm or marked comminution of the patellar component. If disruption of the extensor mechanism and a loosened component are concomitant, it is classified as type II [1].
Table 2
Ortiguera and Berry periprosthetic patellar fractures classification
I
Stable implant and intact extensor mechanism
II
Disruption of the extensor mechanism with or without implant loosening
III
Loose implant with integrity of the extensor apparatus
 (a) Good bone stock
 (b) Poor bone stock (bone thickness of < 10 mm or marked comminution)
Considering atraumatic fatigue fractures, Windsor et al. [10] associated the fracture pattern with the causative mechanism. Horizontal fractures were related to patellar maltracking and dislocation, while vertical ones passed through the patellar fixation holes. Comminuted and dislocated fractures were usually a whole of transverse and vertical fractures [10].

Outcomes and treatment strategies

Conservative treatment consists mainly of immobilization in extension, with a cast or brace, for four to six weeks, depending on the fracture type; full or partial weight-bearing is allowed [14, 610, 14]. Surgical procedures may include open reduction and internal fixation (ORIF), partial or complete patellectomy with the extensor apparatus repair, patellar component revision, or extensor apparatus reconstruction [19, 14, 2729].
Although several algorithms were developed, in the literature, there is a general trend in favor of nonsurgical treatment, except in cases of implant loosening or extensor apparatus failure (Table 3) [1, 4]. In Chalidis et al. [4] systematic review, 68.8% of PPPFs received non-operative treatment, and only 31.2% of patients underwent surgery. Conservative management is favored in most cases because of the higher number of complications associated with surgery, such as the infection rate reported in 19.2% of revision surgeries [4]. Conservative treatment is characterized by good functional results without pain, patellar, or extensor instability, with few cases of minimal extensor delay of about 5° [14, 9, 14]. Although knee function was restored, non-union or fibrous union was detected in many cases on radiographic follow-up [1, 8]. Conversely, surgery is required in type II and III PPPFs, according to Ortiguera and Berry’s classification, characterized by extensor mechanism failure or implant loosening (Fig. 5) [1]. In type II fractures, surgical options are patellar fragments ORIF, partial or complete patellectomy with extensor apparatus repair, augmentation with adjacent tendons, or reconstruction with extensor allograft in cases of severe extensor tendon rupture and residual extension lag (Fig. 6) [14, 8, 9, 14, 15]. Type III fractures involving implant loosening require operative treatment, especially in symptomatic patients [14, 8, 9]. The most appropriate management is related to residual bone stock: type IIIa fractures undergo implant revision or resection arthroplasty, while type IIIb requires implant removal with partial or complete patellectomy [1, 4, 28, 29]. However, the complication rate is high; Ortiguera and Berry [1] described more than half of type III fractures as symptomatic at the last follow-up, while Parvizi et al. [3] reported that two out of three type III PPPFs required reoperation. Sometimes, in low functional demands and non-symptomatic patients, even PPPF type II and III may be treated conservatively due to the high complication rate associated with surgical procedures [1, 4].
Table 3
Algorithm for the proper management of periprosthetic patellar fractures
Fracture pattern
Management options
Fracture: undisplaced
• Cast
Implant: stable
• Functional brace
Fracture: displaced
• Partial patellectomy
Implant: stable
• Non-operative management
Fracture: ± displaced
• Available bone stock
Implant: loose
 • Revision + patelloplasty
 
 • Excision arthroplasty
 
• Non-available bone stock
 
 • Excision arthroplasty
 
 • Partial or total patellectomy
Intraoperative PPPFs and fractures occurring in non-resurfaced patella deserve a separate analysis. Intraoperative PPPFs could be synthesized during surgery, and the patella should be later resurfaced if symptoms appear [11], whereas non-resurfaced PPPFs are generally treated as traumatic patellar fractures [3, 8, 30].
Windsor et al. [10] in their study, treated PPPFs surgically or conservatively based on fracture patterns and displacement. The authors divided fractures into the transverse, vertical, and comminuted, and further into displaced or nondisplaced with 2 cm as the displacement limit. Vertical, comminuted, and transverse fractures with less than 2 cm displacement could be treated conservatively; on the contrary, both transverse patella fractures with displacement greater than 2 cm and severely comminuted fractures associated with extension lag and quadriceps weakness should be managed surgically [10].

Conclusions

The PPPF is an uncommon but potentially devastating complication after TKA and rTKA. Risk factors are well established, and surgeons should be aware of them to prevent this unpleasant complication. Most PPPFs are asymptomatic; therefore, there is a general trend in favor of nonsurgical treatment, which often gives satisfactory clinical and functional results, except in cases of implant loosening or disruption of the extensor mechanism require surgery for proper restoration of normal extensor function and implant stability.

Declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Orthopädie & Unfallchirurgie

Kombi-Abonnement

Mit e.Med Orthopädie & Unfallchirurgie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Ortiguera CJ, Berry DJ (2002) Patellar fracture after total knee arthroplasty. J Bone Jt Surg Am 84(4):532–540CrossRef Ortiguera CJ, Berry DJ (2002) Patellar fracture after total knee arthroplasty. J Bone Jt Surg Am 84(4):532–540CrossRef
2.
Zurück zum Zitat Putman S, Boureau F, Girard J, Migaud H, Pasquier G (2019) Patellar complications after total knee arthroplasty. Orthop Traumatol Surg Res 105(1S):S43–S51CrossRefPubMed Putman S, Boureau F, Girard J, Migaud H, Pasquier G (2019) Patellar complications after total knee arthroplasty. Orthop Traumatol Surg Res 105(1S):S43–S51CrossRefPubMed
3.
Zurück zum Zitat Parvizi J, Kim KI, Oliashirazi A, Ong A, Sharkey PF (2006) Periprosthetic patellar fractures. Clin Orthop Relat Res 446:161–166CrossRefPubMed Parvizi J, Kim KI, Oliashirazi A, Ong A, Sharkey PF (2006) Periprosthetic patellar fractures. Clin Orthop Relat Res 446:161–166CrossRefPubMed
4.
Zurück zum Zitat Chalidis BE, Tsiridis E, Tragas AA, Stavrou Z, Giannoudis PV (2007) Management of periprosthetic patellar fractures. A systematic review of literature. Injury 38(6):714–724CrossRefPubMed Chalidis BE, Tsiridis E, Tragas AA, Stavrou Z, Giannoudis PV (2007) Management of periprosthetic patellar fractures. A systematic review of literature. Injury 38(6):714–724CrossRefPubMed
5.
Zurück zum Zitat Berry DJ (1999) Epidemiology: hip and knee. Orthop Clin N Am 30(2):183–190CrossRef Berry DJ (1999) Epidemiology: hip and knee. Orthop Clin N Am 30(2):183–190CrossRef
6.
Zurück zum Zitat Goldberg VM, Figgie HE 3rd, Inglis AE, Figgie MP, Sobel M, Kelly M et al (1988) Patellar fracture type and prognosis in condylar total knee arthroplasty. Clin Orthop Relat Res 236:115–122CrossRef Goldberg VM, Figgie HE 3rd, Inglis AE, Figgie MP, Sobel M, Kelly M et al (1988) Patellar fracture type and prognosis in condylar total knee arthroplasty. Clin Orthop Relat Res 236:115–122CrossRef
7.
Zurück zum Zitat Schreiner AJ, Gonser C, Ihle C, Zauleck MK, Klopfer T, Stuby F et al (2018) Adverse events in the treatment of periprosthetic fractures around the knee: a clinical and radiological outcome analysis. Z Orthop Unfallchirurgie 156(3):287–297CrossRef Schreiner AJ, Gonser C, Ihle C, Zauleck MK, Klopfer T, Stuby F et al (2018) Adverse events in the treatment of periprosthetic fractures around the knee: a clinical and radiological outcome analysis. Z Orthop Unfallchirurgie 156(3):287–297CrossRef
8.
Zurück zum Zitat Deans J, Scuderi GR (2021) Classification and management of periprosthetic patella fractures. Orthop Clin N Am 52(4):347–355CrossRef Deans J, Scuderi GR (2021) Classification and management of periprosthetic patella fractures. Orthop Clin N Am 52(4):347–355CrossRef
9.
Zurück zum Zitat Sheth NP, Pedowitz DI, Lonner JH (2007) Periprosthetic patellar fractures. J Bone Jt Surg Am 89(10):2285–2296CrossRef Sheth NP, Pedowitz DI, Lonner JH (2007) Periprosthetic patellar fractures. J Bone Jt Surg Am 89(10):2285–2296CrossRef
10.
Zurück zum Zitat Windsor RE, Scuderi GR, Insall JN (1989) Patellar fractures in total knee arthroplasty. J Arthroplasty 4(Suppl):S63–S67CrossRefPubMed Windsor RE, Scuderi GR, Insall JN (1989) Patellar fractures in total knee arthroplasty. J Arthroplasty 4(Suppl):S63–S67CrossRefPubMed
11.
Zurück zum Zitat Assiotis A, To K, Morgan-Jones R, Pengas IP, Khan W (2019) Patellar complications following total knee arthroplasty: a review of the current literature. Eur J Orthop Surg Traumatol 29(8):1605–1615CrossRefPubMed Assiotis A, To K, Morgan-Jones R, Pengas IP, Khan W (2019) Patellar complications following total knee arthroplasty: a review of the current literature. Eur J Orthop Surg Traumatol 29(8):1605–1615CrossRefPubMed
12.
Zurück zum Zitat Benkovich V, Klassov Y, Mazilis B, Bloom S (2019) Periprosthetic fractures of the knee: a comprehensive review. Eur J Orthop Surg Traumatol 30(3):387–399CrossRefPubMedPubMedCentral Benkovich V, Klassov Y, Mazilis B, Bloom S (2019) Periprosthetic fractures of the knee: a comprehensive review. Eur J Orthop Surg Traumatol 30(3):387–399CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Desai KB, Karumuri K, Reddy MV, Hippalgaonkar K, V R, Reddy AVG (2023) Intraoperative periprosthetic fractures during primary total knee arthroplasty: experience from an Asian high-volume arthroplasty centre. Knee 41:342–352CrossRefPubMed Desai KB, Karumuri K, Reddy MV, Hippalgaonkar K, V R, Reddy AVG (2023) Intraoperative periprosthetic fractures during primary total knee arthroplasty: experience from an Asian high-volume arthroplasty centre. Knee 41:342–352CrossRefPubMed
14.
Zurück zum Zitat Govil G, Tomar L, Dhawan P (2020) Peri-prosthetic trans-patellar fractures after Total knee Arthroplasty: a case series and review of literature. Arthroplasty 2(1):35CrossRefPubMedPubMedCentral Govil G, Tomar L, Dhawan P (2020) Peri-prosthetic trans-patellar fractures after Total knee Arthroplasty: a case series and review of literature. Arthroplasty 2(1):35CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Adigweme OO, Sassoon AA, Langford J, Haidukewych GJ (2013) Periprosthetic patellar fractures. J Knee Surg 26(5):313–317CrossRefPubMed Adigweme OO, Sassoon AA, Langford J, Haidukewych GJ (2013) Periprosthetic patellar fractures. J Knee Surg 26(5):313–317CrossRefPubMed
16.
Zurück zum Zitat Parsons T, Al-Jabri T, Clement ND, Maffulli N, Kader DF (2021) Patella resurfacing during total knee arthroplasty is cost-effective and has lower re-operation rates compared to non-resurfacing. J Orthop Surg Res 16(1):185CrossRefPubMedPubMedCentral Parsons T, Al-Jabri T, Clement ND, Maffulli N, Kader DF (2021) Patella resurfacing during total knee arthroplasty is cost-effective and has lower re-operation rates compared to non-resurfacing. J Orthop Surg Res 16(1):185CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Lazaro LE, Cross MB, Lorich DG (2014) Vascular anatomy of the patella: implications for total knee arthroplasty surgical approaches. Knee 21(3):655–660CrossRefPubMed Lazaro LE, Cross MB, Lorich DG (2014) Vascular anatomy of the patella: implications for total knee arthroplasty surgical approaches. Knee 21(3):655–660CrossRefPubMed
19.
Zurück zum Zitat DeBell H, Pinter Z, Pinto M, Bergstresser S, Lee S, de Cesar NC et al (2019) Vascular supply at risk during lateral release of the patella during total knee arthroplasty: a cadaveric study. J Clin Orthop Trauma 10(1):107–110CrossRefPubMed DeBell H, Pinter Z, Pinto M, Bergstresser S, Lee S, de Cesar NC et al (2019) Vascular supply at risk during lateral release of the patella during total knee arthroplasty: a cadaveric study. J Clin Orthop Trauma 10(1):107–110CrossRefPubMed
20.
Zurück zum Zitat Hempfing A, Schoeniger R, Koch PP, Bischel O, Thomsen M (2007) Patellar blood flow during knee arthroplasty surgical exposure: intraoperative monitoring by laser doppler flowmetry. J Orthop Res 25(10):1389–1394CrossRefPubMed Hempfing A, Schoeniger R, Koch PP, Bischel O, Thomsen M (2007) Patellar blood flow during knee arthroplasty surgical exposure: intraoperative monitoring by laser doppler flowmetry. J Orthop Res 25(10):1389–1394CrossRefPubMed
21.
Zurück zum Zitat Stoffel KK, Flivik G, Yates PJ, Nicholls RL (2007) Intraosseous blood flow of the everted or laterally-retracted patella during total knee arthroplasty. Knee 14(6):434–438CrossRefPubMed Stoffel KK, Flivik G, Yates PJ, Nicholls RL (2007) Intraosseous blood flow of the everted or laterally-retracted patella during total knee arthroplasty. Knee 14(6):434–438CrossRefPubMed
22.
Zurück zum Zitat Cacciola G, Bosco F, Giustra F, Risitano S, Capella M, Bistolfi A et al (2022) Learning curve in robotic-assisted total knee arthroplasty: a systematic review of the literature. Appl Sci 12(21):11085CrossRef Cacciola G, Bosco F, Giustra F, Risitano S, Capella M, Bistolfi A et al (2022) Learning curve in robotic-assisted total knee arthroplasty: a systematic review of the literature. Appl Sci 12(21):11085CrossRef
23.
Zurück zum Zitat Giustra F, Bosco F, Cacciola G, Risitano S, Capella M, Bistolfi A et al (2022) No significant differences in clinical and radiographic outcomes between PCL retained or sacrificed kinematic aligned medial pivot total knee arthroplasty in varus knee. J Clin Med 11(21):6569CrossRefPubMedPubMedCentral Giustra F, Bosco F, Cacciola G, Risitano S, Capella M, Bistolfi A et al (2022) No significant differences in clinical and radiographic outcomes between PCL retained or sacrificed kinematic aligned medial pivot total knee arthroplasty in varus knee. J Clin Med 11(21):6569CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Reuben JD, McDonald CL, Woodard PL, Hennington LJ (1991) Effect of patella thickness on patella strain following total knee arthroplasty. J Arthroplasty 6(3):251–258CrossRefPubMed Reuben JD, McDonald CL, Woodard PL, Hennington LJ (1991) Effect of patella thickness on patella strain following total knee arthroplasty. J Arthroplasty 6(3):251–258CrossRefPubMed
26.
Zurück zum Zitat Seo JG, Moon YW, Park SH, Lee JH, Kang HM, Kim SM (2012) A case-control study of spontaneous patellar fractures following primary total knee replacement. J Bone Jt Surg Br 94(7):908–913CrossRef Seo JG, Moon YW, Park SH, Lee JH, Kang HM, Kim SM (2012) A case-control study of spontaneous patellar fractures following primary total knee replacement. J Bone Jt Surg Br 94(7):908–913CrossRef
27.
28.
Zurück zum Zitat Petis SM, Taunton MJ, Perry KI, Lewallen DG, Hanssen AD, Abdel MP (2020) Patellar bone-grafting for severe patellar bone loss during revision total knee arthroplasty. JBJS Essent Surg Tech 10(3):e19.00065CrossRefPubMedPubMedCentral Petis SM, Taunton MJ, Perry KI, Lewallen DG, Hanssen AD, Abdel MP (2020) Patellar bone-grafting for severe patellar bone loss during revision total knee arthroplasty. JBJS Essent Surg Tech 10(3):e19.00065CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Fuchs M, Gwinner C, Meißner N, Pfitzner T, Perka C, von Roth P (2022) Therapy of chronic extensor mechanism deficiency after total knee arthroplasty using a monofilament polypropylene mesh. Front Surg 9:1000208CrossRefPubMedPubMedCentral Fuchs M, Gwinner C, Meißner N, Pfitzner T, Perka C, von Roth P (2022) Therapy of chronic extensor mechanism deficiency after total knee arthroplasty using a monofilament polypropylene mesh. Front Surg 9:1000208CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Purudappa PP, Ramanan SP, Tripathy SK, Varatharaj S, Mounasamy V, Sambandam SN (2020) Intra-operative fractures in primary total knee arthroplasty: a systematic review. Knee Surg Relat Res 32(1):40CrossRefPubMedPubMedCentral Purudappa PP, Ramanan SP, Tripathy SK, Varatharaj S, Mounasamy V, Sambandam SN (2020) Intra-operative fractures in primary total knee arthroplasty: a systematic review. Knee Surg Relat Res 32(1):40CrossRefPubMedPubMedCentral
Metadaten
Titel
Periprosthetic patella fractures in total knee replacement and revision surgeries: how to diagnose and treat this rare but potentially devastating complication—a review of the current literature
verfasst von
Virginia Masoni
Fortunato Giustra
Francesco Bosco
Lorenzo Lo Carmine
Marcello Capella
Giorgio Cacciola
Salvatore Risitano
Luigi Sabatini
Alessandro Massè
Publikationsdatum
31.03.2023
Verlag
Springer Paris
Erschienen in
European Journal of Orthopaedic Surgery & Traumatology / Ausgabe 7/2023
Print ISSN: 1633-8065
Elektronische ISSN: 1432-1068
DOI
https://doi.org/10.1007/s00590-023-03535-9

Weitere Artikel der Ausgabe 7/2023

European Journal of Orthopaedic Surgery & Traumatology 7/2023 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

TEP mit Roboterhilfe führt nicht zu größerer Zufriedenheit

15.05.2024 Knie-TEP Nachrichten

Der Einsatz von Operationsrobotern für den Einbau von Totalendoprothesen des Kniegelenks hat die Präzision der Eingriffe erhöht. Für die postoperative Zufriedenheit der Patienten scheint das aber unerheblich zu sein, wie eine Studie zeigt.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.