Skip to main content
Erschienen in: Translational Stroke Research 2/2022

09.07.2021 | Original Article

Plasma Kallikrein Contributes to Intracerebral Hemorrhage and Hypertension in Stroke-Prone Spontaneously Hypertensive Rats

verfasst von: Jian Guan, Allen C. Clermont, Loc-Duyen Pham, Tuna Ustunkaya, Alexey S. Revenko, A. Robert MacLeod, Edward P. Feener, Fabrício Simão

Erschienen in: Translational Stroke Research | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten

Abstract

Plasma kallikrein (PKa) has been implicated in contributing to hemorrhage following thrombolytic therapy; however, its role in spontaneous intracerebral hemorrhage is currently not available. This report investigates the role of PKa on hemorrhage and hypertension in stroke-prone spontaneously hypertensive rats (SHRSP). SHRSP were fed with a high salt–containing stroke-prone diet to increase blood pressure and induce intracerebral hemorrhage. The roles of PKa on blood pressure, hemorrhage, and survival in SHRSP were examined in rats receiving a PKa inhibitor or plasma prekallikrein antisense oligonucleotide (PK ASO) compared with rats receiving control ASO. Effects on PKa on the proteolytic cleavage of atrial natriuretic peptide (ANP) were analyzed by tandem mass spectrometry. We show that SHRSP on high-salt diet displayed increased levels of PKa activity compared with control rats. Cleaved kininogen was increased in plasma during stroke compared to SHRSP without stroke. Systemic administration of a PKa inhibitor or PK ASO to SHRSP reduced hemorrhage and blood pressure, and improved neurological function and survival compared with SHRSP receiving control ASO. Since PKa inhibition was associated with reduced blood pressure in hypertensive rats, we investigated the effects of PKa on the cleavage of ANP. Incubation of PKa with ANP resulted in the generation fragment ANP5-28, which displayed reduced effects on blood pressure lowering compared with full length ANP. PKa contributes to increased blood pressure in SHRSP, which is associated with hemorrhage and reduced survival. PKa-mediated cleavage of ANP reduces its blood pressure lowering effects and thereby may contribute to hypertension-induced intracerebral hemorrhage.

Literatur
  1. Brott T, Thalinger K, Hertzberg V. Hypertension as a risk factor for spontaneous intracerebral hemorrhage. Stroke. 1986;17:1078–83.PubMedView Article
  2. Kazui SMK, Sawada T, Yamaguchi T. Predisposing factors to enlargement of spontaneous intracerebral hemorrhage. Stroke. 1997;28:2370–5.PubMedView Article
  3. Qureshi AI, Mendelow AD, Hanley DF. Prevalence of elevated blood pressure in 563,704 adult patients with stroke presenting to the ED in the United States. Am J Emerg Med. 2007;25:32–8.PubMedPubMed CentralView Article
  4. Carlberg B, Asplund K, Hagg E. Factors influencing admission blood pressure levels in patients with acute stroke. Stroke. 1991;22:527–30.PubMedView Article
  5. Sato S, Carcel C, Anderson CS. Blood pressure management after intracerebral hemorrhage. Curr Treat Options Neurol. 2015;17:49.PubMedView Article
  6. Willmot N, Leonardi-Bee J, Bath PMW. High blood pressure in acute stroke and subsequent outcome: a systematic review. Hypertension. 2004;43:18–24.PubMedView Article
  7. Lawes CMM, Bennett DA, Feigin VL, Rodgers A. Blood pressure and stroke. Stroke. 2004;35:776–85.PubMedView Article
  8. Schmaier AH, McCrae KR. The plasma kallikrein-kinin system: its evolution from contact activation. J Thromb Haemost. 2007;5:2323–9.PubMedView Article
  9. Liu J, Gao BB, Clermont AC, Blair P, Chilcote TJ, Sinha S, et al. Hyperglycemia-induced cerebral hematoma expansion is mediated by plasma kallikrein. Nat med. 2011;17:206–10.PubMedPubMed CentralView Article
  10. Simao F, Feener EP. The effects of the contact activation system on hemorrhage. Front Med. 2017;4:121.View Article
  11. Liu J, Clermont AC, Gao BB, Feener EP. Intraocular hemorrhage causes retinal vascular dysfunction via plasma kallikrein. Invest Ophthalmol Vis Sci. 2013;54:1086–94.PubMedPubMed CentralView Article
  12. Simao F, Ustunkaya T, Clermont AC, Feener EP. Plasma kallikrein mediates brain hemorrhage and edema caused by tissue plasminogen activator therapy in mice after stroke. Blood. 2017;129:2280–90.PubMedPubMed CentralView Article
  13. Revenko AS, Gao D, Crosby JR, Bhattachariee G, Zhao C, May C, et al. Selective depletion of plasma prekallikrein or coagulation factor XII inhibits thrombosis in mice without increased risk of bleeding. Blood. 2011;118:5302–11.PubMedPubMed CentralView Article
  14. Phipps JA, Clermont AC, Sinha S, Chilcote TJ, Bursell SE, Feener EP. Plasma kallikrein mediates angiotensin II type 1 receptor-stimulated retinal vascular permeability. Hypertension. 2009;53:175–81.PubMedView Article
  15. Jaffa AA, Durazo-Arvizu R, Zheng D, Lackland DT, Srikanth S, Garvey WT, et al. Plasma prekallikrein: a risk marker for hypertension and nephropathy in type 1 diabetes. Diabetes. 2003;52:1215–21.PubMedView Article
  16. Ferrone JD, Bhattacharjee G, Revenko AS, Zanardi TA, Warren MS, Derosier FJ, et al. IONIS-PKKKRx a novel antisense inhibitor of prekallikrein and bradykinin production. Nucleic Acid Ther. 2019;29:82–91.PubMedPubMed CentralView Article
  17. Zhang F, Guo RM, Yang M, Wen XH, Shen J. A stable focal cerebral ischemia injury model in adult mice: assessment using 7T MR imaging. AJNR Am J Neuroradiol. 2012;33:935–9.PubMedPubMed CentralView Article
  18. Gao BB, Chen X, Timothy N, Aiello LP, Feener EP. Characterization of the vitreous proteome in diabetes without diabetic retinopathy and diabetes with proliferative diabetic retinopathy. J Proteome Res. 2008;7:2516–25.PubMedView Article
  19. Mori N, Nakao K, Kihara M, Sugawara A, Sakamoto M, Yamori Y, et al. Decreased content in left atrium and increased plasma concentration of atrial natriuretic polypeptide in spontaneously hypertensive rats (SHR) and SHR stroke-prone. Biochem Biophys Res Commun. 1986;135:74–81.View Article
  20. De Bold AJ. Atrial natriuretic factor: a hormone produced by heart. Science. 1985;230:767–70.PubMedView Article
  21. Oparil S. The elusive role of atrial natriuretic peptide in hypertension. Mayo Clin Proc. 1995;70:1015–7.PubMedView Article
  22. Romero M, Caniffi C, Bouchet G, Costa MA, Elesgaray R, Arranz C, et al. Chronic treatment with atrial natriuretic peptide in spontaneously hypertensive rats: beneficial renal effects and sex differences. PLoS One. 2015;10:e0120362.
  23. Thibault G, Garcia R, Cantin M, Genest J. Atrial natriuretic factor and urinary kallikrein in the rat: antagonistic factors? Can J Physiol Pharmacol. 1984;62:645–9.PubMedView Article
  24. Briggs J, Marin-Grez M, Steipe B, Schubert G, Schnermann J. Inactivation of atrial natriuretic substance by kallikrein. Arm J Physiol. 1984;247:F480-484.
  25. Li B, Tom JY, Oare D, Yen R, Fairbrother WJ, Wells JA, et al. Minimization of a polypeptide hormone. Science. 1995;270:1657–9.PubMedView Article
  26. Zeng J, Zhang Y, Mo J, Su Z, Huang R. Two-kidney, two clip renovascular hypertensive rats can be used as stroke-prone rats. Stroke. 1998;29:1709–14.View Article
  27. Arribas SM, Costa R, Salomone S, Morel N, Godfraind T, McGrath JC. Functional reduction and associated cellular rearrangement in SHRSP rat basilar arteries are affected by salt load and calcium antagonist treatment. J Cereb Blood Flow Metab. 1999;19:517–27.PubMedView Article
  28. Arribas SM, Gordon JF, Daly CJ, Dominiczak AF, McGrath JC. Confocal microscopic characterization of a lesion in a cerebral vessel of the stroke-prone spontaneously hypertensive rat. Stroke. 1996;27:1118–23.PubMedView Article
  29. Lee JM, Zhai G, Liu Q, Gonzales ER, Yin K, Yan P, et al. Vascular permeability precedes spontaneous intracerebral hemorrhage in stroke-prone spontaneously hypertensive rats. Stroke. 2007;38:3289–91.PubMedView Article
  30. Smeda JS, Daneshtalab N. The effects of poststroke captopril and losartan treatment on cerebral blood flow autoregulation in SHRSP with hemorrhagic stroke. J Cereb Blood Flow Metab. 2011;31:476–85.PubMedView Article
  31. Smeda JS. Hemorrhagic stroke development in spontaneously hypertensive rats fed a North American. Japanese-style diet Stroke. 1989;20:1212–8.PubMed
  32. Del Bigio MR, Yan HJ, Kozlowski P, Sutherland GR, Peeling J. Serial magnetic resonance imaging of rat brain after induction of renal hypertension. Stroke. 1999;30:2440–7.PubMedView Article
  33. Okamoto K, Ohta Y, Chikugo T, Shiokawa H, Morita N. Chronic treatment with captopril, SQ 29,852, hydralazine and a 33% fish meal diet in malignant stroke-prone spontaneously hypertensive rats. J Hypertens. 1991;9:1105–7.PubMed
  34. Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 2009;338:b1665.
  35. Horning B, Kohler C, Drexler H. Role of bradykinin in mediating vascular effects of angiotensin-converting enzyme inhibitors in humans. Circulation. 1997;95:1115–8.View Article
  36. Campbell DJ, Krum H, Esler MD. Losartan increases bradykinin levels in hypertensive humans. Circulation. 2005;111:315–20.PubMedView Article
  37. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, White A, Cushman WC, White W, Sica D, Ferdinand K, Giles TD, Falkner B, Carey RM. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation. 2008;117:e510–26.PubMedView Article
  38. Mohr JP, Marti-Vilalta JL. Lacunes. In: Barnett HJM, Mohr JP, Stein BM, Yatsu FM, editors. Stroke: pathophysiology, diagnosis, and management. 3rd ed. New York, NY: Churchill Livingstone; 1998. p. 599–622.
  39. Schreiber S, Bueche CZ, Garz C, Braun H. Blood brain barrier breakdown as the starting point of cerebral small vessel disease? – New insights from a rat model. Exp Transl Stroke Med. 2013;5:4.PubMedPubMed CentralView Article
  40. Gob E, Reymann S, Langhauser F, Schuhmann MK, Kraft P, Thielmann I, et al. Blocking of plasma kallikrein ameliorates stroke by reducing thromboinflammation. Ann Neurol. 2015;77:784–803.PubMedView Article
  41. Liu J, Gao BB, Feener EP. Proteomic identification of novel plasma kallikrein substrates in the astrocyte secretome. Transl Stroke Res. 2010;1:276–86.PubMedView Article
  42. Bailey EL, Wardlaw JM, Graham D, Dominiczak AF, Sudlow CL, Smith C. Cerebral small vessel endothelial structural changes predate hypertension in stroke-prone spontaneously hypertensive rats: a blinded, controlled immunohistochemical study of 5- to 21-week-old rats. Neuropathol Appl Neurobiol. 2011;37:711–26.PubMedView Article
  43. Lee JM, Zhai G, Liu Q, et al. Vascular permeability precedes spontaneous intracerebral hemorrhage in stroke-prone spontaneously hypertensive rats. Stroke. 2007;38:3289–91.PubMedView Article
  44. Quick S, Moss J, Rajani RM, Williams A. A vessel for change: endothelial dysfunction in cerebral small vessel disease. Trends Neusoci. 2021;44:289–305.View Article
  45. Rajani RM, Quick S, Ruigrok SR, Graham D, Harris SE, Verhaaren BFJ, Fornage M, Seshadri S, Atanur SS, Dominiczak AF, Smith C, Wardlaw JM, Williams A. Reversal of endothelial dysfunction reduces white matter vulnerability in cerebral small vessel disease in rats. Sci Transl Med. 2018;10:eaam9507.
  46. Tagami M, Kubota A, Sunaga T, et al. Increased transendothelial channel transport of cerebral capillary endothelium in stroke-prone SHR. Stroke. 1993;14:591–6.View Article
  47. Fredriksson K, Kalimo H, Westergren I, et al. Blood-brain barrier leakage and brain edema in stroke-prone spontaneously hypertensive rats: effect of chronic sympathectomy and low protein/high salt diet. Acta Neuropathol (Berl). 1987;74:259–68.View Article
  48. Tomimoto H, Akiguchi I, Sunaga T, et al. Alterations of the blood-brain barrier and glial cells in white-matter lesions in cerebrovascular and Alzheimer’s disease patients. Stroke. 1996;27:2096–2074.View Article
  49. Da Fonseca AC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, Lima FR. The impact of microglia activation on blood-brain barrier in brain diseases. Front Cell Neurosci. 2014;8:362.PubMedPubMed CentralView Article
  50. Takeuchi S, Nagatani K, Otani N, Nawashiro H, Sugawara T, Wada K, Mori K. Hydrogen improves neurological function through attenuation of blood-brain barrier disruption in spontaneously hypertensive stroke-prone rats. BMC Neurosci. 2015;16:22.PubMedPubMed CentralView Article
  51. Yamamoto E, Tamamaki N, Nakamura T, Kataoka K, Tokutomi Y, Dong YF, Fukuda M, Matsuba S, Ogawa H, Kim-Mitsuyama S. Excess salt causes cerebral neuronal apoptosis and inflammation in stroke-prone hypertensive rats through angiotensin II-induced NADPH oxidase activation. Stroke. 2008;39:3049–56.PubMedView Article
  52. Marks L, Carswell HV, Peters EE, Graham DI, Patterson J, Dominiczak AF, Macrae IM. Characterization of the microglial response to cerebral ischemia in the stroke-prone spontaneously hypertensive rat. Hypertension. 2001;38:116–22.PubMedView Article
  53. Kato J, Kida O, Nakamura S, Sasaki A, Kodoma K, Tanaka K. Atrial natriuretic polypeptide (ANP) in the development of spontaneously hypertensive rats (SHR) and stroke-prone SHR (SHRSP). Biochem Biophys Res Commun. 1987;143:316–22.PubMedView Article
  54. John SWM, Krege JH, Oliver PM, Hagaman JR, Hodgin JB, Pang SC, et al. Genetic decreases in atrial natriuretic peptide and salt-sensitive hypertension. Science. 1995;267:679–81.PubMedView Article
  55. Steinhelper ME, Cochrane KL, Field LJ. Hypotension in transgenic mice expressing atrial natriuretic factor fusion genes. Hypertension. 1990;16:301–7.PubMedView Article
  56. Klinger JR, Petit RD, Curtin LA, Warburton RR, Wrenn DS, Steinhelper ME, et al. Cardiopulmonary responses to chronic hypoxia in transgenic mice that overexpress ANP. J Appl Physiol. 1993;75:198–205.PubMedView Article
  57. Janssen WNT, de Zeuw D, van der Hem GK, de Jong PE. Antihypertensive effect of a 5-day infusion of atrial natriuretic factor in humans. Hypertension. 1989;13:640–6.PubMedView Article
Metadaten
Titel
Plasma Kallikrein Contributes to Intracerebral Hemorrhage and Hypertension in Stroke-Prone Spontaneously Hypertensive Rats
verfasst von
Jian Guan
Allen C. Clermont
Loc-Duyen Pham
Tuna Ustunkaya
Alexey S. Revenko
A. Robert MacLeod
Edward P. Feener
Fabrício Simão
Publikationsdatum
09.07.2021
Verlag
Springer US
Erschienen in
Translational Stroke Research / Ausgabe 2/2022
Print ISSN: 1868-4483
Elektronische ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-021-00929-x

Weitere Artikel der Ausgabe 2/2022

Translational Stroke Research 2/2022 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders scheint das auf weibliche Kranke zuzutreffen, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.