Skip to main content
Erschienen in: Inflammation Research 9/2023

19.09.2023 | Original Research Paper

Systemic lupus erythematosus with high disease activity identification based on machine learning

verfasst von: Da-Cheng Wang, Wang-Dong Xu, Zhen Qin, Lu Fu, You-Yu Lan, Xiao-Yan Liu, An-Fang Huang

Erschienen in: Inflammation Research | Ausgabe 9/2023

Einloggen, um Zugang zu erhalten

Abstract

Objective

Clinical evaluation of systemic lupus erythematosus (SLE) disease activity is limited and inconsistent, and high disease activity significantly, seriously impacts on SLE patients. This study aims to generate a machine learning model to identify SLE patients with high disease activity.

Method

A total of 1014 SLE patients with low disease activity and 453 SLE patients with high disease activity were included. A total of 94 clinical, laboratory data and 17 meteorological indicators were collected. After data preprocessing, we use mutual information and multisurf to evaluate and select the importance of features. The selected features are used for machine learning modeling. Performance of the model is evaluated and verified by a series of binary classification indicators.

Results

We screened out hematuria, proteinuria, pyuria, low complement, precipitation, sunlight and other features for model construction by integrated feature selection. After hyperparameter optimization, the LGB has the best performance (ROC: AUC = 0.930; PRC: AUC = 0.911, APS = 0.913; balance accuracy: 0.856), and the worst is the naive bayes (ROC: AUC = 0.849; PRC: AUC = 0.719, APS = 0.714; balance accuracy: 0.705). Finally, the selection of features has good consistency in the composite feature importance bar plot.

Conclusion

We identify SLE patients with high disease activity by a simple machine learning pipeline, especially the LGB model based on the characteristics of proteinuria, hematuria, pyuria and other feathers screened out by collective feature selection.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kasitanon N, Hamijoyo L, Li MT, et al. Management of non-renal manifestations of systemic lupus erythematosus: a systematic literature review for the APLAR consensus statements. Int J Rheum Dis. 2022;25(11):1220–9.PubMedCrossRef Kasitanon N, Hamijoyo L, Li MT, et al. Management of non-renal manifestations of systemic lupus erythematosus: a systematic literature review for the APLAR consensus statements. Int J Rheum Dis. 2022;25(11):1220–9.PubMedCrossRef
2.
Zurück zum Zitat Chen Y, Fu L, Pu S, et al. Systemic lupus erythematosus increases risk of incident atrial fibrillation: a systematic review and meta-analysis. Int J Rheum Dis. 2022;25(10):1097–106.PubMedCrossRef Chen Y, Fu L, Pu S, et al. Systemic lupus erythematosus increases risk of incident atrial fibrillation: a systematic review and meta-analysis. Int J Rheum Dis. 2022;25(10):1097–106.PubMedCrossRef
3.
Zurück zum Zitat Barber MRW, Drenkard C, Falasinnu T, et al. Global epidemiology of systemic lupus erythematosus [published correction appears in Nat Rev Rheumatol. 2021 Sep 1;:]. Nat Rev Rheumatol. 2021;17(9):515–32.PubMedPubMedCentralCrossRef Barber MRW, Drenkard C, Falasinnu T, et al. Global epidemiology of systemic lupus erythematosus [published correction appears in Nat Rev Rheumatol. 2021 Sep 1;:]. Nat Rev Rheumatol. 2021;17(9):515–32.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Tian J, Zhang D, Yao X, Huang Y, Lu Q. Global epidemiology of systemic lupus erythematosus: a comprehensive systematic analysis and modelling study. Ann Rheum Dis. 2023;82(3):351–6.PubMedCrossRef Tian J, Zhang D, Yao X, Huang Y, Lu Q. Global epidemiology of systemic lupus erythematosus: a comprehensive systematic analysis and modelling study. Ann Rheum Dis. 2023;82(3):351–6.PubMedCrossRef
5.
Zurück zum Zitat Tamirou F, Arnaud L, Talarico R, et al. Systemic lupus erythematosus: state of the art on clinical practice guidelines. RMD Open. 2018;4(2): e000793.PubMed Tamirou F, Arnaud L, Talarico R, et al. Systemic lupus erythematosus: state of the art on clinical practice guidelines. RMD Open. 2018;4(2): e000793.PubMed
6.
Zurück zum Zitat Bernatsky S, Smargiassi A, Barnabe C, et al. Fine particulate air pollution and systemic autoimmune rheumatic disease in two Canadian provinces. Environ Res. 2016;146:85–91.PubMedCrossRef Bernatsky S, Smargiassi A, Barnabe C, et al. Fine particulate air pollution and systemic autoimmune rheumatic disease in two Canadian provinces. Environ Res. 2016;146:85–91.PubMedCrossRef
7.
Zurück zum Zitat Boudigaard SH, Schlünssen V, Vestergaard JM, et al. Occupational exposure to respirable crystalline silica and risk of autoimmune rheumatic diseases: a nationwide cohort study. Int J Epidemiol. 2021;50(4):1213–26.PubMedPubMedCentralCrossRef Boudigaard SH, Schlünssen V, Vestergaard JM, et al. Occupational exposure to respirable crystalline silica and risk of autoimmune rheumatic diseases: a nationwide cohort study. Int J Epidemiol. 2021;50(4):1213–26.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Liu JL, Woo JMP, Parks CG, Costenbader KH, Jacobsen S, Bernatsky S. Systemic lupus erythematosus risk: the role of environmental factors. Rheum Dis Clin North Am. 2022;48(4):827–43.PubMedCrossRef Liu JL, Woo JMP, Parks CG, Costenbader KH, Jacobsen S, Bernatsky S. Systemic lupus erythematosus risk: the role of environmental factors. Rheum Dis Clin North Am. 2022;48(4):827–43.PubMedCrossRef
9.
Zurück zum Zitat Gladman DD, Ibañez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000. J Rheumatol. 2002;29(2):288–91.PubMed Gladman DD, Ibañez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000. J Rheumatol. 2002;29(2):288–91.PubMed
10.
Zurück zum Zitat Nikpour M, Urowitz MB, Ibañez D, Gladman DD. Frequency and determinants of flare and persistently active disease in systemic lupus erythematosus. Arthritis Rheum. 2009;61(9):1152–8.PubMedCrossRef Nikpour M, Urowitz MB, Ibañez D, Gladman DD. Frequency and determinants of flare and persistently active disease in systemic lupus erythematosus. Arthritis Rheum. 2009;61(9):1152–8.PubMedCrossRef
11.
Zurück zum Zitat Banjari M, Touma Z, Gladman DD. Improving measures of disease activity in systemic lupus erythematosus. Expert Rev Clin Immunol. 2023;19(2):193–202.PubMedCrossRef Banjari M, Touma Z, Gladman DD. Improving measures of disease activity in systemic lupus erythematosus. Expert Rev Clin Immunol. 2023;19(2):193–202.PubMedCrossRef
12.
Zurück zum Zitat Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH. Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. Arthritis Rheum. 1992;35(6):630–40.PubMedCrossRef Bombardier C, Gladman DD, Urowitz MB, Caron D, Chang CH. Derivation of the SLEDAI. A disease activity index for lupus patients. The Committee on Prognosis Studies in SLE. Arthritis Rheum. 1992;35(6):630–40.PubMedCrossRef
13.
Zurück zum Zitat Romero-Diaz J, Isenberg D, Ramsey-Goldman R. Measures of adult systemic lupus erythematosus: updated version of British Isles Lupus Assessment Group (BILAG 2004), European Consensus Lupus Activity Measurements (ECLAM), Systemic Lupus Activity Measure, Revised (SLAM-R), Systemic Lupus Activity Questionnaire for Population Studies (SLAQ), Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K), and Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index (SDI). Arthritis Care Res (Hoboken). 2011;63 Suppl 11(011):S37–46. Romero-Diaz J, Isenberg D, Ramsey-Goldman R. Measures of adult systemic lupus erythematosus: updated version of British Isles Lupus Assessment Group (BILAG 2004), European Consensus Lupus Activity Measurements (ECLAM), Systemic Lupus Activity Measure, Revised (SLAM-R), Systemic Lupus Activity Questionnaire for Population Studies (SLAQ), Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K), and Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index (SDI). Arthritis Care Res (Hoboken). 2011;63 Suppl 11(011):S37–46.
14.
Zurück zum Zitat Rasking L, Roelens C, Sprangers B, Thienpont B, Nawrot TS, De Vusser K. Lupus, DNA methylation, and air pollution: a malicious triad. Int J Environ Res Public Health. 2022;19(22):15050.PubMedPubMedCentralCrossRef Rasking L, Roelens C, Sprangers B, Thienpont B, Nawrot TS, De Vusser K. Lupus, DNA methylation, and air pollution: a malicious triad. Int J Environ Res Public Health. 2022;19(22):15050.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Greener JG, Kandathil SM, Moffat L, Jones DT. A guide to machine learning for biologists. Nat Rev Mol Cell Biol. 2022;23(1):40–55.PubMedCrossRef Greener JG, Kandathil SM, Moffat L, Jones DT. A guide to machine learning for biologists. Nat Rev Mol Cell Biol. 2022;23(1):40–55.PubMedCrossRef
16.
Zurück zum Zitat Handelman GS, Kok HK, Chandra RV, Razavi AH, Lee MJ, Asadi H. eDoctor: machine learning and the future of medicine. J Intern Med. 2018;284(6):603–19.PubMedCrossRef Handelman GS, Kok HK, Chandra RV, Razavi AH, Lee MJ, Asadi H. eDoctor: machine learning and the future of medicine. J Intern Med. 2018;284(6):603–19.PubMedCrossRef
17.
Zurück zum Zitat Tao W, Concepcion AN, Vianen M, et al. Multiomics and machine learning accurately predict clinical response to adalimumab and etanercept therapy in patients with rheumatoid arthritis. Arthritis Rheumatol. 2021;73(2):212–22.PubMedCrossRef Tao W, Concepcion AN, Vianen M, et al. Multiomics and machine learning accurately predict clinical response to adalimumab and etanercept therapy in patients with rheumatoid arthritis. Arthritis Rheumatol. 2021;73(2):212–22.PubMedCrossRef
18.
Zurück zum Zitat Chen Y, Liao R, Yao Y, Wang Q, Fu L. Machine learning to identify immune-related biomarkers of rheumatoid arthritis based on WGCNA network. Clin Rheumatol. 2022;41(4):1057–68.PubMedCrossRef Chen Y, Liao R, Yao Y, Wang Q, Fu L. Machine learning to identify immune-related biomarkers of rheumatoid arthritis based on WGCNA network. Clin Rheumatol. 2022;41(4):1057–68.PubMedCrossRef
19.
Zurück zum Zitat Robinson GA, Peng J, Dönnes P, et al. Disease-associated and patient-specific immune cell signatures in juvenile-onset systemic lupus erythematosus: patient stratification using a machine-learning approach. Lancet Rheumatol. 2020;2(8):e485–96.PubMedPubMedCentralCrossRef Robinson GA, Peng J, Dönnes P, et al. Disease-associated and patient-specific immune cell signatures in juvenile-onset systemic lupus erythematosus: patient stratification using a machine-learning approach. Lancet Rheumatol. 2020;2(8):e485–96.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Wang L, Zhu L, Jiang J, Wang L, Ni W. Decision tree analysis for evaluating disease activity in patients with rheumatoid arthritis. J Int Med Res. 2021;49(10):3000605211053232.PubMedCrossRef Wang L, Zhu L, Jiang J, Wang L, Ni W. Decision tree analysis for evaluating disease activity in patients with rheumatoid arthritis. J Int Med Res. 2021;49(10):3000605211053232.PubMedCrossRef
21.
Zurück zum Zitat Wu X, Chen C, Chen X, et al. Raman spectroscopy combined with machine learning algorithms for rapid detection primary Sjögren’s syndrome associated with interstitial lung disease. Photodiagn Photodyn Ther. 2022;40: 103057.CrossRef Wu X, Chen C, Chen X, et al. Raman spectroscopy combined with machine learning algorithms for rapid detection primary Sjögren’s syndrome associated with interstitial lung disease. Photodiagn Photodyn Ther. 2022;40: 103057.CrossRef
22.
Zurück zum Zitat Mak A, Isenberg DA, Lau CS. Global trends, potential mechanisms and early detection of organ damage in SLE. Nat Rev Rheumatol. 2013;9(5):301–10.PubMedCrossRef Mak A, Isenberg DA, Lau CS. Global trends, potential mechanisms and early detection of organ damage in SLE. Nat Rev Rheumatol. 2013;9(5):301–10.PubMedCrossRef
23.
Zurück zum Zitat Yap DY, Chan TM. Lupus nephritis in Asia: clinical features and management. Kidney Dis (Basel). 2015;1(2):100–9.PubMedCrossRef Yap DY, Chan TM. Lupus nephritis in Asia: clinical features and management. Kidney Dis (Basel). 2015;1(2):100–9.PubMedCrossRef
24.
Zurück zum Zitat Hanly JG, O’Keeffe AG, Su L, et al. The frequency and outcome of lupus nephritis: results from an international inception cohort study. Rheumatology (Oxford). 2016;55(2):252–62.PubMedCrossRef Hanly JG, O’Keeffe AG, Su L, et al. The frequency and outcome of lupus nephritis: results from an international inception cohort study. Rheumatology (Oxford). 2016;55(2):252–62.PubMedCrossRef
25.
Zurück zum Zitat Kandane-Rathnayake R, Kent JR, Louthrenoo W, et al. Longitudinal associations of active renal disease with irreversible organ damage accrual in systemic lupus erythematosus. Lupus. 2019;28(14):1669–77.PubMedCrossRef Kandane-Rathnayake R, Kent JR, Louthrenoo W, et al. Longitudinal associations of active renal disease with irreversible organ damage accrual in systemic lupus erythematosus. Lupus. 2019;28(14):1669–77.PubMedCrossRef
26.
Zurück zum Zitat Chen SY, Liu MF, Kuo PY, Wang CR. Upregulated expression of STAT3/IL-17 in patients with systemic lupus erythematosus. Clin Rheumatol. 2019;38(5):1361–6.PubMedCrossRef Chen SY, Liu MF, Kuo PY, Wang CR. Upregulated expression of STAT3/IL-17 in patients with systemic lupus erythematosus. Clin Rheumatol. 2019;38(5):1361–6.PubMedCrossRef
27.
Zurück zum Zitat Bernatsky S, Fournier M, Pineau CA, Clarke AE, Vinet E, Smargiassi A. Associations between ambient fine particulate levels and disease activity in patients with systemic lupus erythematosus (SLE). Environ Health Perspect. 2011;119(1):45–9.PubMedCrossRef Bernatsky S, Fournier M, Pineau CA, Clarke AE, Vinet E, Smargiassi A. Associations between ambient fine particulate levels and disease activity in patients with systemic lupus erythematosus (SLE). Environ Health Perspect. 2011;119(1):45–9.PubMedCrossRef
28.
Zurück zum Zitat Alves AGF, de Azevedo Giacomin MF, Braga ALF, et al. Influence of air pollution on airway inflammation and disease activity in childhood-systemic lupus erythematosus. Clin Rheumatol. 2018;37(3):683–90.PubMedCrossRef Alves AGF, de Azevedo Giacomin MF, Braga ALF, et al. Influence of air pollution on airway inflammation and disease activity in childhood-systemic lupus erythematosus. Clin Rheumatol. 2018;37(3):683–90.PubMedCrossRef
29.
Zurück zum Zitat Fernandes EC, Silva CA, Braga AL, Sallum AM, Campos LM, Farhat SC. Exposure to air pollutants and disease activity in juvenile-onset systemic lupus erythematosus patients. Arthritis Care Res (Hoboken). 2015;67(11):1609–14.PubMedCrossRef Fernandes EC, Silva CA, Braga AL, Sallum AM, Campos LM, Farhat SC. Exposure to air pollutants and disease activity in juvenile-onset systemic lupus erythematosus patients. Arthritis Care Res (Hoboken). 2015;67(11):1609–14.PubMedCrossRef
30.
Zurück zum Zitat Abdul Kadir WD, Jamil A, Shaharir SS, Md Nor N, Abdul Gafor AH. Photoprotection awareness and practices among patients with systemic lupus erythematosus and its association with disease activity and severity. Lupus. 2018;27(8):1287–95.PubMedCrossRef Abdul Kadir WD, Jamil A, Shaharir SS, Md Nor N, Abdul Gafor AH. Photoprotection awareness and practices among patients with systemic lupus erythematosus and its association with disease activity and severity. Lupus. 2018;27(8):1287–95.PubMedCrossRef
31.
Zurück zum Zitat Adamichou C, Genitsaridi I, Nikolopoulos D, et al. Lupus or not? SLE Risk Probability Index (SLERPI): a simple, clinician-friendly machine learning-based model to assist the diagnosis of systemic lupus erythematosus. Ann Rheum Dis. 2021;80(6):758–66.PubMedCrossRef Adamichou C, Genitsaridi I, Nikolopoulos D, et al. Lupus or not? SLE Risk Probability Index (SLERPI): a simple, clinician-friendly machine learning-based model to assist the diagnosis of systemic lupus erythematosus. Ann Rheum Dis. 2021;80(6):758–66.PubMedCrossRef
32.
Zurück zum Zitat Hao X, Zheng D, Khan M, et al. Machine learning models for predicting adverse pregnancy outcomes in pregnant women with systemic lupus erythematosus. Diagnostics (Basel). 2023;13(4):612.PubMedCrossRef Hao X, Zheng D, Khan M, et al. Machine learning models for predicting adverse pregnancy outcomes in pregnant women with systemic lupus erythematosus. Diagnostics (Basel). 2023;13(4):612.PubMedCrossRef
33.
Zurück zum Zitat Tang H, Poynton MR, Hurdle JF, Baird BC, Koford JK, Goldfarb-Rumyantzev AS. Predicting three-year kidney graft survival in recipients with systemic lupus erythematosus. ASAIO J. 2011;57(4):300–9.PubMedCrossRef Tang H, Poynton MR, Hurdle JF, Baird BC, Koford JK, Goldfarb-Rumyantzev AS. Predicting three-year kidney graft survival in recipients with systemic lupus erythematosus. ASAIO J. 2011;57(4):300–9.PubMedCrossRef
35.
Zurück zum Zitat Li K, Fard N. A novel nonparametric feature selection approach based on mutual information transfer network. Entropy (Basel). 2022;24(9):1255.PubMedCrossRef Li K, Fard N. A novel nonparametric feature selection approach based on mutual information transfer network. Entropy (Basel). 2022;24(9):1255.PubMedCrossRef
36.
Zurück zum Zitat Sun L, Xu J. Feature selection using mutual information based uncertainty measures for tumor classification. Biomed Mater Eng. 2014;24(1):763–70.PubMed Sun L, Xu J. Feature selection using mutual information based uncertainty measures for tumor classification. Biomed Mater Eng. 2014;24(1):763–70.PubMed
37.
Zurück zum Zitat Viswanathan R, Bingham A, Raghav S, et al. Normalized Mutual Information of phonetic sound to distinguish the speech of Parkinson’s disease. Annu Int Conf IEEE Eng Med Biol Soc. 2019;2019:3523–6.PubMed Viswanathan R, Bingham A, Raghav S, et al. Normalized Mutual Information of phonetic sound to distinguish the speech of Parkinson’s disease. Annu Int Conf IEEE Eng Med Biol Soc. 2019;2019:3523–6.PubMed
38.
Zurück zum Zitat Woodward AA, Taylor DM, Goldmuntz E, et al. Gene-interaction-sensitive enrichment analysis in congenital heart disease. BioData Min. 2022;15(1):4.PubMedPubMedCentralCrossRef Woodward AA, Taylor DM, Goldmuntz E, et al. Gene-interaction-sensitive enrichment analysis in congenital heart disease. BioData Min. 2022;15(1):4.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Urbanowicz RJ, Olson RS, Schmitt P, Meeker M, Moore JH. Benchmarking relief-based feature selection methods for bioinformatics data mining. J Biomed Inform. 2018;85:168–88.PubMedPubMedCentralCrossRef Urbanowicz RJ, Olson RS, Schmitt P, Meeker M, Moore JH. Benchmarking relief-based feature selection methods for bioinformatics data mining. J Biomed Inform. 2018;85:168–88.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Li Y, Zhao L. Application of machine learning in rheumatic immune diseases [retracted in: J Healthc Eng. 2023 Jan 26;2023:9856260]. J Healthc Eng. 2022;2022:9273641.PubMedPubMedCentral Li Y, Zhao L. Application of machine learning in rheumatic immune diseases [retracted in: J Healthc Eng. 2023 Jan 26;2023:9856260]. J Healthc Eng. 2022;2022:9273641.PubMedPubMedCentral
41.
Zurück zum Zitat Watanabe S, Shimobaba T, Kakue T, Ito T. Hyperparameter tuning of optical neural network classifiers for high-order Gaussian beams. Opt Express. 2022;30(7):11079–89.PubMedCrossRef Watanabe S, Shimobaba T, Kakue T, Ito T. Hyperparameter tuning of optical neural network classifiers for high-order Gaussian beams. Opt Express. 2022;30(7):11079–89.PubMedCrossRef
42.
Zurück zum Zitat Ratul IJ, Wani UH, Nishat MM, et al. Survival prediction of children undergoing hematopoietic stem cell transplantation using different machine learning classifiers by performing chi-square test and hyperparameter optimization: a retrospective analysis. Comput Math Methods Med. 2022;2022:9391136.PubMedPubMedCentralCrossRef Ratul IJ, Wani UH, Nishat MM, et al. Survival prediction of children undergoing hematopoietic stem cell transplantation using different machine learning classifiers by performing chi-square test and hyperparameter optimization: a retrospective analysis. Comput Math Methods Med. 2022;2022:9391136.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Muzoğlu N, Halefoğlu AM, Avci MO, Kaya Karaaslan M, Yarman BSB. Detection of COVID-19 and its pulmonary stage using Bayesian hyperparameter optimization and deep feature selection methods [published online ahead of print, 2022 Sep 26]. Expert Syst. 2022;e13141. Muzoğlu N, Halefoğlu AM, Avci MO, Kaya Karaaslan M, Yarman BSB. Detection of COVID-19 and its pulmonary stage using Bayesian hyperparameter optimization and deep feature selection methods [published online ahead of print, 2022 Sep 26]. Expert Syst. 2022;e13141.
44.
Zurück zum Zitat Rufo DD, Debelee TG, Ibenthal A, Negera WG. Diagnosis of diabetes mellitus using gradient boosting machine (LightGBM). Diagnostics (Basel). 2021;11(9):1714.PubMedCrossRef Rufo DD, Debelee TG, Ibenthal A, Negera WG. Diagnosis of diabetes mellitus using gradient boosting machine (LightGBM). Diagnostics (Basel). 2021;11(9):1714.PubMedCrossRef
46.
Zurück zum Zitat Liao H, Zhang X, Zhao C, Chen Y, Zeng X, Li H. LightGBM: an efficient and accurate method for predicting pregnancy diseases. J Obstet Gynaecol. 2022;42(4):620–9.PubMedCrossRef Liao H, Zhang X, Zhao C, Chen Y, Zeng X, Li H. LightGBM: an efficient and accurate method for predicting pregnancy diseases. J Obstet Gynaecol. 2022;42(4):620–9.PubMedCrossRef
47.
Zurück zum Zitat Kang MW, Kim S, Kim YC, et al. Machine learning model to predict hypotension after starting continuous renal replacement therapy. Sci Rep. 2021;11(1):17169.PubMedPubMedCentralCrossRef Kang MW, Kim S, Kim YC, et al. Machine learning model to predict hypotension after starting continuous renal replacement therapy. Sci Rep. 2021;11(1):17169.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Jiang Y, Zhang X, Ma R, et al. Cardiovascular disease prediction by machine learning algorithms based on cytokines in Kazakhs of China. Clin Epidemiol. 2021;13:417–28.PubMedPubMedCentralCrossRef Jiang Y, Zhang X, Ma R, et al. Cardiovascular disease prediction by machine learning algorithms based on cytokines in Kazakhs of China. Clin Epidemiol. 2021;13:417–28.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Akca ÜK, Batu ED, Kısaarslan AP, et al. Hematological involvement in pediatric systemic lupus erythematosus: a multi-center study. Lupus. 2021;30(12):1983–90.PubMedCrossRef Akca ÜK, Batu ED, Kısaarslan AP, et al. Hematological involvement in pediatric systemic lupus erythematosus: a multi-center study. Lupus. 2021;30(12):1983–90.PubMedCrossRef
50.
Zurück zum Zitat Zborovskiĭ AB, Martem’ianov VF, Nuruzzaman M. Kliniko-diagnosticheskoe znachenie opredelenie aktivnosti i izofermentov kreatinkinazy u bol’nykh sistemnoĭ krasnoĭ volchankoĭ [The clinico-diagnostic significance of determining creatine kinase activity and isoenzymes in patients with systemic lupus erythematosus]. Sov Med. 1991;7:22–5. Zborovskiĭ AB, Martem’ianov VF, Nuruzzaman M. Kliniko-diagnosticheskoe znachenie opredelenie aktivnosti i izofermentov kreatinkinazy u bol’nykh sistemnoĭ krasnoĭ volchankoĭ [The clinico-diagnostic significance of determining creatine kinase activity and isoenzymes in patients with systemic lupus erythematosus]. Sov Med. 1991;7:22–5.
51.
Zurück zum Zitat Rangel A, Lavalle C, Chávez E, et al. Myocardial infarction in patients with systemic lupus erythematosus with normal findings from coronary arteriography and without coronary vasculitis–case reports. Angiology. 1999;50(3):245–53.PubMedCrossRef Rangel A, Lavalle C, Chávez E, et al. Myocardial infarction in patients with systemic lupus erythematosus with normal findings from coronary arteriography and without coronary vasculitis–case reports. Angiology. 1999;50(3):245–53.PubMedCrossRef
52.
Zurück zum Zitat Pérez A, Martínez-Rosell G, De Fabritiis G. Simulations meet machine learning in structural biology. Curr Opin Struct Biol. 2018;49:139–44.PubMedCrossRef Pérez A, Martínez-Rosell G, De Fabritiis G. Simulations meet machine learning in structural biology. Curr Opin Struct Biol. 2018;49:139–44.PubMedCrossRef
53.
Zurück zum Zitat Uddin S, Khan A, Hossain ME, Moni MA. Comparing different supervised machine learning algorithms for disease prediction. BMC Med Inform Decis Mak. 2019;19(1):281.PubMedPubMedCentralCrossRef Uddin S, Khan A, Hossain ME, Moni MA. Comparing different supervised machine learning algorithms for disease prediction. BMC Med Inform Decis Mak. 2019;19(1):281.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Adlung L, Cohen Y, Mor U, Elinav E. Machine learning in clinical decision making. Medicine (New York). 2021;2(6):642–65. Adlung L, Cohen Y, Mor U, Elinav E. Machine learning in clinical decision making. Medicine (New York). 2021;2(6):642–65.
55.
Zurück zum Zitat Lai PK, Fernando A, Cloutier TK, et al. Machine learning feature selection for predicting high concentration therapeutic antibody aggregation. J Pharm Sci. 2021;110(4):1583–91.PubMedCrossRef Lai PK, Fernando A, Cloutier TK, et al. Machine learning feature selection for predicting high concentration therapeutic antibody aggregation. J Pharm Sci. 2021;110(4):1583–91.PubMedCrossRef
56.
Zurück zum Zitat Dagliati A, Marini S, Sacchi L, et al. Machine learning methods to predict diabetes complications. J Diabetes Sci Technol. 2018;12(2):295–302.PubMedCrossRef Dagliati A, Marini S, Sacchi L, et al. Machine learning methods to predict diabetes complications. J Diabetes Sci Technol. 2018;12(2):295–302.PubMedCrossRef
57.
Zurück zum Zitat Ji GW, Jiao CY, Xu ZG, Li XC, Wang K, Wang XH. Development and validation of a gradient boosting machine to predict prognosis after liver resection for intrahepatic cholangiocarcinoma. BMC Cancer. 2022;22(1):258.PubMedPubMedCentralCrossRef Ji GW, Jiao CY, Xu ZG, Li XC, Wang K, Wang XH. Development and validation of a gradient boosting machine to predict prognosis after liver resection for intrahepatic cholangiocarcinoma. BMC Cancer. 2022;22(1):258.PubMedPubMedCentralCrossRef
Metadaten
Titel
Systemic lupus erythematosus with high disease activity identification based on machine learning
verfasst von
Da-Cheng Wang
Wang-Dong Xu
Zhen Qin
Lu Fu
You-Yu Lan
Xiao-Yan Liu
An-Fang Huang
Publikationsdatum
19.09.2023
Verlag
Springer International Publishing
Erschienen in
Inflammation Research / Ausgabe 9/2023
Print ISSN: 1023-3830
Elektronische ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-023-01793-1

Weitere Artikel der Ausgabe 9/2023

Inflammation Research 9/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Bei Herzinsuffizienz muss „Eisenmangel“ neu definiert werden!

16.05.2024 Herzinsuffizienz Nachrichten

Bei chronischer Herzinsuffizienz macht es einem internationalen Expertenteam zufolge wenig Sinn, die Diagnose „Eisenmangel“ am Serumferritin festzumachen. Das Team schlägt vor, sich lieber an die Transferrinsättigung zu halten.

Herzinfarkt mit 85 – trotzdem noch intensive Lipidsenkung?

16.05.2024 Hypercholesterinämie Nachrichten

Profitieren nach einem akuten Myokardinfarkt auch Betroffene über 80 Jahre noch von einer intensiven Lipidsenkung zur Sekundärprävention? Um diese Frage zu beantworten, wurden jetzt Registerdaten aus Frankreich ausgewertet.

ADHS-Medikation erhöht das kardiovaskuläre Risiko

16.05.2024 Herzinsuffizienz Nachrichten

Erwachsene, die Medikamente gegen das Aufmerksamkeitsdefizit-Hyperaktivitätssyndrom einnehmen, laufen offenbar erhöhte Gefahr, an Herzschwäche zu erkranken oder einen Schlaganfall zu erleiden. Es scheint eine Dosis-Wirkungs-Beziehung zu bestehen.

Erstmanifestation eines Diabetes-Typ-1 bei Kindern: Ein Notfall!

16.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Manifestiert sich ein Typ-1-Diabetes bei Kindern, ist das ein Notfall – ebenso wie eine diabetische Ketoazidose. Die Grundsäulen der Therapie bestehen aus Rehydratation, Insulin und Kaliumgabe. Insulin ist das Medikament der Wahl zur Behandlung der Ketoazidose.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.