Skip to main content
Erschienen in: Inflammation Research 9/2023

02.09.2023 | Original Research Paper

Pirfenidone ameliorates liver steatosis by targeting the STAT3-SCD1 axis

verfasst von: Shan Yang, Renzi Zhang, Wenzhen Deng, Shichuan Chang, Yang Li, Sheng Li

Erschienen in: Inflammation Research | Ausgabe 9/2023

Einloggen, um Zugang zu erhalten

Abstract

Objective

Previous studies reported that pirfenidone (PFD) is associated with liver disease. However, the effects of pirfenidone on energy metabolism and hepatic lipid accumulation are still poorly understood.

Methods

In this study, C57BL/6J mice were randomly divided into two groups, and fed a normal chow diet (NCD) or a high-fat diet (HFD) for 16 weeks. At the end of the eighth week, half of the mice fed on both diets were treated with PFD. Biochemical and lipid metabolism-related indices were analyzed. Furthermore, Hepa 1–6 cells and mouse primary hepatocytes (MPHs) were incubated with PFD with or without free fatty acid (FFA) treatment. Then, stattic (a p-STAT3 inhibitor) or Ad-shSTAT3 was used to further elucidate the effects of Signal Transducer and Activator of Transcription 3 (STAT3) signaling on PFD regulation of hepatic steatosis.

Results

PFD ameliorated obesity and hepatic lipid deposition in HFD mice by decreasing stearoyl-CoA desaturase 1 (SCD1) expression and upregulating p-STAT3 in the liver. In Hepa 1–6 cells and MPHs, PFD also down-regulated the expression of SCD1. STAT3 inhibition treatment eliminated the benefits of PFD on both SCD1 and hepatic steatosis.

Conclusion

In summary, our data reveal that PFD may play an important role in mitigating hepatic steatosis in a STAT3-SCD1-dependent manner.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24(7):908–22.PubMedPubMedCentralCrossRef Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24(7):908–22.PubMedPubMedCentralCrossRef
3.
4.
Zurück zum Zitat Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15(1):11–20.PubMedCrossRef Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15(1):11–20.PubMedCrossRef
5.
Zurück zum Zitat Lian CY, Zhai ZZ, Li ZF, Wang L. High fat diet-triggered non-alcoholic fatty liver disease: a review of proposed mechanisms. Chem Biol Interact. 2020;330: 109199.PubMedCrossRef Lian CY, Zhai ZZ, Li ZF, Wang L. High fat diet-triggered non-alcoholic fatty liver disease: a review of proposed mechanisms. Chem Biol Interact. 2020;330: 109199.PubMedCrossRef
6.
Zurück zum Zitat Aydos LR, do Amaral LA, de Souza RS, Jacobowski AC, Dos Santos EF, Macedo MLR. Nonalcoholic fatty liver disease induced by high-fat diet in C57bl/6 models. Nutrients. 2019;11(12):3067.CrossRef Aydos LR, do Amaral LA, de Souza RS, Jacobowski AC, Dos Santos EF, Macedo MLR. Nonalcoholic fatty liver disease induced by high-fat diet in C57bl/6 models. Nutrients. 2019;11(12):3067.CrossRef
7.
Zurück zum Zitat Thomson CC, Duggal A, Bice T, Lederer DJ, Wilson KC, Raghu G. 2018 clinical practice guideline summary for clinicians: diagnosis of idiopathic pulmonary fibrosis. Ann Am Thorac Soc. 2019;16(3):285–90.PubMed Thomson CC, Duggal A, Bice T, Lederer DJ, Wilson KC, Raghu G. 2018 clinical practice guideline summary for clinicians: diagnosis of idiopathic pulmonary fibrosis. Ann Am Thorac Soc. 2019;16(3):285–90.PubMed
8.
Zurück zum Zitat Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, et al. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med. 2018;198(5):e44–68.PubMedCrossRef Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, et al. Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med. 2018;198(5):e44–68.PubMedCrossRef
9.
Zurück zum Zitat Nathan SD, Costabel U, Glaspole I, Glassberg MK, Lancaster LH, Lederer DJ, et al. Efficacy of pirfenidone in the context of multiple disease progression events in patients with idiopathic pulmonary fibrosis. Chest. 2019;155(4):712–9.PubMedCrossRef Nathan SD, Costabel U, Glaspole I, Glassberg MK, Lancaster LH, Lederer DJ, et al. Efficacy of pirfenidone in the context of multiple disease progression events in patients with idiopathic pulmonary fibrosis. Chest. 2019;155(4):712–9.PubMedCrossRef
10.
Zurück zum Zitat Nathan SD, Albera C, Bradford WZ, Costabel U, Glaspole I, Glassberg MK, et al. Effect of pirfenidone on mortality: pooled analyses and meta-analyses of clinical trials in idiopathic pulmonary fibrosis. Lancet Respir Med. 2017;5(1):33–41.PubMedCrossRef Nathan SD, Albera C, Bradford WZ, Costabel U, Glaspole I, Glassberg MK, et al. Effect of pirfenidone on mortality: pooled analyses and meta-analyses of clinical trials in idiopathic pulmonary fibrosis. Lancet Respir Med. 2017;5(1):33–41.PubMedCrossRef
11.
Zurück zum Zitat Noble PW, Albera C, Bradford WZ, Costabel U, du Bois RM, Fagan EA, et al. Pirfenidone for idiopathic pulmonary fibrosis: analysis of pooled data from three multinational phase 3 trials. Eur Respir J. 2016;47(1):243–53.PubMedPubMedCentralCrossRef Noble PW, Albera C, Bradford WZ, Costabel U, du Bois RM, Fagan EA, et al. Pirfenidone for idiopathic pulmonary fibrosis: analysis of pooled data from three multinational phase 3 trials. Eur Respir J. 2016;47(1):243–53.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Yamagami K, Oka T, Wang Q, Ishizu T, Lee JK, Miwa K, et al. Pirfenidone exhibits cardioprotective effects by regulating myocardial fibrosis and vascular permeability in pressure-overloaded hearts. Am J Physiol Heart Circ Physiol. 2015;309(3):H512–22.PubMedCrossRef Yamagami K, Oka T, Wang Q, Ishizu T, Lee JK, Miwa K, et al. Pirfenidone exhibits cardioprotective effects by regulating myocardial fibrosis and vascular permeability in pressure-overloaded hearts. Am J Physiol Heart Circ Physiol. 2015;309(3):H512–22.PubMedCrossRef
13.
Zurück zum Zitat Yamazaki T, Yamashita N, Izumi Y, Nakamura Y, Shiota M, Hanatani A, et al. The antifibrotic agent pirfenidone inhibits angiotensin II-induced cardiac hypertrophy in mice. Hypertens Res. 2012;35(1):34–40.PubMedCrossRef Yamazaki T, Yamashita N, Izumi Y, Nakamura Y, Shiota M, Hanatani A, et al. The antifibrotic agent pirfenidone inhibits angiotensin II-induced cardiac hypertrophy in mice. Hypertens Res. 2012;35(1):34–40.PubMedCrossRef
14.
Zurück zum Zitat Meier R, Lutz C, Cosín-Roger J, Fagagnini S, Bollmann G, Hünerwadel A, et al. Decreased fibrogenesis after treatment with pirfenidone in a newly developed mouse model of intestinal fibrosis. Inflamm Bowel Dis. 2016;22(3):569–82.PubMedCrossRef Meier R, Lutz C, Cosín-Roger J, Fagagnini S, Bollmann G, Hünerwadel A, et al. Decreased fibrogenesis after treatment with pirfenidone in a newly developed mouse model of intestinal fibrosis. Inflamm Bowel Dis. 2016;22(3):569–82.PubMedCrossRef
15.
Zurück zum Zitat Bai X, Nie P, Lou Y, Zhu Y, Jiang S, Li B, et al. Pirfenidone is a renal protective drug: Mechanisms, signalling pathways, and preclinical evidence. Eur J Pharmacol. 2021;911: 174503.PubMedCrossRef Bai X, Nie P, Lou Y, Zhu Y, Jiang S, Li B, et al. Pirfenidone is a renal protective drug: Mechanisms, signalling pathways, and preclinical evidence. Eur J Pharmacol. 2021;911: 174503.PubMedCrossRef
16.
Zurück zum Zitat Xi Y, Li Y, Xu P, Li S, Liu Z, Tung HC, et al. The anti-fibrotic drug pirfenidone inhibits liver fibrosis by targeting the small oxidoreductase glutaredoxin-1. Sci Adv. 2021;7(36):eabg9241.PubMedPubMedCentralCrossRef Xi Y, Li Y, Xu P, Li S, Liu Z, Tung HC, et al. The anti-fibrotic drug pirfenidone inhibits liver fibrosis by targeting the small oxidoreductase glutaredoxin-1. Sci Adv. 2021;7(36):eabg9241.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Poo JL, Torre A, Aguilar-Ramírez JR, Cruz M, Mejía-Cuán L, Cerda E, et al. Benefits of prolonged-release pirfenidone plus standard of care treatment in patients with advanced liver fibrosis: PROMETEO study. Hepatol Int. 2020;14(5):817–27.PubMedCrossRef Poo JL, Torre A, Aguilar-Ramírez JR, Cruz M, Mejía-Cuán L, Cerda E, et al. Benefits of prolonged-release pirfenidone plus standard of care treatment in patients with advanced liver fibrosis: PROMETEO study. Hepatol Int. 2020;14(5):817–27.PubMedCrossRef
18.
Zurück zum Zitat Fabregat I, Moreno-Càceres J, Sánchez A, Dooley S, Dewidar B, Giannelli G, et al. TGF-β signalling and liver disease. FEBS J. 2016;283(12):2219–32.PubMedCrossRef Fabregat I, Moreno-Càceres J, Sánchez A, Dooley S, Dewidar B, Giannelli G, et al. TGF-β signalling and liver disease. FEBS J. 2016;283(12):2219–32.PubMedCrossRef
19.
Zurück zum Zitat Nair B, Nath LR. Inevitable role of TGF-β1 in progression of nonalcoholic fatty liver disease. J Recept Signal Transduct Res. 2020;40(3):195–200.PubMedCrossRef Nair B, Nath LR. Inevitable role of TGF-β1 in progression of nonalcoholic fatty liver disease. J Recept Signal Transduct Res. 2020;40(3):195–200.PubMedCrossRef
20.
Zurück zum Zitat Zhou X, Wang P, Ma Z, Li M, Teng X, Sun L, et al. Novel interplay between sonic hedgehog and transforming growth factor-β1 in human nonalcoholic steatohepatitis. Appl Immunohistochem Mol Morphol. 2020;28(2):154–60.PubMedCrossRef Zhou X, Wang P, Ma Z, Li M, Teng X, Sun L, et al. Novel interplay between sonic hedgehog and transforming growth factor-β1 in human nonalcoholic steatohepatitis. Appl Immunohistochem Mol Morphol. 2020;28(2):154–60.PubMedCrossRef
21.
Zurück zum Zitat Conte E, Gili E, Fagone E, Fruciano M, Iemmolo M, Vancheri C. Effect of pirfenidone on proliferation, TGF-β-induced myofibroblast differentiation and fibrogenic activity of primary human lung fibroblasts. Eur J Pharm Sci. 2014;58:13–9.PubMedCrossRef Conte E, Gili E, Fagone E, Fruciano M, Iemmolo M, Vancheri C. Effect of pirfenidone on proliferation, TGF-β-induced myofibroblast differentiation and fibrogenic activity of primary human lung fibroblasts. Eur J Pharm Sci. 2014;58:13–9.PubMedCrossRef
22.
Zurück zum Zitat Ruwanpura SM, Thomas BJ, Bardin PG. Pirfenidone: molecular mechanisms and potential clinical applications in lung disease. Am J Respir Cell Mol Biol. 2020;62(4):413–22.PubMedCrossRef Ruwanpura SM, Thomas BJ, Bardin PG. Pirfenidone: molecular mechanisms and potential clinical applications in lung disease. Am J Respir Cell Mol Biol. 2020;62(4):413–22.PubMedCrossRef
23.
Zurück zum Zitat Sandoval-Rodriguez A, Monroy-Ramirez HC, Meza-Rios A, Garcia-Bañuelos J, Vera-Cruz J, Gutiérrez-Cuevas J, et al. Pirfenidone is an agonistic ligand for PPARα and improves NASH by activation of SIRT1/LKB1/pAMPK. Hepatol Commun. 2020;4(3):434–49.PubMedPubMedCentralCrossRef Sandoval-Rodriguez A, Monroy-Ramirez HC, Meza-Rios A, Garcia-Bañuelos J, Vera-Cruz J, Gutiérrez-Cuevas J, et al. Pirfenidone is an agonistic ligand for PPARα and improves NASH by activation of SIRT1/LKB1/pAMPK. Hepatol Commun. 2020;4(3):434–49.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Escutia-Gutiérrez R, Rodríguez-Sanabria JS, Monraz-Méndez CA, García-Bañuelos J, Santos-García A, Sandoval-Rodríguez A, et al. Pirfenidone modifies hepatic miRNAs expression in a model of MAFLD/NASH. Sci Rep. 2021;11(1):11709.PubMedPubMedCentralCrossRef Escutia-Gutiérrez R, Rodríguez-Sanabria JS, Monraz-Méndez CA, García-Bañuelos J, Santos-García A, Sandoval-Rodríguez A, et al. Pirfenidone modifies hepatic miRNAs expression in a model of MAFLD/NASH. Sci Rep. 2021;11(1):11709.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Chen G, Ni Y, Nagata N, Xu L, Zhuge F, Nagashimada M, et al. Pirfenidone prevents and reverses hepatic insulin resistance and steatohepatitis by polarizing M2 macrophages. Lab Investig. 2019;99(9):1335–48.PubMedCrossRef Chen G, Ni Y, Nagata N, Xu L, Zhuge F, Nagashimada M, et al. Pirfenidone prevents and reverses hepatic insulin resistance and steatohepatitis by polarizing M2 macrophages. Lab Investig. 2019;99(9):1335–48.PubMedCrossRef
26.
Zurück zum Zitat Li S, Qi D, Li JN, Deng XY, Wang DX. Vagus nerve stimulation enhances the cholinergic anti-inflammatory pathway to reduce lung injury in acute respiratory distress syndrome via STAT3. Cell Death Discov. 2021;7(1):63.PubMedPubMedCentralCrossRef Li S, Qi D, Li JN, Deng XY, Wang DX. Vagus nerve stimulation enhances the cholinergic anti-inflammatory pathway to reduce lung injury in acute respiratory distress syndrome via STAT3. Cell Death Discov. 2021;7(1):63.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Deng W, Li Y, Ren Z, He Q, Jia Y, Liu Y, et al. Thioredoxin-interacting protein: a critical link between autophagy disorders and pancreatic β-cell dysfunction. Endocrine. 2020;70(3):526–37.PubMedCrossRef Deng W, Li Y, Ren Z, He Q, Jia Y, Liu Y, et al. Thioredoxin-interacting protein: a critical link between autophagy disorders and pancreatic β-cell dysfunction. Endocrine. 2020;70(3):526–37.PubMedCrossRef
28.
Zurück zum Zitat Zhang C, Luo X, Chen J, Zhou B, Yang M, Liu R, et al. Osteoprotegerin promotes liver steatosis by targeting the ERK-PPAR-γ-CD36 pathway. Diabetes. 2019;68(10):1902–14.PubMedCrossRef Zhang C, Luo X, Chen J, Zhou B, Yang M, Liu R, et al. Osteoprotegerin promotes liver steatosis by targeting the ERK-PPAR-γ-CD36 pathway. Diabetes. 2019;68(10):1902–14.PubMedCrossRef
29.
Zurück zum Zitat Loh Z, Fitzsimmons RL, Reid RC, Ramnath D, Clouston A, Gupta PK, et al. Inhibitors of class I histone deacetylases attenuate thioacetamide-induced liver fibrosis in mice by suppressing hepatic type 2 inflammation. Br J Pharmacol. 2019;176(19):3775–90.PubMedPubMedCentralCrossRef Loh Z, Fitzsimmons RL, Reid RC, Ramnath D, Clouston A, Gupta PK, et al. Inhibitors of class I histone deacetylases attenuate thioacetamide-induced liver fibrosis in mice by suppressing hepatic type 2 inflammation. Br J Pharmacol. 2019;176(19):3775–90.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Lv Q, Wang J, Xu C, Huang X, Ruan Z, Dai Y. Pirfenidone alleviates pulmonary fibrosis in vitro and in vivo through regulating Wnt/GSK-3β/β-catenin and TGF-β1/Smad2/3 signaling pathways. Mol Med. 2020;26(1):49.PubMedPubMedCentralCrossRef Lv Q, Wang J, Xu C, Huang X, Ruan Z, Dai Y. Pirfenidone alleviates pulmonary fibrosis in vitro and in vivo through regulating Wnt/GSK-3β/β-catenin and TGF-β1/Smad2/3 signaling pathways. Mol Med. 2020;26(1):49.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Gómez-Lechón MJ, Donato MT, Martínez-Romero A, Jiménez N, Castell JV, O’Connor JE. A human hepatocellular in vitro model to investigate steatosis. Chem Biol Interact. 2007;165(2):106–16.PubMedCrossRef Gómez-Lechón MJ, Donato MT, Martínez-Romero A, Jiménez N, Castell JV, O’Connor JE. A human hepatocellular in vitro model to investigate steatosis. Chem Biol Interact. 2007;165(2):106–16.PubMedCrossRef
33.
Zurück zum Zitat Li Y, Deng W, Wu J, He Q, Yang G, Luo X, et al. TXNIP exacerbates the senescence and ageing-related dysfunction of β-cells by inducing cell cycle arrest through p38–p16/p21-CDK-Rb pathway. Antioxid Redox Signal. 2022;68:180–95. Li Y, Deng W, Wu J, He Q, Yang G, Luo X, et al. TXNIP exacerbates the senescence and ageing-related dysfunction of β-cells by inducing cell cycle arrest through p38–p16/p21-CDK-Rb pathway. Antioxid Redox Signal. 2022;68:180–95.
34.
Zurück zum Zitat Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci. 2018;75(18):3313–27.PubMedPubMedCentralCrossRef Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci. 2018;75(18):3313–27.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Khan RS, Bril F, Cusi K, Newsome PN. Modulation of insulin resistance in nonalcoholic fatty liver disease. Hepatology. 2019;70(2):711–24.PubMedCrossRef Khan RS, Bril F, Cusi K, Newsome PN. Modulation of insulin resistance in nonalcoholic fatty liver disease. Hepatology. 2019;70(2):711–24.PubMedCrossRef
37.
Zurück zum Zitat Ruiz-Núñez B, Pruimboom L, Dijck-Brouwer DA, Muskiet FA. Lifestyle and nutritional imbalances associated with Western diseases: causes and consequences of chronic systemic low-grade inflammation in an evolutionary context. J Nutr Biochem. 2013;24(7):1183–201.PubMedCrossRef Ruiz-Núñez B, Pruimboom L, Dijck-Brouwer DA, Muskiet FA. Lifestyle and nutritional imbalances associated with Western diseases: causes and consequences of chronic systemic low-grade inflammation in an evolutionary context. J Nutr Biochem. 2013;24(7):1183–201.PubMedCrossRef
38.
39.
Zurück zum Zitat Murphy EF, Cotter PD, Hogan A, O’Sullivan O, Joyce A, Fouhy F, et al. Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity. Gut. 2013;62(2):220–6.PubMedCrossRef Murphy EF, Cotter PD, Hogan A, O’Sullivan O, Joyce A, Fouhy F, et al. Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity. Gut. 2013;62(2):220–6.PubMedCrossRef
41.
Zurück zum Zitat Yang L, Roh YS, Song J, Zhang B, Liu C, Loomba R, et al. Transforming growth factor beta signaling in hepatocytes participates in steatohepatitis through regulation of cell death and lipid metabolism in mice. Hepatology. 2014;59(2):483–95.PubMedCrossRef Yang L, Roh YS, Song J, Zhang B, Liu C, Loomba R, et al. Transforming growth factor beta signaling in hepatocytes participates in steatohepatitis through regulation of cell death and lipid metabolism in mice. Hepatology. 2014;59(2):483–95.PubMedCrossRef
42.
Zurück zum Zitat Chen Q, Yi J, Liu F, Li J, Lu K, Wang X, et al. TGF-β1 contributes to the hepatic inflammation in animal models with nonalcoholic steatohepatitis by Smad3/TLR2 signaling pathway. Mol Immunol. 2022;152:129–39.PubMedCrossRef Chen Q, Yi J, Liu F, Li J, Lu K, Wang X, et al. TGF-β1 contributes to the hepatic inflammation in animal models with nonalcoholic steatohepatitis by Smad3/TLR2 signaling pathway. Mol Immunol. 2022;152:129–39.PubMedCrossRef
43.
Zurück zum Zitat Silva-Gomez JA, Galicia-Moreno M, Sandoval-Rodriguez A, Miranda-Roblero HO, Lucano-Landeros S, Santos A, et al. Hepatocarcinogenesis prevention by pirfenidone is PPARγ mediated and involves modification of nuclear NF-kB p65/p50 ratio. Int J Mol Sci. 2021;22(21):11360.PubMedPubMedCentralCrossRef Silva-Gomez JA, Galicia-Moreno M, Sandoval-Rodriguez A, Miranda-Roblero HO, Lucano-Landeros S, Santos A, et al. Hepatocarcinogenesis prevention by pirfenidone is PPARγ mediated and involves modification of nuclear NF-kB p65/p50 ratio. Int J Mol Sci. 2021;22(21):11360.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Yamamura S, Eslam M, Kawaguchi T, Tsutsumi T, Nakano D, Yoshinaga S, et al. MAFLD identifies patients with significant hepatic fibrosis better than NAFLD. Liver Int. 2020;40(12):3018–30.PubMedCrossRef Yamamura S, Eslam M, Kawaguchi T, Tsutsumi T, Nakano D, Yoshinaga S, et al. MAFLD identifies patients with significant hepatic fibrosis better than NAFLD. Liver Int. 2020;40(12):3018–30.PubMedCrossRef
46.
Zurück zum Zitat Schott MB, Weller SG, Schulze RJ, Krueger EW, Drizyte-Miller K, Casey CA, et al. Lipid droplet size directs lipolysis and lipophagy catabolism in hepatocytes. J Cell Biol. 2019;218(10):3320–35.PubMedPubMedCentralCrossRef Schott MB, Weller SG, Schulze RJ, Krueger EW, Drizyte-Miller K, Casey CA, et al. Lipid droplet size directs lipolysis and lipophagy catabolism in hepatocytes. J Cell Biol. 2019;218(10):3320–35.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Thiam AR, Beller M. The why, when and how of lipid droplet diversity. J Cell Sci. 2017;130(2):315–24.PubMed Thiam AR, Beller M. The why, when and how of lipid droplet diversity. J Cell Sci. 2017;130(2):315–24.PubMed
48.
Zurück zum Zitat Amor AJ, Cofán M, Mateo-Gallego R, Cenarro A, Civeira F, Ortega E, et al. Dietary polyunsaturated fatty acids mediate the inverse association of stearoyl-CoA desaturase activity with the risk of fatty liver in dyslipidaemic individuals. Eur J Nutr. 2019;58(4):1561–8.PubMedCrossRef Amor AJ, Cofán M, Mateo-Gallego R, Cenarro A, Civeira F, Ortega E, et al. Dietary polyunsaturated fatty acids mediate the inverse association of stearoyl-CoA desaturase activity with the risk of fatty liver in dyslipidaemic individuals. Eur J Nutr. 2019;58(4):1561–8.PubMedCrossRef
49.
Zurück zum Zitat Zhu X, Bian H, Wang L, Sun X, Xu X, Yan H, et al. Berberine attenuates nonalcoholic hepatic steatosis through the AMPK-SREBP-1c-SCD1 pathway. Free Radic Biol Med. 2019;141:192–204.PubMedCrossRef Zhu X, Bian H, Wang L, Sun X, Xu X, Yan H, et al. Berberine attenuates nonalcoholic hepatic steatosis through the AMPK-SREBP-1c-SCD1 pathway. Free Radic Biol Med. 2019;141:192–204.PubMedCrossRef
50.
Zurück zum Zitat Ahmed MAL, Syed DN, Ntambi JM. Insights into stearoyl-CoA desaturase-1 regulation of systemic metabolism. Trends Endocrinol Metab. 2017;28(12):831–42.CrossRef Ahmed MAL, Syed DN, Ntambi JM. Insights into stearoyl-CoA desaturase-1 regulation of systemic metabolism. Trends Endocrinol Metab. 2017;28(12):831–42.CrossRef
51.
Zurück zum Zitat Yang Y, Cai J, Yang X, Wang K, Sun K, Yang Z, et al. Dysregulated m6A modification promotes lipogenesis and development of non-alcoholic fatty liver disease and hepatocellular carcinoma. Mol Ther. 2022;30(6):2342–53.PubMedPubMedCentralCrossRef Yang Y, Cai J, Yang X, Wang K, Sun K, Yang Z, et al. Dysregulated m6A modification promotes lipogenesis and development of non-alcoholic fatty liver disease and hepatocellular carcinoma. Mol Ther. 2022;30(6):2342–53.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat González-Terán B, Matesanz N, Nikolic I, Verdugo MA, Sreeramkumar V, Hernández-Cosido L, et al. p38γ and p38δ reprogram liver metabolism by modulating neutrophil infiltration. EMBO J. 2016;35(5):536–52.PubMedPubMedCentralCrossRef González-Terán B, Matesanz N, Nikolic I, Verdugo MA, Sreeramkumar V, Hernández-Cosido L, et al. p38γ and p38δ reprogram liver metabolism by modulating neutrophil infiltration. EMBO J. 2016;35(5):536–52.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Zhang X, Fan L, Wu J, Xu H, Leung WY, Fu K, et al. Macrophage p38α promotes nutritional steatohepatitis through M1 polarization. J Hepatol. 2019;71(1):163–74.PubMedCrossRef Zhang X, Fan L, Wu J, Xu H, Leung WY, Fu K, et al. Macrophage p38α promotes nutritional steatohepatitis through M1 polarization. J Hepatol. 2019;71(1):163–74.PubMedCrossRef
54.
Zurück zum Zitat Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420(6913):333–6.PubMedCrossRef Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420(6913):333–6.PubMedCrossRef
55.
Zurück zum Zitat Koliaki C, Szendroedi J, Kaul K, Jelenik T, Nowotny P, Jankowiak F, et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab. 2015;21(5):739–46.PubMedCrossRef Koliaki C, Szendroedi J, Kaul K, Jelenik T, Nowotny P, Jankowiak F, et al. Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metab. 2015;21(5):739–46.PubMedCrossRef
56.
Zurück zum Zitat Kujiraoka T, Satoh Y, Ayaori M, Shiraishi Y, Arai-Nakaya Y, Hakuno D, et al. Hepatic extracellular signal-regulated kinase 2 suppresses endoplasmic reticulum stress and protects from oxidative stress and endothelial dysfunction. J Am Heart Assoc. 2013;2(4): e000361.PubMedPubMedCentralCrossRef Kujiraoka T, Satoh Y, Ayaori M, Shiraishi Y, Arai-Nakaya Y, Hakuno D, et al. Hepatic extracellular signal-regulated kinase 2 suppresses endoplasmic reticulum stress and protects from oxidative stress and endothelial dysfunction. J Am Heart Assoc. 2013;2(4): e000361.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Yecies JL, Zhang HH, Menon S, Liu S, Yecies D, Lipovsky AI, et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab. 2011;14(1):21–32.PubMedPubMedCentralCrossRef Yecies JL, Zhang HH, Menon S, Liu S, Yecies D, Lipovsky AI, et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab. 2011;14(1):21–32.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Cicuéndez B, Ruiz-Garrido I, Mora A, Sabio G. Stress kinases in the development of liver steatosis and hepatocellular carcinoma. Mol Metab. 2021;50: 101190.PubMedPubMedCentralCrossRef Cicuéndez B, Ruiz-Garrido I, Mora A, Sabio G. Stress kinases in the development of liver steatosis and hepatocellular carcinoma. Mol Metab. 2021;50: 101190.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Luo P, Wang PX, Li ZZ, Zhang XJ, Jiang X, Gong J, et al. Hepatic oncostatin M receptor β regulates obesity-induced steatosis and insulin resistance. Am J Pathol. 2016;186(5):1278–92.PubMedCrossRef Luo P, Wang PX, Li ZZ, Zhang XJ, Jiang X, Gong J, et al. Hepatic oncostatin M receptor β regulates obesity-induced steatosis and insulin resistance. Am J Pathol. 2016;186(5):1278–92.PubMedCrossRef
60.
Zurück zum Zitat Inoue H, Ogawa W, Ozaki M, Haga S, Matsumoto M, Furukawa K, et al. Role of STAT-3 in regulation of hepatic gluconeogenic genes and carbohydrate metabolism in vivo. Nat Med. 2004;10(2):168–74.PubMedCrossRef Inoue H, Ogawa W, Ozaki M, Haga S, Matsumoto M, Furukawa K, et al. Role of STAT-3 in regulation of hepatic gluconeogenic genes and carbohydrate metabolism in vivo. Nat Med. 2004;10(2):168–74.PubMedCrossRef
61.
Zurück zum Zitat Zhang L, Pan Q, Zhang L, Xia H, Liao J, Zhang X, et al. Runt-related transcription factor-1 ameliorates bile acid-induced hepatic inflammation in cholestasis through JAK/STAT3 signaling. Hepatology. 2023;77(6):1866–81.PubMedCrossRef Zhang L, Pan Q, Zhang L, Xia H, Liao J, Zhang X, et al. Runt-related transcription factor-1 ameliorates bile acid-induced hepatic inflammation in cholestasis through JAK/STAT3 signaling. Hepatology. 2023;77(6):1866–81.PubMedCrossRef
62.
Zurück zum Zitat Su TH, Shiau CW, Jao P, Liu CH, Liu CJ, Tai WT, et al. Sorafenib and its derivative SC-1 exhibit antifibrotic effects through signal transducer and activator of transcription 3 inhibition. Proc Natl Acad Sci USA. 2015;112(23):7243–8.PubMedPubMedCentralCrossRef Su TH, Shiau CW, Jao P, Liu CH, Liu CJ, Tai WT, et al. Sorafenib and its derivative SC-1 exhibit antifibrotic effects through signal transducer and activator of transcription 3 inhibition. Proc Natl Acad Sci USA. 2015;112(23):7243–8.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Ki SH, Park O, Zheng M, Morales-Ibanez O, Kolls JK, Bataller R, et al. Interleukin-22 treatment ameliorates alcoholic liver injury in a murine model of chronic-binge ethanol feeding: role of signal transducer and activator of transcription 3. Hepatology. 2010;52(4):1291–300.PubMedCrossRef Ki SH, Park O, Zheng M, Morales-Ibanez O, Kolls JK, Bataller R, et al. Interleukin-22 treatment ameliorates alcoholic liver injury in a murine model of chronic-binge ethanol feeding: role of signal transducer and activator of transcription 3. Hepatology. 2010;52(4):1291–300.PubMedCrossRef
Metadaten
Titel
Pirfenidone ameliorates liver steatosis by targeting the STAT3-SCD1 axis
verfasst von
Shan Yang
Renzi Zhang
Wenzhen Deng
Shichuan Chang
Yang Li
Sheng Li
Publikationsdatum
02.09.2023
Verlag
Springer International Publishing
Erschienen in
Inflammation Research / Ausgabe 9/2023
Print ISSN: 1023-3830
Elektronische ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-023-01776-2

Weitere Artikel der Ausgabe 9/2023

Inflammation Research 9/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei Herzinsuffizienz muss „Eisenmangel“ neu definiert werden!

16.05.2024 Herzinsuffizienz Nachrichten

Bei chronischer Herzinsuffizienz macht es einem internationalen Expertenteam zufolge wenig Sinn, die Diagnose „Eisenmangel“ am Serumferritin festzumachen. Das Team schlägt vor, sich lieber an die Transferrinsättigung zu halten.

Herzinfarkt mit 85 – trotzdem noch intensive Lipidsenkung?

16.05.2024 Hypercholesterinämie Nachrichten

Profitieren nach einem akuten Myokardinfarkt auch Betroffene über 80 Jahre noch von einer intensiven Lipidsenkung zur Sekundärprävention? Um diese Frage zu beantworten, wurden jetzt Registerdaten aus Frankreich ausgewertet.

ADHS-Medikation erhöht das kardiovaskuläre Risiko

16.05.2024 Herzinsuffizienz Nachrichten

Erwachsene, die Medikamente gegen das Aufmerksamkeitsdefizit-Hyperaktivitätssyndrom einnehmen, laufen offenbar erhöhte Gefahr, an Herzschwäche zu erkranken oder einen Schlaganfall zu erleiden. Es scheint eine Dosis-Wirkungs-Beziehung zu bestehen.

Erstmanifestation eines Diabetes-Typ-1 bei Kindern: Ein Notfall!

16.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Manifestiert sich ein Typ-1-Diabetes bei Kindern, ist das ein Notfall – ebenso wie eine diabetische Ketoazidose. Die Grundsäulen der Therapie bestehen aus Rehydratation, Insulin und Kaliumgabe. Insulin ist das Medikament der Wahl zur Behandlung der Ketoazidose.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.