Skip to main content
Erschienen in: BMC Cardiovascular Disorders 1/2021

Open Access 01.12.2021 | Research article

Prognostic value of the modified model for end-stage liver disease (MELD) score including albumin in acute heart failure

verfasst von: Shengen Liao, Xinyi Lu, Iokfai Cheang, Xu Zhu, Ting Yin, Wenming Yao, Haifeng Zhang, Xinli Li

Erschienen in: BMC Cardiovascular Disorders | Ausgabe 1/2021

Abstract

Background

Liver and renal function evaluated by the model for end-stage liver disease (MELD) score, the MELD excluding the international normalized ratio (MELD_XI) score and the MELD including sodium (MELD_sodium) score have been considered predictors of adverse events for patients with acute heart failure (AHF). However, the prognostic value of the MELD including albumin (MELD_albumin) score in patients with AHF has not been assessed.

Methods

A total of 466 patients with AHF were prospectively evaluated. We compared the accuracy of the 4 MELD score formulas using the time-dependent receiver operating characteristic (ROC) curve and corresponding areas under the curve (AUC).

Results

During a median follow-up period of 34 months, 196 deaths occurred. In the fully adjusted Cox regression model, standardized hazard ratios with 95% confidence interval expressing the risk of all-cause mortality were 1.22 (1.06–1.40), 1.20 (1.04–1.39), 1.23 (1.06–1.42) and 1.21 (1.05–1.41) for MELD, MELD_XI, MELD_sodium and MELD_albumin scores, respectively. The MELD_albumin score showed the best prognostic accuracy (AUC = 0.658) for the prediction of long-term all-cause mortality, followed by the MELD_sodium score (AUC = 0.590), the MELD score (AUC = 0.580), and the MELD_XI score (AUC = 0.544); the MELD_albumin score performs significantly more accurate than MELD and MELD_XI score for predicting the risk of all-cause mortality. Considering reclassification, MELD_albumin score increased the net reclassification improvement over and beyond MELD (13.1%, P = 0.003), MELD_XI (14.8%, P = 0.002), and MELD_sodium (11.9%, P = 0.006) scores for all-cause mortality.

Conclusions

The MELD_albumin score increases risk stratification of all-cause mortality over and beyond the MELD score and the other modified MELD scores in patients with acute heart failure.
Hinweise
Shengen Liao and Xinyi Lu contributed equally to this work and should be considered co-first authors.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
AHF
Acute heart failure
ALT
Alanine aminotransferase
AST
Aspartate aminotransaminase
AUC
Areas under the curve
BMI
Body mass index
CI
Confidence interval
HF
Heart failure
HR
Hazard ratio
INR
International normalized ratio
LVEF
Left ventricular ejection fraction
MELD
Model for end-stage liver disease
MELD_XI
MELD excluding the international normalized ratio
MELD_sodium
MELD including sodium
NRI
Net reclassification improvement
NYHA
New York Heart Association
proBNP
Pro-brain natriuretic peptide
ROC
Receiver operating characteristic

Background

Heart failure (HF) is a common disease and is associated with considerable morbidity and mortality worldwide [1]. With the increase in HF patients, HF has recently become a serious health problem [2]. Acute heart failure (AHF) is a complex syndrome characterized by worsening heart failure symptoms. The predominant clinical profile in most patients with AHF is congestion and hypoperfusion, which can lead to organ dysfunction and increase the risk of mortality.
Liver and renal dysfunction are often complicated in patients with acute heart failure [3]. Complicated interaction between heart, kidney, and liver has been an object of interest for a long time. In that sense, simple score capable of quantitating the severity of multiorgan failure is attractive. Biomarkers that reflect liver and kidney function are often used to predict adverse clinical outcomes in patients with AHF [4, 5]. The model for end-stage liver disease (MELD) score evaluating liver and renal function was considered a reliable predictor for the risk of adverse events in AHF patients [6]. Several studies also focused on the effects of modified MELD versions, such as the MELD excluding the international normalized ratio (MELD_XI) score [3, 7], and the MELD including sodium (MELD_sodium) score [8], on the prognosis of acute heart failure. However, the prognostic value of the MELD including albumin (MELD_albumin) score, which includes the serum value of albumin rather than the international normalized ratio, in AHF patients is still unknown. Moreover, it is largely unknown whether one of the MELD scores or its 3 modifications is superior for predicting the risk of mortality.
Accordingly, we aimed to assess the prognostic role of the MELD_albumin score in patients with AHF over a long-term follow-up. In addition, we further aimed to compare the accuracy of the MELD_albumin score with other well-established objective MELD and modified MELD scores for predicting the risk of death in patients with AHF.

Methods

Study subjects

We analyzed data from the registry study of AHF in China: the diagnostic standards, risk stratification, and clinical outcomes of acute heart failure (registration number: ChiCTR-ONC-12001944), which is a multicenter, observational, prospective cohort study. From March 2012 to June 2017, 590 patients with AHF were assessed for eligibility. Patients with end-stage renal dysfunction/hemodialysis and decompensated liver cirrhosis were excluded in our study. The diagnosis of AHF was based on clinical signs and symptoms and according to the guidelines, and each patient received standard clinical evaluation and guided recommended treatment [9]. Patients with severe vascular disease or coronary artery disease requiring urgent surgery (n = 46) or who withdrew informed consent (n = 2) were excluded from the study. We also excluded patients with end-stage renal disease requiring dialysis and patients who were already taking oral anticoagulants upon admission (n = 46). Finally, a total of 496 patients were included in this study (Fig. 1).

MELD score and its 3 modifications

The standard MELD [10] score and 3 modifications (MELD_XI [11], MELD_albumin [12] and MELD_sodium [13]) were calculated according to the formulas presented in Fig. 2. If the total bilirubin or creatinine level was less than 1 mg/dl, their lower limit was assumed to be 1 mg/dl to avoid negative scores.

Data collection

Data on age, sex, body mass index (BMI), history of diabetes mellitus, hypertension, heart rate, blood pressure on admission, New York Heart Association (NYHA) class, etiology of heart failure and prescribed medicine were recorded. Left ventricular ejection fraction (LVEF) was measured according to the modified Simpson’s method. Pulmonary hypertension (pulmonary artery systolic pressure ≥ 50 mmHg), tricuspid regurgitation severity and right ventricular diastolic diameter were estimated by transthoracic echocardiography. Blood samples to test for serum sodium, potassium, albumin, creatinine, uric acid, alanine aminotransferase (ALT), aspartate aminotransaminase (AST), total bilirubin, the international normalized ratio (INR) and pro-brain natriuretic peptide (proBNP) concentrations were obtained on admission.

Endpoints and follow up

The primary endpoint was all-cause mortality. The secondary endpoint was cardiovascular mortality due to AHF. Cardiovascular mortality was coded according to the International Classification of Diseases, 10th Revision (ICD–10). All patients were followed-up in our cardiology department at 3, 6, and 12 months after discharge and then every 6 months thereafter.

Statistical analysis

Categorical variables are presented as percentages. Continuous variables are presented as the mean (standard deviation, SD) or median (interquartile) according to the distribution. Characteristics were compared according to survival status using the independent Student's t-test, the Wilcoxon test and the chi-square test, as appropriate. Comparisons between MELD and its 3 modifications were performed by the Wilcoxon test. Pairwise Spearman correlation analysis was used to investigate the relationships among MELD score and its 3 modifications.
We evaluated the association between the MELD scores and each of our outcomes using Cox proportional hazards regression with 1-SD increments in the continuously distributed MELD score and its 3 modifications. Univariate Cox regression analysis for all-cause mortality indicated that variables with statistically significant differences (P<0.05) were used to derive the final model. The statistically significant variables were assessed in terms of the outcomes of all-cause mortality and cardiovascular mortality. For each outcome, we calculated unadjusted hazard ratios (HRs); HRs adjusted for age and sex (Model 1); and HRs adjusted for age, sex, NYHA class, LVEF, proBNP, systolic blood pressure and diastolic blood pressure (Model 2) along with corresponding 95% confidence intervals (CIs).
The predictive performance of the MELD scores was calculated according to the time-dependent receiver–operator characteristic (ROC) curves [14] and the corresponding areas under the curve (AUCs). Comparisons of the AUCs were performed with a DeLong test [15], and . Additionally, we analysed the reclassification ability of MELD and its 3 modifications using the continuous net reclassification improvement (NRI) analysis. All analyses were performed using R software version 3.6.0 (R Foundation for Statistical Computing, Vienna, Austria). Bonferroni's correction (P < 0.016 was considered statistically significant) was applied to adjust for multiple comparisons among MELD score and its three modifications, and P value < 0.05 was considered statistically significant in other statistical analysis.

Results

Baseline characteristics

Thirty patients were lost to follow-up. A total of 466 patients with AHF were included in the final analysis. After a median follow-up of 34 months, 196 (42.1%) deaths occurred, and 158 (33.9%) patients died of cardiovascular causes. At baseline, patients who died were older than survivors and were more often female. Notably, patients who died had more severe clinical symptoms, lower systolic or diastolic blood pressure, lower serum albumin, lower LVEF and higher proBNP (Table 1).
Table 1
Baseline characteristics of the enrolled patients
Variables
All (n = 466)
Deaths (n = 196)
Survivors (n = 270)
P value
Age (years)
61.8 (25.0)
65.0 (15.5)
59.5 (29.9)
0.019
Male, %
314 (67.4%)
111 (56.6%)
203 (75.2%)
 < 0.001
Diabetes,%
118 (25.3%)
51 (26.0%)
67 (24.8%)
0.768
Hypertension, %
244 (52.4%)
97 (49.5%)
147 (54.4%)
0.290
Ischemic heart failure, %
125 (26.8%)
53 (27.0%)
72 (26.7%)
0.928
NYHA
   
0.041
II
57 (21.1%)
24 (12.2%)
81 (17.4%)
 
III
138 (51.1%)
108 (55.1%)
246 (52.8%)
 
IV
75 (27.8%)
64 (32.7%)
139 (29.8%)
 
Heart rate, beats/min
85.5 (20.9)
85.1 (21.4)
85.7 (20.6)
0.731
Systolic blood pressure (mmHg)
127 (22.6)
124 (19.9)
129 (24.2)
0.020
Diastolic blood pressure (mmHg)
78.5 (15.2)
76.0 (12.2)
80.4 (16.8)
0.002
Potassium (mmol/L)
3.99 (0.51)
3.99 (0.51)
3.99 (0.50)
0.912
Sodium (mmol/L)
140 (3.9)
139 (4.2)
140 (3.7)
0.086
Albumin (g/L)
3.66 (0.48)
3.60 (0.49)
3.71 (0.47)
0.025
Creatinine (mg/dL)
1.16 (0.65)
1.21 (0.61)
1.12 (0.68)
0.131
Uric acid (mg/dL)
8.13 (2.83)
8.41(3.06)
7.93 (2.64)
0.070
ALT (U/L)
27(17–46)
26(15–50)
27(18–44)
0.550
AST (U/L)
28(22–42)
28(22–48)
28(22–39)
0.162
INR
1.20 (0.28)
1.22 (0.26)
1.18 (0.30)
0.142
Total bilirubin (mg/dL)
1.23 (1.03)
1.28 (1.00)
1.19 (1.04)
0.348
proBNP (ng/L)
2254 (1269–5835)
2873 (1572–7373)
1779 (1087–4601)
 < 0.001
CRP (mg/L)
2.9 (1.2 –6.7)
3.1 (1.2 –7.5)
2.7 (1.0 –6.5)
0.125
Anemia, %
133 (28.5)
64 (32.5%)
69 (25.6%)
0.073
LVEF (%)
41.6 (14.4)
39.8 (13.8)
44.0 (14.9)
 < 0.001
Pulmonary hypertension, %
117 (25.1%)
65 (33.2%)
52 (19.3%)
0.001
Tricuspid regurgitation, %
   
0.004
No
43 (9.2%)
17 (8.7%)
26 (9.6%)
 
Mild
197 (42.3%)
70 (35.7%)
127 (47.0%)
 
Moderate
139 (29.8%)
57 (29.1%)
82 (30.4%)
 
Severe
87 (18.7%)
52 (26.5%)
35 (13.0%)
 
RVDd (mm)
39.8 (8.21)
40.3 (8.94)
39.4 (7.63)
 
Body mass index (kg/M2)
24.2 (5.7)
23.6 (5.7)
24.6 (5.8)
0.068
Antisterone, %
415 (89.1%)
177 (90.3%)
238 (88.1%)
0.451
ACEI/ARB, %
365 (78.3%)
151 (77.0%)
214 (79.3%)
0.566
Beta-blocker, %
373 (80.0%)
151 (77.0%)
222 (82.2%)
0.167
Aspirin, %
198 (42.5%)
85 (43.4%)
113 (41.9%)
0.744
MELD
8.5 (7.2–10.9)
8.9 (7.4–11.9)
8.3 (7.1–10.2)
0.004
MELD_XI
11.3 (9.4–13.8)
11.8 (9.4–15.2)
11.0 (9.4–13.2)
0.008
MELD_sodium
8.6 (6.5–12.4)
9.4 (6.9–14.0)
8.3 (6.3–11.0)
0.004
MELD_albumin
12.3 (9.6–15.2)
13.1 (10.6–16.4)
11.6 (9.0–14.6)
 < 0.001
Data are presented as mean (SD) or median (interquartile range), or n (%). proBNP N-terminal pro-brain natriuretic peptide, NYHA New York Heart Association functional, ALT alanine aminotransferase, AST aspartate aminotransaminase, LVEF left ventricular ejection fraction, RVDd right ventricular diastolic diameter, ACEI angiotensin converting enzyme inhibitors, ARB angiotensin receptor blocker

Agreement of measurements

Figure 3a presents the estimates of the MELD score and its 3 modifications using the four formulas. The median (interquartile) values of the MELD, MELD_XI, MELD_sodium and MELD_albumin scores were 7.2 (8.5–10.9), 11.3 (9.4–13.8), 8.6 (6.5–12.4) and 12.3 (9.6–15.2), respectively. The MELD_XI and MELD_albumin scores were significantly higher than the MELD score (all P value < 0.001), and the MELD_sodium score was similar to the MELD score. Pairwise Spearman correlation test was performed among the MELD score and its 3 modifications. MELD correlated better with MELD_XI (r value = 0.94, P < 0.001) than the 2 other modified MELD scores (r value for MELD_sodium = 0.72, P < 0.001; r value for MELD_albumin = 0.67, P < 0.001) (Fig. 3b).

Impact of MELD score and its 3 modifications on mortality

Table 2 shows the main predictors of all-cause mortality by univariate Cox regression analysis. Baseline age, sex, NYHA class, LVEF, proBNP, systolic blood pressure, diastolic blood pressure and pulmonary hypertension. (P values < 0.05) were considered potential risk factors for long-term all-cause mortality in patients with AHF. After further adjusting all risk factors at baseline, standardized hazard ratios (HRs) with 95% confidence intervals (CIs) expressing the risk of all-cause mortality were 1.22 (1.06–1.40), 1.20 (1.04–1.39), 1.23 (1.06–1.42) and 1.21 (1.05–1.41) for the MELD, MELD_ XI, MELD_sodium and MELD_albumin scores, respectively, and the corresponding hazard ratios for cardiovascular mortality were 1.30 (1.12–1.50), 1.28 (1.10–1.49), 1.34 (1.14–1.57) and 1.27 (1.07–1.49), respectively (Table 3).
Table 2
Univariate analysis of predictors for all-cause mortality
 
HR (95% CI)
P value
Age (per year increase)
1.00 (1.00, 1.01)
0.016
Male
0.55 (0.41, 0.73)
 < 0.001
Diabetes
1.01 (0.74, 1.39)
0.936
Hypertension
0.87 (0.66, 1.15)
0.327
Ischemic heart failure
1.12 (0.82, 1.54)
0.483
NYHA
  
II
1.00
 
III
1.63 (1.05, 2.54)
0.031
IV
2.01 (1.25, 3.21)
0.004
Heart rate (per beats/min increase)
1.00 (0.99, 1.00)
0.521
Systolic blood pressure (per mmHg increase)
0.99 (0.99, 1.00)
0.023
Diastolic blood pressure (per mmHg increase)
0.98 (0.97, 0.99)
0.001
Potassium (per mmol/L increase)
1.08 (0.81, 1.42)
0.612
Uric acid (per mg/dL increase)
1.05 (0.99, 1.10)
0.057
ALT (per U/L increase)
1.00 (1.00, 1.00)
0.598
AST (per U/L increase)
1.00 (1.00, 1.00)
0.659
proBNP (per ng/L increase)
1.00 (1.00, 1.00)
 < 0.001
CRP (per mg/L increase)
1.01 (0.99, 1.03)
0.082
Anemia
1.22 (0.82, 1.80)
0.325
LVEF (per 1 unit increase)
0.98 (0.97, 0.99)
0.001
Pulmonary hypertension
1.69 (1.26, 2.28)
0.001
Tricuspid regurgitation
  
No
1.00
 
Mild
0.96 (0.54, 1.71)
0.890
Moderate
1.16 (0.65, 2.09)
0.619
Severe
1.74 (0.96, 3.14)
0.068
RVDd (per mm increase)
1.02 (1.00, 1.04)
0.056
Body mass index (per kg/M2 increase)
0.98 (0.95, 1.00)
0.082
Antisterone
1.13 (0.70, 1.81)
0.622
ACEI/ARB
0.94 (0.67, 1.31)
0.699
Beta-blocker
0.79 (0.57, 1.10)
0.163
Aspirin
1.08 (0.82, 1.44)
0.583
NYHA New York Heart Association functional class, ALT alanine aminotransferase, AST aspartate aminotransaminase, LVEF left ventricular ejection fraction, ACEI angiotensin converting enzyme inhibitors, ARB angiotensin receptor blocker
Table 3
Standardized hazard ratios (95% confidence intervals) of mortality
 
Unadjusted
Model 1
Model 2
HR(95%CI)
P value
HR (95%CI)
P value
HR (95%CI)
P value
All cause mortality (196/466, 42.1%)
MELD
1.23(1.10–1.38)
 < 0.001
1.31 (1.16–1.47)
 < 0.001
1.21 (1.05–1.40)
0.008
MELD_XI
1.21(1.08–1.36)
0.002
1.28 (1.14–1.45)
 < 0.001
1.20 (1.04–1.39)
0.014
MELD_sodium
1.29(1.14–1.46)
 < 0.001
1.36 (1.19–1.54)
 < 0.001
1.23 (1.06–1.43)
0.005
MELD_albumin
1.27(1.13–1.42)
 < 0.001
1.31 (1.16–1.47)
 < 0.001
1.22 (1.05–1.41)
0.012
Cardiovascular mortality (158/466, 33.9%)
MELD
1.31(1.17–1.48)
 < 0.001
1.39 (1.23–1.56)
 < 0.001
1.29 (1.11–1.50)
0.001
MELD_XI
1.29(1.14–1.46)
 < 0.001
1.36 (1.20–1.53)
 < 0.001
1.27 (1.09–1.48)
0.002
MELD_sodium
1.41(1.23–1.60)
 < 0.001
1.48 (1.29–1.69)
 < 0.001
1.34 (1.14–1.56)
 < 0.001
MELD_albumin
1.31(1.15–1.48)
 < 0.001
1.35 (1.18–1.53)
 < 0.001
1.27 (1.07–1.50)
0.006
Model 1 was adjusted for age and sex
Model2 was adjusted age, sex, NYHA class, LVEF, proBNP, systolic blood pressure, diastolic blood pressure and pulmonary hypertension

Prognostic accuracy

The predictive accuracy of the MELD, MELD_XI, MELD_sodium and MELD_albumin scores was compared using time-dependent ROC curves. If we considered the entire follow-up period, the MELD_albumin score showed the best prognostic accuracy for all-cause and cardiovascular mortality in nearly the entire follow-up period (Figs. 4a, 5a). The quantified AUCs with a four-year cut-off for all-cause mortality outcome were 0.580 (0.509–0.650) for the MELD score, 0.544 (0.476–0.614) for the MELD_XI score, 0.590 (0.519–0.661) for the MELD_sodium score, and 0.658 (0.591–0.728) for the MELD_albumin score. The MELD_albumin score was significantly better than the MELD and MELD_XI for predicting 4-year all-cause mortality risk (all P value < 0.016, Fig. 4b).
The quantified AUCs with a four-year cut-off for cardiovascular mortality outcome were 0.617 (0.545–0.689) for the MELD score, 0.580 (0.508–0.652) for the MELD_XI score, 0.625 (0.553–0.697) for the MELD_sodium score, and 0.663 (0.593–0.734) for the MELD_albumin score. The MELD_albumin score was significantly better than the MELD_XI score for predicting the 4-year risk of cardiovascular mortality (P value = 0.009, Fig. 5b). However, MELD_albumin showed no significant better than the MELD and MELD_sodium score in predicting 4-year cardiovascular mortality risk.
These findings were evaluated by the NRI analysis (Table 4). MELD_albumin score increased the NRI over and beyond MELD (13.1%, P = 0.003), MELD_XI (14.8%, P = 0.006), and MELD_sodium (11.9%, P = 0.006) scores for all-cause mortality. However, MELD_albumin did not increase NRI in the reclassification of cardiovascular mortality.
Table 4
Net reclassification improvement by comparing different MELD equation
 
All-cause mortality
Cardiovascular mortality
NRI (%)
CI (95%)
P
NRI (%)
CI (95%)
P
MELD_albumin vs MELD
13.1
5.2 to 22.8
0.003
2.5
-8.9 to 9.9
0.595
MELD_albumin vs MELD_XI
14.8
5.5 to 21.6
0.002
3.1
-8.3 to 11.9
0.539
MELD_albumin vs MELD_sodium
11.9
4.6 to 21.9
0.006
3.6
-9.0 to 14.9
0.547
NRI net reclassification improvement, CI confidence interval

Discussion

Our study demonstrated that liver and renal function evaluated by the MELD_albumin score could serve as an important predictor of the prognosis of AHF. Our study also indicates for the first time that evaluating liver and renal function using the MELD_albumin score outperforms evaluation using MELD and other modified MELD scores to discriminate the risk of all-cause mortality in AHF patients. The present data extend the usefulness of modified MELD scores to predict clinical events in patients with AHF.
Our findings are consistent with previous studies reporting the prognostic role of liver and renal function on mortality in patients with AHF [3, 6, 7] and add interesting information to the available literature on this topic. The MELD score and its modifications, which have been widely used as prognostic predictors in patients with liver diseases [10, 12], have recently been shown to be associated with worse clinical outcomes in patients with AHF [3, 6, 7]. In the study conducted by Kim et al. [6], elevated MELD, MELD_XI, and MELD_sodium scores were associated with an increased risk for composite endpoint of death, heart transplantation and ventricular-assist device requirement in ambulatory patients with heart failure (HR was 1.10 (1.06–1.14) for MELD; HR was 1.13 (1.07–1.19) for MELD_XI; HR was 1.10 (1.06–1.14) for MELD_sodium). Another study by Biegus et al. [3] demonstrated that the MELD or MELD_XI score at baseline was predictive of 1-year all-cause mortality in patients with AHF (HR was 1.08 (1.02–1.35) for MELD, HR 1.11 (1.05–1.2) for MELD_XI). Similar results were also found in another study by Biegus et al. [7], in which the MELD-XI score was significantly associated with all-cause death (HR 1.11 (1.04–1.17)). Notably, the MELD score has been shown to identify risk in patients supported with a left ventricular assist device [16] and patients who underwent cardiac surgery [17].
Compared to the previous studies, the difference in hazard ratios of our study may arise from the relatively larger sample size, the longer follow-up duration, the value of the MELD score or its modifications, the definition of the outcome and the cofounding factors we adjusted. Notably, our study not only highlighted the prognostic role of the modified MELD score but also indicated that the MELD_albumin score was superior to the MELD and other modified MELD scores in predicting the risk of mortality. Our study supports the incorporation of serum albumin into the modified MELD score to provide additional risk information in patients with AHF.
The underlying mechanism is that venous congestion and hypoperfusion can contribute to elevated liver enzymes and creatinine, resulting in cardio–renal–hepatic syndrome [18]. The progression of liver dysfunction in patients with AHF is complex and may follow any of several pathways. Biochemical markers of cholestasis, such as γ-glutamyl transpeptidase, bilirubin, and alkaline phosphatase, are increased in the plasma of AHF patients with elevated central venous pressure [19]. Hypoperfusion-induced hypoxic liver injury is also the major cause of massively elevated aminotransferase levels in patients with AHF, and the elevation of these levels is a risk factor for mortality [20]. In the setting of renal dysfunction, congestion was a stronger predictor of worsening renal function than cardiac output or mean arterial pressure in patients with AHF [21, 22]. Congestion is the main profile of diastolic dysfunction. Interestingly, a study also indicated that renal insufficiency is more important in determining the risk of mortality in patients with diastolic cardiac dysfunction than in those with systolic dysfunction [23]. The increase in central venous pressure is associated with worsen renal function through several mechanisms including the decrease in renal blood flow and interstitial fibrosis [24].
There are several limitations in our study. First, the empirically chosen Chinese population was a major limitation. Validation in other population should be performed to verify our results. Second, although we included a set of confounding factors and indicated the strong prognostic power of the MELD score and its modifications in patients with AHF, unmeasured cofounding factors may also play a role. Finally, the MELD score or its modifications are subject to laboratory variations, and previous oral medications such as diuretics can impact sodium and creatinine excretion, which could confound the results.

Conclusions

Quantifying liver and renal function using the MELD_albumin score in patients with acute heart failure assesses the risk of mortality more accurately than the commonly used MELD score or its other modifications.

Acknowledgements

Not applicable.

Declarations

The study was approved by the ethics committee of the First Affiliated Hospital of Nanjing Medical University, and all patients provided written informed consent. The First Affiliated Hospital of Nanjing Medical University granted access to the personal data in the study. All procedures conformed to the standards of the Declaration of Helsinki.
Not applicable.

Competing interests

The authors have no conflict of interest to disclose.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135:e146–603.CrossRef Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135:e146–603.CrossRef
2.
Zurück zum Zitat Dunlay SM, Redfield MM, Weston SA, Therneau TM, Hall Long K, Shah ND, et al. Hospitalizations after heart failure diagnosis a community perspective. J Am Coll Cardiol. 2009;54:1695–702.CrossRef Dunlay SM, Redfield MM, Weston SA, Therneau TM, Hall Long K, Shah ND, et al. Hospitalizations after heart failure diagnosis a community perspective. J Am Coll Cardiol. 2009;54:1695–702.CrossRef
3.
Zurück zum Zitat Biegus J, Zymlinski R, Sokolski M, Siwolowski P, Gajewski P, Nawrocka-Millward S, et al. Impaired hepato-renal function defined by the MELD XI score as prognosticator in acute heart failure. Eur J Heart Fail. 2016;18:1518–21.CrossRef Biegus J, Zymlinski R, Sokolski M, Siwolowski P, Gajewski P, Nawrocka-Millward S, et al. Impaired hepato-renal function defined by the MELD XI score as prognosticator in acute heart failure. Eur J Heart Fail. 2016;18:1518–21.CrossRef
4.
Zurück zum Zitat Weidmann ZM, Breidthardt T, Twerenbold R, Zusli C, Nowak A, von Eckardstein A, et al. Prediction of mortality using quantification of renal function in acute heart failure. Int J Cardiol. 2015;201:650–7.CrossRef Weidmann ZM, Breidthardt T, Twerenbold R, Zusli C, Nowak A, von Eckardstein A, et al. Prediction of mortality using quantification of renal function in acute heart failure. Int J Cardiol. 2015;201:650–7.CrossRef
5.
Zurück zum Zitat Shinagawa H, Inomata T, Koitabashi T, Nakano H, Takeuchi I, Naruke T, et al. Prognostic significance of increased serum bilirubin levels coincident with cardiac decompensation in chronic heart failure. Circ J. 2008;72:364–9.CrossRef Shinagawa H, Inomata T, Koitabashi T, Nakano H, Takeuchi I, Naruke T, et al. Prognostic significance of increased serum bilirubin levels coincident with cardiac decompensation in chronic heart failure. Circ J. 2008;72:364–9.CrossRef
6.
Zurück zum Zitat Kim MS, Kato TS, Farr M, Wu C, Givens RC, Collado E, et al. Hepatic dysfunction in ambulatory patients with heart failure: application of the MELD scoring system for outcome prediction. J Am Coll Cardiol. 2013;61:2253–61.CrossRef Kim MS, Kato TS, Farr M, Wu C, Givens RC, Collado E, et al. Hepatic dysfunction in ambulatory patients with heart failure: application of the MELD scoring system for outcome prediction. J Am Coll Cardiol. 2013;61:2253–61.CrossRef
7.
Zurück zum Zitat Biegus J, Demissei B, Postmus D, Cotter G, Davison BA, Felker GM, et al. Hepatorenal dysfunction identifies high-risk patients with acute heart failure: insights from the RELAX-AHF trial. ESC Heart Fail. 2019;6:1188–98.CrossRef Biegus J, Demissei B, Postmus D, Cotter G, Davison BA, Felker GM, et al. Hepatorenal dysfunction identifies high-risk patients with acute heart failure: insights from the RELAX-AHF trial. ESC Heart Fail. 2019;6:1188–98.CrossRef
8.
Zurück zum Zitat Grodin JL, Gallup D, Anstrom KJ, Felker GM, Chen HH. Tang WHW Implications of Alternative Hepatorenal Prognostic Scoring Systems in Acute Heart Failure (from DOSE-AHF and ROSE-AHF). Am J Cardiol. 2017;119:2003–9.CrossRef Grodin JL, Gallup D, Anstrom KJ, Felker GM, Chen HH. Tang WHW Implications of Alternative Hepatorenal Prognostic Scoring Systems in Acute Heart Failure (from DOSE-AHF and ROSE-AHF). Am J Cardiol. 2017;119:2003–9.CrossRef
9.
Zurück zum Zitat Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–200.CrossRef Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37:2129–200.CrossRef
10.
Zurück zum Zitat Kamath PS, Wiesner RH, Malinchoc M, Kremers W, Therneau TM, Kosberg CL, et al. A model to predict survival in patients with end-stage liver disease. Hepatology. 2001;33:464–70.CrossRef Kamath PS, Wiesner RH, Malinchoc M, Kremers W, Therneau TM, Kosberg CL, et al. A model to predict survival in patients with end-stage liver disease. Hepatology. 2001;33:464–70.CrossRef
11.
Zurück zum Zitat Heuman DM, Mihas AA, Habib A, Gilles HS, Stravitz RT, Sanyal AJ, et al. MELD-XI: a rational approach to “sickest first” liver transplantation in cirrhotic patients requiring anticoagulant therapy. Liver Transpl. 2007;13:30–7.CrossRef Heuman DM, Mihas AA, Habib A, Gilles HS, Stravitz RT, Sanyal AJ, et al. MELD-XI: a rational approach to “sickest first” liver transplantation in cirrhotic patients requiring anticoagulant therapy. Liver Transpl. 2007;13:30–7.CrossRef
12.
Zurück zum Zitat Chokshi A, Cheema FH, Schaefle KJ, Jiang J, Collado E, Shahzad K, et al. Hepatic dysfunction and survival after orthotopic heart transplantation: application of the MELD scoring system for outcome prediction. J Heart Lung Transplant. 2012;31:591–600.CrossRef Chokshi A, Cheema FH, Schaefle KJ, Jiang J, Collado E, Shahzad K, et al. Hepatic dysfunction and survival after orthotopic heart transplantation: application of the MELD scoring system for outcome prediction. J Heart Lung Transplant. 2012;31:591–600.CrossRef
13.
Zurück zum Zitat Kim WR, Biggins SW, Kremers WK, Wiesner RH, Kamath PS, Benson JT, et al. Hyponatremia and mortality among patients on the liver-transplant waiting list. N Engl J Med. 2008;359:1018–26.CrossRef Kim WR, Biggins SW, Kremers WK, Wiesner RH, Kamath PS, Benson JT, et al. Hyponatremia and mortality among patients on the liver-transplant waiting list. N Engl J Med. 2008;359:1018–26.CrossRef
14.
Zurück zum Zitat Heagerty PJ, Lumley T. Pepe MS Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics. 2000;56:337–44.CrossRef Heagerty PJ, Lumley T. Pepe MS Time-dependent ROC curves for censored survival data and a diagnostic marker. Biometrics. 2000;56:337–44.CrossRef
15.
Zurück zum Zitat DeLong ER, DeLong DM. Clarke-Pearson DL Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.CrossRef DeLong ER, DeLong DM. Clarke-Pearson DL Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.CrossRef
16.
Zurück zum Zitat Yalcin YC, Muslem R, Veen KM, Soliman OI, Manintveld OC, Darwish Murad S, et al. Impact of preoperative liver dysfunction on outcomes in patients with left ventricular assist devices. Eur J Cardiothorac Surg. 2019;57:920–8.CrossRef Yalcin YC, Muslem R, Veen KM, Soliman OI, Manintveld OC, Darwish Murad S, et al. Impact of preoperative liver dysfunction on outcomes in patients with left ventricular assist devices. Eur J Cardiothorac Surg. 2019;57:920–8.CrossRef
17.
Zurück zum Zitat Hawkins RB, Young BAC, Mehaffey JH, Speir AM, Quader MA, Rich JB, et al. Model for end-stage liver disease score independently predicts mortality in cardiac surgery. Ann Thorac Surg. 2019;107:1713–9.CrossRef Hawkins RB, Young BAC, Mehaffey JH, Speir AM, Quader MA, Rich JB, et al. Model for end-stage liver disease score independently predicts mortality in cardiac surgery. Ann Thorac Surg. 2019;107:1713–9.CrossRef
18.
Zurück zum Zitat Harjola VP, Mullens W, Banaszewski M, Bauersachs J, Brunner-La Rocca HP, Chioncel O, et al. Organ dysfunction, injury and failure in acute heart failure: from pathophysiology to diagnosis and management. A review on behalf of the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur J Heart Fail. 2017;19:821–36.CrossRef Harjola VP, Mullens W, Banaszewski M, Bauersachs J, Brunner-La Rocca HP, Chioncel O, et al. Organ dysfunction, injury and failure in acute heart failure: from pathophysiology to diagnosis and management. A review on behalf of the Acute Heart Failure Committee of the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur J Heart Fail. 2017;19:821–36.CrossRef
19.
Zurück zum Zitat van Deursen VM, Damman K, Hillege HL, van Beek AP, van Veldhuisen DJ. Voors AA Abnormal liver function in relation to hemodynamic profile in heart failure patients. J Card Fail. 2010;16:84–90.CrossRef van Deursen VM, Damman K, Hillege HL, van Beek AP, van Veldhuisen DJ. Voors AA Abnormal liver function in relation to hemodynamic profile in heart failure patients. J Card Fail. 2010;16:84–90.CrossRef
20.
Zurück zum Zitat Whitehead MW, Hawkes ND, Hainsworth I. Kingham JG A prospective study of the causes of notably raised aspartate aminotransferase of liver origin. Gut. 1999;45:129–33.CrossRef Whitehead MW, Hawkes ND, Hainsworth I. Kingham JG A prospective study of the causes of notably raised aspartate aminotransferase of liver origin. Gut. 1999;45:129–33.CrossRef
21.
Zurück zum Zitat Damman K, van Deursen VM, Navis G, Voors AA, van Veldhuisen DJ, Hillege HL. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol. 2009;53:582–8.CrossRef Damman K, van Deursen VM, Navis G, Voors AA, van Veldhuisen DJ, Hillege HL. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol. 2009;53:582–8.CrossRef
22.
Zurück zum Zitat Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53:589–96.CrossRef Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53:589–96.CrossRef
23.
Zurück zum Zitat Ahmed A, Rich MW, Sanders PW, Perry GJ, Bakris GL, Zile MR, et al. Chronic kidney disease associated mortality in diastolic versus systolic heart failure: a propensity matched study. Am J Cardiol. 2007;99:393–8.CrossRef Ahmed A, Rich MW, Sanders PW, Perry GJ, Bakris GL, Zile MR, et al. Chronic kidney disease associated mortality in diastolic versus systolic heart failure: a propensity matched study. Am J Cardiol. 2007;99:393–8.CrossRef
24.
Zurück zum Zitat Legrand M, Mebazaa A, Ronco C, Januzzi JL Jr. When cardiac failure, kidney dysfunction, and kidney injury intersect in acute conditions: the case of cardiorenal syndrome. Crit Care Med. 2014;42:2109–17.CrossRef Legrand M, Mebazaa A, Ronco C, Januzzi JL Jr. When cardiac failure, kidney dysfunction, and kidney injury intersect in acute conditions: the case of cardiorenal syndrome. Crit Care Med. 2014;42:2109–17.CrossRef
Metadaten
Titel
Prognostic value of the modified model for end-stage liver disease (MELD) score including albumin in acute heart failure
verfasst von
Shengen Liao
Xinyi Lu
Iokfai Cheang
Xu Zhu
Ting Yin
Wenming Yao
Haifeng Zhang
Xinli Li
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
BMC Cardiovascular Disorders / Ausgabe 1/2021
Elektronische ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-021-01941-7

Weitere Artikel der Ausgabe 1/2021

BMC Cardiovascular Disorders 1/2021 Zur Ausgabe

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.