Skip to main content
Erschienen in: Lasers in Medical Science 1/2024

01.12.2024 | Original Article

Preclinical assessment of a mathematical model for ablation zone prediction in thyroid laser ablation

verfasst von: Luca Breschi, Ernesto Santos, Juan C. Camacho, Stephen B. Solomon, Fourat Ridouani

Erschienen in: Lasers in Medical Science | Ausgabe 1/2024

Einloggen, um Zugang zu erhalten

Abstract

To develop and validate a 3D simulation model to calculate laser ablation (LA) zone size and estimate the volume of treated tissue for thyroid applications, a model was developed, taking into account dynamic optical and thermal properties of tissue change. For validation, ten Yorkshire swines were equally divided into two cohorts and underwent thyroid LA at 3 W/1,400 J and 3 W/1,800 J respectively with a 1064-nm multi-source laser (Echolaser X4 with Orblaze technology; ElEn SpA, Calenzano, Italy). The dataset was analyzed employing key statistical measures such as mean and standard deviation (SD). Model simulation data were compared with animal gross histology. Experimental data for longitudinal length, width (transverse length), ablation volume and sphericity were 11.0 mm, 10.0 mm, 0.6 mL and 0.91, respectively at 1,400 J and 14.6 mm, 12.4 mm, 1.12 mL and 0.83, respectively at 1,800 J. Gross histology data showed excellent reproducibility of the ablation zone among same laser settings; for both 1,400 J and 1,800 J, the SD of the in vivo parameters was ≤ 0.7 mm, except for width at 1,800 J, for which the SD was 1.1 mm. Simulated data for longitudinal length, width, ablation volume and sphericity were 11.6 mm, 10.0 mm, 0.62 mL and 0.88, respectively at 1,400 J and 14.2 mm, 12.0 mm, 1.06 mL and 0.84, respectively at 1,800 J. Experimental data for ablation volume, sphericity coefficient, and longitudinal and transverse lengths of thermal damaged area showed good agreement with the simulation data. Simulation datasets were successfully incorporated into proprietary planning software (Echolaser Smart Interface, Elesta SpA, Calenzano, Italy) to provide guidance for LA of papillary thyroid microcarcinomas. Our mathematical model showed good predictability of coagulative necrosis when compared with data from in vivo animal experiments.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Stafford RJ, Fuentes D, Elliott AA, Weinberg JS, Ahrar K (2010) Laser-induced thermal therapy for tumor ablation. Crit Rev Biomed Eng 38:79–100CrossRefPubMed Stafford RJ, Fuentes D, Elliott AA, Weinberg JS, Ahrar K (2010) Laser-induced thermal therapy for tumor ablation. Crit Rev Biomed Eng 38:79–100CrossRefPubMed
2.
Zurück zum Zitat Papini E, Guglielmi R, Gharib H, Misischi I, Graziano F, Chianelli M, Crescenzi A, Bianchini A, Valle D, Bizzarri G (2011) Ultrasound-guided laser ablation of incidental papillary thyroid microcarcinoma: a potential therapeutic approach in patients at surgical risk. Thyroid 21:917–920CrossRefPubMedPubMedCentral Papini E, Guglielmi R, Gharib H, Misischi I, Graziano F, Chianelli M, Crescenzi A, Bianchini A, Valle D, Bizzarri G (2011) Ultrasound-guided laser ablation of incidental papillary thyroid microcarcinoma: a potential therapeutic approach in patients at surgical risk. Thyroid 21:917–920CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Zhou W, Jiang S, Zhan W, Zhou J, Xu S, Zhang L (2017) Ultrasound-guided percutaneous laser ablation of unifocal T1N0M0 papillary thyroid microcarcinoma: preliminary results. Eur Radiol 27:2934–2940CrossRefPubMed Zhou W, Jiang S, Zhan W, Zhou J, Xu S, Zhang L (2017) Ultrasound-guided percutaneous laser ablation of unifocal T1N0M0 papillary thyroid microcarcinoma: preliminary results. Eur Radiol 27:2934–2940CrossRefPubMed
4.
Zurück zum Zitat Zhou W, Zhang L, Zhan W, Jiang S, Zhu Y, Xu S (2016) Percutaneous laser ablation for treatment of locally recurrent papillary thyroid carcinoma < 15 mm. Clin Radiol 71:1233–1239CrossRefPubMed Zhou W, Zhang L, Zhan W, Jiang S, Zhu Y, Xu S (2016) Percutaneous laser ablation for treatment of locally recurrent papillary thyroid carcinoma < 15 mm. Clin Radiol 71:1233–1239CrossRefPubMed
5.
Zurück zum Zitat Mauri G, Orsi F, Carriero S, Della Vigna P, De Fiori E, Monzani D, Pravettoni G, Grosso E, Manzoni MF, Ansarin M, Giugliano G (2021) Image-guided thermal ablation as an alternative to surgery for papillary thyroid microcarcinoma: preliminary results of an Italian experience. Front Endocrinol (Lausanne) 11:575152CrossRefPubMed Mauri G, Orsi F, Carriero S, Della Vigna P, De Fiori E, Monzani D, Pravettoni G, Grosso E, Manzoni MF, Ansarin M, Giugliano G (2021) Image-guided thermal ablation as an alternative to surgery for papillary thyroid microcarcinoma: preliminary results of an Italian experience. Front Endocrinol (Lausanne) 11:575152CrossRefPubMed
6.
Zurück zum Zitat Hegedüs L, Miyauchi A, Tuttle RM (2020) Nonsurgical thermal ablation of thyroid nodules: Not if, but why, when, and how? Thyroid 30:1691 – 1694 Hegedüs L, Miyauchi A, Tuttle RM (2020) Nonsurgical thermal ablation of thyroid nodules: Not if, but why, when, and how? Thyroid 30:1691 – 1694
7.
Zurück zum Zitat Ridouani F, Tuttle RM, Ghosn M, Li D, Wong RJ, Fagin JA, Monette S, Solomon SB, Camacho JC (2021) Ultrasound-guided percutaneous laser ablation of the thyroid gland in a swine model: comparison of ablation parameters and ablation zone dimensions. Cardiovasc Intervent Radiol 44:1798–1806CrossRefPubMedPubMedCentral Ridouani F, Tuttle RM, Ghosn M, Li D, Wong RJ, Fagin JA, Monette S, Solomon SB, Camacho JC (2021) Ultrasound-guided percutaneous laser ablation of the thyroid gland in a swine model: comparison of ablation parameters and ablation zone dimensions. Cardiovasc Intervent Radiol 44:1798–1806CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Mauri G, Nicosia L, Della Vigna P, Varano GM, Maiettini D, Bonomo G, Giuliano G, Orsi F, Solbiati L, De Fiori E, Papini E, Pacella CM, Sconfienza LM (2019) Percutaneous laser ablation for benign and malignant thyroid diseases. Ultrasonography 38:25–36CrossRefPubMed Mauri G, Nicosia L, Della Vigna P, Varano GM, Maiettini D, Bonomo G, Giuliano G, Orsi F, Solbiati L, De Fiori E, Papini E, Pacella CM, Sconfienza LM (2019) Percutaneous laser ablation for benign and malignant thyroid diseases. Ultrasonography 38:25–36CrossRefPubMed
9.
Zurück zum Zitat Jacques SL (2006) Ratio of entropy to enthalpy in thermal transitions in biological tissues. J Biomed Opt 11:041108CrossRefPubMed Jacques SL (2006) Ratio of entropy to enthalpy in thermal transitions in biological tissues. J Biomed Opt 11:041108CrossRefPubMed
10.
Zurück zum Zitat Pearce JA (2010) Models for thermal damage in tissues: processes and applications. Crit Rev Biomed Eng 38:1–20CrossRefPubMed Pearce JA (2010) Models for thermal damage in tissues: processes and applications. Crit Rev Biomed Eng 38:1–20CrossRefPubMed
11.
Zurück zum Zitat Wright NT (2003) On a relationship between the Arrhenius parameters from thermal damage studies. J Biomech Eng 125:300–304CrossRefPubMed Wright NT (2003) On a relationship between the Arrhenius parameters from thermal damage studies. J Biomech Eng 125:300–304CrossRefPubMed
12.
Zurück zum Zitat McKenzie AL (1986) A three-zone model of soft-tissue damage by a CO2 laser. Phys Med Biol 31:967–983CrossRefPubMed McKenzie AL (1986) A three-zone model of soft-tissue damage by a CO2 laser. Phys Med Biol 31:967–983CrossRefPubMed
13.
Zurück zum Zitat Welch AJ, Valvano JW, Pearce JA, Hayes LJ, Motamedi M (1985) Effect of laser radiation on tissue during laser angioplasty. Lasers Surg Med 5:251–264CrossRefPubMed Welch AJ, Valvano JW, Pearce JA, Hayes LJ, Motamedi M (1985) Effect of laser radiation on tissue during laser angioplasty. Lasers Surg Med 5:251–264CrossRefPubMed
14.
Zurück zum Zitat Yang D, Converse MC, Mahvi DM, Webster JG (2007) Expanding the bioheat equation to include tissue internal water evaporation during heating. IEEE Trans Biomed Eng 54:1382–1388CrossRefPubMed Yang D, Converse MC, Mahvi DM, Webster JG (2007) Expanding the bioheat equation to include tissue internal water evaporation during heating. IEEE Trans Biomed Eng 54:1382–1388CrossRefPubMed
15.
Zurück zum Zitat Jacques SL (1994) Finite-difference model for laser ablation with emphasis on the role of carbonization and explosive vaporization. Proc SPIE 2134A Laser-tissue Interaction V; and ultraviolet radiation hazards, pp. 372 – 382 Jacques SL (1994) Finite-difference model for laser ablation with emphasis on the role of carbonization and explosive vaporization. Proc SPIE 2134A Laser-tissue Interaction V; and ultraviolet radiation hazards, pp. 372 – 382
16.
Zurück zum Zitat Abraham JP, Sparrow EM (2007) A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure-and necrosis-dependent perfusion, and moisture-dependent properties. Int J Heat Mass Transf 50:2537 – 2544 Abraham JP, Sparrow EM (2007) A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure-and necrosis-dependent perfusion, and moisture-dependent properties. Int J Heat Mass Transf 50:2537 – 2544
17.
Zurück zum Zitat Henriques FC Jr (1947) Studies of thermal injury. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury. Arch Pathol (Chic) 43:489–502PubMed Henriques FC Jr (1947) Studies of thermal injury. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury. Arch Pathol (Chic) 43:489–502PubMed
18.
Zurück zum Zitat McKenzie AL (1983) How far does thermal damage extend beneath the surface of CO2 laser incisions? Phys Med Biol 28:905–912CrossRefPubMed McKenzie AL (1983) How far does thermal damage extend beneath the surface of CO2 laser incisions? Phys Med Biol 28:905–912CrossRefPubMed
19.
Zurück zum Zitat McKenzie AL (1990) Physics of thermal processes in laser–tissue interaction. Phys Med Biol 35:1175–1209CrossRefPubMed McKenzie AL (1990) Physics of thermal processes in laser–tissue interaction. Phys Med Biol 35:1175–1209CrossRefPubMed
20.
Zurück zum Zitat Achille G, Zizzi S, Di Stasio E, Grammatica A, Grammatica L (2016) Ultrasound-guided percutaneous laser ablation in treating symptomatic solid benign thyroid nodules: our experience in 45 patients. Head Neck 38:677–682CrossRefPubMed Achille G, Zizzi S, Di Stasio E, Grammatica A, Grammatica L (2016) Ultrasound-guided percutaneous laser ablation in treating symptomatic solid benign thyroid nodules: our experience in 45 patients. Head Neck 38:677–682CrossRefPubMed
21.
Zurück zum Zitat Pacella CM, Mauri G, Cesareo R, Paqualini V, Cianni R, De Feo P, Gambelunghe G, Raggiunti B, Tina D, Deandrea M, Limone PP, Mormile A, Giusti M, Oddo S, Achille G, Di Stasio E, Misischi I, Papini E (2017) A comparison of laser with radiofrequency ablation for the treatment of benign thyroid nodules: a propensity score matching analysis. Int J Hyperth 33:911–919PubMed Pacella CM, Mauri G, Cesareo R, Paqualini V, Cianni R, De Feo P, Gambelunghe G, Raggiunti B, Tina D, Deandrea M, Limone PP, Mormile A, Giusti M, Oddo S, Achille G, Di Stasio E, Misischi I, Papini E (2017) A comparison of laser with radiofrequency ablation for the treatment of benign thyroid nodules: a propensity score matching analysis. Int J Hyperth 33:911–919PubMed
Metadaten
Titel
Preclinical assessment of a mathematical model for ablation zone prediction in thyroid laser ablation
verfasst von
Luca Breschi
Ernesto Santos
Juan C. Camacho
Stephen B. Solomon
Fourat Ridouani
Publikationsdatum
01.12.2024
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 1/2024
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-024-04062-7

Weitere Artikel der Ausgabe 1/2024

Lasers in Medical Science 1/2024 Zur Ausgabe