Skip to main content

16.11.2022 | Review Article

Radiomics-based approaches outperform visual analysis for differentiating lipoma from atypical lipomatous tumors: a review

verfasst von: Jordan Haidey, Gavin Low, Mitchell P. Wilson

Erschienen in: Skeletal Radiology

Einloggen, um Zugang zu erhalten

Abstract

Background

Differentiating atypical lipomatous tumors (ALTs) and well-differentiated liposarcomas (WDLs) from benign lipomatous lesions is important for guiding clinical management, though conventional visual analysis of these lesions is challenging due to overlap of imaging features. Radiomics-based approaches may serve as a promising alternative and/or supplementary diagnostic approach to conventional imaging.

Purpose

The purpose of this study is to review the practice of radiomics-based imaging and systematically evaluate the literature available for studies evaluating radiomics applied to differentiating ALTs/WDLs from benign lipomas.

Review

A background review of the radiomic workflow is provided, outlining the steps of image acquisition, segmentation, feature extraction, and model development. Subsequently, a systematic review of MEDLINE, EMBASE, Scopus, the Cochrane Library, and the grey literature was performed from inception to June 2022 to identify size studies using radiomics for differentiating ALTs/WDLs from benign lipomas. Radiomic models were shown to outperform conventional analysis in all but one model with a sensitivity ranging from 68 to 100% and a specificity ranging from 84 to 100%. However, current approaches rely on user input and no studies used a fully automated method for segmentation, contributing to interobserver variability and decreasing time efficiency.

Conclusion

Radiomic models may show improved performance for differentiating ALTs/WDLs from benign lipomas compared to conventional analysis. However, considerable variability between radiomic approaches exists and future studies evaluating a standardized radiomic model with a multi-institutional study design and preferably fully automated segmentation software are needed before clinical application can be more broadly considered.
Literatur
1.
Zurück zum Zitat WHO Classification of Tumours Editorial Board. WHO Classification of tumours: soft tissue and bone tumours. International Agency for Research on Cancer. 2020. WHO Classification of Tumours Editorial Board. WHO Classification of tumours: soft tissue and bone tumours. International Agency for Research on Cancer. 2020.
2.
Zurück zum Zitat Johnson CN, Ha AS, Chen E, Davidson D. Lipomatous soft-tissue tumors: J Am Acad Orthop Surg. 2018;26:779–88. PubMed Johnson CN, Ha AS, Chen E, Davidson D. Lipomatous soft-tissue tumors: J Am Acad Orthop Surg. 2018;26:779–88. PubMed
3.
Zurück zum Zitat Weaver J, Downs-Kelly E, Goldblum JR, Turner S, Kulkarni S, Tubbs RR et al. Fluorescence in situ hybridization for MDM2 gene amplification as a diagnostic tool in lipomatous neoplasms. Mod Pathol Off J U S Can Acad Pathol Inc. 2008;21:943–9. Weaver J, Downs-Kelly E, Goldblum JR, Turner S, Kulkarni S, Tubbs RR et al. Fluorescence in situ hybridization for MDM2 gene amplification as a diagnostic tool in lipomatous neoplasms. Mod Pathol Off J U S Can Acad Pathol Inc. 2008;21:943–9.
4.
Zurück zum Zitat Nagano S, Yokouchi M, Setoguchi T, Ishidou Y, Sasaki H, Shimada H, et al. Differentiation of lipoma and atypical lipomatous tumor by a scoring system: implication of increased vascularity on pathogenesis of liposarcoma. BMC Musculoskelet Disord. 2015;16:36. CrossRefPubMedPubMedCentral Nagano S, Yokouchi M, Setoguchi T, Ishidou Y, Sasaki H, Shimada H, et al. Differentiation of lipoma and atypical lipomatous tumor by a scoring system: implication of increased vascularity on pathogenesis of liposarcoma. BMC Musculoskelet Disord. 2015;16:36. CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Asano Y, Miwa S, Yamamoto N, Hayashi K, Takeuchi A, Igarashi K, et al. A scoring system combining clinical, radiological, and histopathological examinations for differential diagnosis between lipoma and atypical lipomatous tumor/well-differentiated liposarcoma. Sci Rep Nature Publishing Group. 2022;12:237. Asano Y, Miwa S, Yamamoto N, Hayashi K, Takeuchi A, Igarashi K, et al. A scoring system combining clinical, radiological, and histopathological examinations for differential diagnosis between lipoma and atypical lipomatous tumor/well-differentiated liposarcoma. Sci Rep Nature Publishing Group. 2022;12:237.
6.
Zurück zum Zitat Brisson M, Kashima T, Delaney D, Tirabosco R, Clarke A, Cro S, et al. MRI characteristics of lipoma and atypical lipomatous tumor/well-differentiated liposarcoma: retrospective comparison with histology and MDM2 gene amplification. Skeletal Radiol. 2013;42:635–47. CrossRefPubMed Brisson M, Kashima T, Delaney D, Tirabosco R, Clarke A, Cro S, et al. MRI characteristics of lipoma and atypical lipomatous tumor/well-differentiated liposarcoma: retrospective comparison with histology and MDM2 gene amplification. Skeletal Radiol. 2013;42:635–47. CrossRefPubMed
7.
Zurück zum Zitat O’Donnell PW, Griffin AM, Eward WC, Sternheim A, White LM, Wunder JS, et al. Can experienced observers differentiate between lipoma and well-differentiated liposarcoma using only MRI? Sarcoma. 2013;2013:982784. PubMedPubMedCentral O’Donnell PW, Griffin AM, Eward WC, Sternheim A, White LM, Wunder JS, et al. Can experienced observers differentiate between lipoma and well-differentiated liposarcoma using only MRI? Sarcoma. 2013;2013:982784. PubMedPubMedCentral
8.
Zurück zum Zitat Malinauskaite I, Hofmeister J, Burgermeister S, Neroladaki A, Hamard M, Montet X, et al. Radiomics and machine learning differentiate soft-tissue lipoma and liposarcoma better than musculoskeletal radiologists. Sarcoma. 2020;2020:1–9. CrossRef Malinauskaite I, Hofmeister J, Burgermeister S, Neroladaki A, Hamard M, Montet X, et al. Radiomics and machine learning differentiate soft-tissue lipoma and liposarcoma better than musculoskeletal radiologists. Sarcoma. 2020;2020:1–9. CrossRef
9.
Zurück zum Zitat Tomaszewski MR, Gillies RJ. The biological meaning of radiomic features. Radiology. 2021;298:505–16. CrossRefPubMed Tomaszewski MR, Gillies RJ. The biological meaning of radiomic features. Radiology. 2021;298:505–16. CrossRefPubMed
10.
Zurück zum Zitat Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278:563–77. CrossRefPubMed Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278:563–77. CrossRefPubMed
11.
Zurück zum Zitat Larue RTHM, Defraene G, De Ruysscher D, Lambin P, van Elmpt W. Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures. Br J Radiol. 2017;90:20160665. CrossRefPubMedPubMedCentral Larue RTHM, Defraene G, De Ruysscher D, Lambin P, van Elmpt W. Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures. Br J Radiol. 2017;90:20160665. CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Kinahan PE, Perlman ES, Sunderland JJ, Subramaniam R, Wollenweber SD, Turkington TG, et al. The QIBA profile for FDG PET/CT as an imaging biomarker measuring response to cancer therapy. Radiology. 2020;294:647–57. CrossRefPubMed Kinahan PE, Perlman ES, Sunderland JJ, Subramaniam R, Wollenweber SD, Turkington TG, et al. The QIBA profile for FDG PET/CT as an imaging biomarker measuring response to cancer therapy. Radiology. 2020;294:647–57. CrossRefPubMed
14.
Zurück zum Zitat Shur JD, Doran SJ, Kumar S, ap Dafydd D, Downey K, O’Connor JPB, et al. Radiomics in oncology: A practical guide. RadioGraphics. 2021;41:1717–32 (Radiological Society of North America) Shur JD, Doran SJ, Kumar S, ap Dafydd D, Downey K, O’Connor JPB, et al. Radiomics in oncology: A practical guide. RadioGraphics. 2021;41:1717–32 (Radiological Society of North America)
15.
Zurück zum Zitat Parmar C, Velazquez ER, Leijenaar R, Jermoumi M, Carvalho S, Mak RH, et al. Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLOS One. 2014;9:e102107. CrossRefPubMedPubMedCentral Parmar C, Velazquez ER, Leijenaar R, Jermoumi M, Carvalho S, Mak RH, et al. Robust radiomics feature quantification using semiautomatic volumetric segmentation. PLOS One. 2014;9:e102107. CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Bera K, Braman N, Gupta A, Velcheti V, Madabhushi A. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat Rev Clin Oncol. 2022;19:132–46. CrossRefPubMed Bera K, Braman N, Gupta A, Velcheti V, Madabhushi A. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat Rev Clin Oncol. 2022;19:132–46. CrossRefPubMed
17.
Zurück zum Zitat Hosny A, Aerts HJ, Mak RH. Handcrafted versus deep learning radiomics for prediction of cancer therapy response. Lancet Digit Health Elsevier. 2019;1:e106–7. CrossRef Hosny A, Aerts HJ, Mak RH. Handcrafted versus deep learning radiomics for prediction of cancer therapy response. Lancet Digit Health Elsevier. 2019;1:e106–7. CrossRef
18.
Zurück zum Zitat Gebejes A, Huertas R. Texture characterization based on grey-level co-occurrence matrix. Proc Conf Inform Manag Sci. 2013;3:375–378. Gebejes A, Huertas R. Texture characterization based on grey-level co-occurrence matrix. Proc Conf Inform Manag Sci. 2013;3:375–378.
19.
Zurück zum Zitat van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B. Radiomics in medical imaging—“how-to” guide and critical reflection. Insights Imaging. 2020;11:91. CrossRefPubMedPubMedCentral van Timmeren JE, Cester D, Tanadini-Lang S, Alkadhi H, Baessler B. Radiomics in medical imaging—“how-to” guide and critical reflection. Insights Imaging. 2020;11:91. CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Park JE, Park SY, Kim HJ, Kim HS. Reproducibility and generalizability in radiomics modeling: possible strategies in radiologic and statistical perspectives. Korean J Radiol. 2019;20:1124–37. CrossRefPubMedPubMedCentral Park JE, Park SY, Kim HJ, Kim HS. Reproducibility and generalizability in radiomics modeling: possible strategies in radiologic and statistical perspectives. Korean J Radiol. 2019;20:1124–37. CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Zwanenburg A, Leger S, Agolli L, Pilz K, Troost EGC, Richter C, et al. Assessing robustness of radiomic features by image perturbation. Sci Rep. 2019;9:614. CrossRefPubMedPubMedCentral Zwanenburg A, Leger S, Agolli L, Pilz K, Troost EGC, Richter C, et al. Assessing robustness of radiomic features by image perturbation. Sci Rep. 2019;9:614. CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Leporq B, Bouhamama A, Pilleul F, Lame F, Bihane C, Sdika M, et al. MRI-based radiomics to predict lipomatous soft tissue tumors malignancy: a pilot study. Cancer Imaging. 2020;20:78. CrossRefPubMedPubMedCentral Leporq B, Bouhamama A, Pilleul F, Lame F, Bihane C, Sdika M, et al. MRI-based radiomics to predict lipomatous soft tissue tumors malignancy: a pilot study. Cancer Imaging. 2020;20:78. CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Thornhill RE, Golfam M, Sheikh A, Cron GO, White EA, Werier J, et al. Differentiation of lipoma from liposarcoma on MRI using texture and shape analysis. Acad Radiol. 2014;21:1185–94. CrossRefPubMed Thornhill RE, Golfam M, Sheikh A, Cron GO, White EA, Werier J, et al. Differentiation of lipoma from liposarcoma on MRI using texture and shape analysis. Acad Radiol. 2014;21:1185–94. CrossRefPubMed
25.
Zurück zum Zitat Vos M, Starmans MPA, Timbergen MJM, van der Voort SR, Padmos GA, Kessels W, et al. Radiomics approach to distinguish between well differentiated liposarcomas and lipomas on MRI. Br J Surg. 2019;106:1800–9. CrossRefPubMedPubMedCentral Vos M, Starmans MPA, Timbergen MJM, van der Voort SR, Padmos GA, Kessels W, et al. Radiomics approach to distinguish between well differentiated liposarcomas and lipomas on MRI. Br J Surg. 2019;106:1800–9. CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Tang Y, Cui J, Zhu J, Fan G. Differentiation between lipomas and atypical lipomatous tumors of the extremities using radiomics. J Magn Reson Imaging. 2022;56:1746–1754. Tang Y, Cui J, Zhu J, Fan G. Differentiation between lipomas and atypical lipomatous tumors of the extremities using radiomics. J Magn Reson Imaging. 2022;56:1746–1754.
27.
Zurück zum Zitat Pressney I, Khoo M, Endozo R, Ganeshan B, O’Donnell P. Pilot study to differentiate lipoma from atypical lipomatous tumour/well-differentiated liposarcoma using MR radiomics-based texture analysis. Skeletal Radiol. 2020;49:1719–29. CrossRefPubMed Pressney I, Khoo M, Endozo R, Ganeshan B, O’Donnell P. Pilot study to differentiate lipoma from atypical lipomatous tumour/well-differentiated liposarcoma using MR radiomics-based texture analysis. Skeletal Radiol. 2020;49:1719–29. CrossRefPubMed
28.
Zurück zum Zitat Kalpathy-Cramer J, Mamomov A, Zhao B, Lu L, Cherezov D, Napel S, et al. Radiomics of lung nodules: a multi-institutional study of robustness and agreement of quantitative imaging features. Tomography. 2016;2:430–7. CrossRefPubMedPubMedCentral Kalpathy-Cramer J, Mamomov A, Zhao B, Lu L, Cherezov D, Napel S, et al. Radiomics of lung nodules: a multi-institutional study of robustness and agreement of quantitative imaging features. Tomography. 2016;2:430–7. CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Bleker J, Kwee TC, Rouw D, Roest C, Borstlap J, de Jong IJ, et al. A deep learning masked segmentation alternative to manual segmentation in biparametric MRI prostate cancer radiomics. Eur Radiol. 2022;32:6526–35. CrossRefPubMedPubMedCentral Bleker J, Kwee TC, Rouw D, Roest C, Borstlap J, de Jong IJ, et al. A deep learning masked segmentation alternative to manual segmentation in biparametric MRI prostate cancer radiomics. Eur Radiol. 2022;32:6526–35. CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Chen MY, Woodruff MA, Dasgupta P, Rukin NJ. Variability in accuracy of prostate cancer segmentation among radiologists, urologists, and scientists. Cancer Med. 2020;9:7172–82. CrossRefPubMedPubMedCentral Chen MY, Woodruff MA, Dasgupta P, Rukin NJ. Variability in accuracy of prostate cancer segmentation among radiologists, urologists, and scientists. Cancer Med. 2020;9:7172–82. CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Gitto S, Cuocolo R, Albano D, Morelli F, Pescatori LC, Messina C, et al. CT and MRI radiomics of bone and soft-tissue sarcomas: a systematic review of reproducibility and validation strategies. Insights Imaging. 2021;12:68. CrossRefPubMedPubMedCentral Gitto S, Cuocolo R, Albano D, Morelli F, Pescatori LC, Messina C, et al. CT and MRI radiomics of bone and soft-tissue sarcomas: a systematic review of reproducibility and validation strategies. Insights Imaging. 2021;12:68. CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Wang B, Lei Y, Tian S, Wang T, Liu Y, Patel P, et al. Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation. Med Phys. 2019;46:1707–18. CrossRefPubMed Wang B, Lei Y, Tian S, Wang T, Liu Y, Patel P, et al. Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation. Med Phys. 2019;46:1707–18. CrossRefPubMed
33.
Zurück zum Zitat Ushinsky A, Bardis M, Glavis-Bloom J, Uchio E, Chantaduly C, Nguyentat M, et al. A 3D–2D hybrid U-Net convolutional neural network approach to prostate organ segmentation of multiparametric MRI. AJR Am J Roentgenol. 2021;216:111–6. CrossRefPubMed Ushinsky A, Bardis M, Glavis-Bloom J, Uchio E, Chantaduly C, Nguyentat M, et al. A 3D–2D hybrid U-Net convolutional neural network approach to prostate organ segmentation of multiparametric MRI. AJR Am J Roentgenol. 2021;216:111–6. CrossRefPubMed
34.
Zurück zum Zitat Fradet G, Ayde R, Bottois H, El Harchaoui M, Khaled W, Drapé J-L, et al. Prediction of lipomatous soft tissue malignancy on MRI: comparison between machine learning applied to radiomics and deep learning. Eur Radiol Exp. 2022;6:41. CrossRefPubMedPubMedCentral Fradet G, Ayde R, Bottois H, El Harchaoui M, Khaled W, Drapé J-L, et al. Prediction of lipomatous soft tissue malignancy on MRI: comparison between machine learning applied to radiomics and deep learning. Eur Radiol Exp. 2022;6:41. CrossRefPubMedPubMedCentral
Metadaten
Titel
Radiomics-based approaches outperform visual analysis for differentiating lipoma from atypical lipomatous tumors: a review
verfasst von
Jordan Haidey
Gavin Low
Mitchell P. Wilson
Publikationsdatum
16.11.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Skeletal Radiology
Print ISSN: 0364-2348
Elektronische ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-022-04232-0

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Radiologie und bleiben Sie gut informiert – ganz bequem per eMail.