Skip to main content
Erschienen in: Inflammation 5/2023

21.07.2023 | RESEARCH

Regulation of NLRP3 Inflammasome Activation and Inflammatory Exosome Release in Podocytes by Acid Sphingomyelinase During Obesity

verfasst von: Dandan Huang, Jason M. Kidd, Yao Zou, Xiaoyuan Wu, Todd W. B. Gehr, Pin-Lan Li, Guangbi Li

Erschienen in: Inflammation | Ausgabe 5/2023

Einloggen, um Zugang zu erhalten

Abstract

The activation of nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome has been reported to importantly contribute to glomerular inflammation and injury under different pathological conditions such as obesity. However, the mechanism mediating NLRP3 inflammasome activation in podocytes and subsequent glomerular injury remains poorly understood. Given that the ceramide signaling pathway has been reported to be implicated in obesity-related glomerulopathy (ORG), the present study was designed to test whether the ceramide-producing enzyme, acid sphingomyelinase (ASM), determines NLRP3 inflammasome activation and inflammatory exosome release in podocytes leading to glomerular inflammation and injury during ORG. In Smpd1trg/Podocre mice, podocyte-specific overexpression of Smpd1 gene which encodes ASM significantly exaggerated high-fat diet (HFD)-induced NLRP3 inflammasome activation in podocytes and immune cell infiltration in glomeruli compared to WT/WT mice. Smpd1 gene deletion, however, blocked these pathological changes induced by HFD in Smpd1−/− mice. Accompanied with NLRP3 inflammasome activation and glomerular inflammation, urinary excretion of exosomes containing podocyte marker and NLRP3 inflammasome products (IL-1β and IL-18) in Smpd1trg/Podocre mice on the HFD was much higher than that in WT/WT mice. In contrast, Smpd1−/− mice on the HDF had significantly lower urinary exosome excretion than WT/WT mice. Correspondingly, HFD-induced podocyte injury, glomerular sclerosis, and proteinuria were more severe in Smpd1trg/Podocre mice, but milder in Smpd1−/− mice compared to WT/WT mice. Using podocytes isolated from these mice, we demonstrated that visfatin, a prototype pro-inflammatory adipokine, induced NLRP3 inflammasome activation and enrichment of multivesicular bodies (MVBs) containing IL-1β in podocytes, which was much stronger in podocytes from Smpd1trg/Podocre mice, but weaker in those from Smpd1−/− mice than WT/WT podocytes. By quantitative analysis of exosomes, it was found that upon visfatin stimulation, podocytes from Smpd1trg/Podocre mice released much more exosomes containing NLRP3 inflammasome products, but podocytes from Smpd1−/− mice released much less exosomes compared to WT/WT podocytes. Super-resolution microscopy demonstrated that visfatin inhibited lysosome-MVB interaction in podocytes, indicating impaired MVB degradation by lysosome. The inhibition of lysosome-MVB interaction by visfatin was amplified by Smpd1 gene overexpression but attenuated by Smpd1 gene deletion. Taken together, our results suggest that ASM in podocytes is a crucial regulator of NLRP3 inflammasome activation and inflammatory exosome release that instigate glomerular inflammation and injury during obesity.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Martinon, F., A. Mayor, and J. Tschopp. 2009. The inflammasomes: Guardians of the body. Annual Review of Immunology 27: 229–265.PubMed Martinon, F., A. Mayor, and J. Tschopp. 2009. The inflammasomes: Guardians of the body. Annual Review of Immunology 27: 229–265.PubMed
2.
Zurück zum Zitat Abais, J.M., C. Zhang, M. Xia, Q. Liu, T.W. Gehr, K.M. Boini, et al. 2013. NADPH oxidase-mediated triggering of inflammasome activation in mouse podocytes and glomeruli during hyperhomocysteinemia. Antioxidants & redox signaling 18: 1537–1548. Abais, J.M., C. Zhang, M. Xia, Q. Liu, T.W. Gehr, K.M. Boini, et al. 2013. NADPH oxidase-mediated triggering of inflammasome activation in mouse podocytes and glomeruli during hyperhomocysteinemia. Antioxidants & redox signaling 18: 1537–1548.
3.
Zurück zum Zitat Boini, K.M., M. Xia, S. Koka, T.W. Gehr, and P.L. Li. 2016. Instigation of NLRP3 inflammasome activation and glomerular injury in mice on the high fat diet: Role of acid sphingomyelinase gene. Oncotarget 7: 19031–19044.PubMedPubMedCentral Boini, K.M., M. Xia, S. Koka, T.W. Gehr, and P.L. Li. 2016. Instigation of NLRP3 inflammasome activation and glomerular injury in mice on the high fat diet: Role of acid sphingomyelinase gene. Oncotarget 7: 19031–19044.PubMedPubMedCentral
4.
Zurück zum Zitat Cruz, C.M., A. Rinna, H.J. Forman, A.L. Ventura, P.M. Persechini, and D.M. Ojcius. 2007. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. Journal of Biological Chemistry 282: 2871–2879.PubMed Cruz, C.M., A. Rinna, H.J. Forman, A.L. Ventura, P.M. Persechini, and D.M. Ojcius. 2007. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. Journal of Biological Chemistry 282: 2871–2879.PubMed
5.
Zurück zum Zitat Halle, A., V. Hornung, G.C. Petzold, C.R. Stewart, B.G. Monks, T. Reinheckel, et al. 2008. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nature Immunology 9: 857–865.PubMedPubMedCentral Halle, A., V. Hornung, G.C. Petzold, C.R. Stewart, B.G. Monks, T. Reinheckel, et al. 2008. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nature Immunology 9: 857–865.PubMedPubMedCentral
6.
Zurück zum Zitat Nour, A.M., Y.G. Yeung, L. Santambrogio, E.D. Boyden, E.R. Stanley, and J. Brojatsch. 2009. Anthrax lethal toxin triggers the formation of a membrane-associated inflammasome complex in murine macrophages. Infection and Immunity 77: 1262–1271.PubMedPubMedCentral Nour, A.M., Y.G. Yeung, L. Santambrogio, E.D. Boyden, E.R. Stanley, and J. Brojatsch. 2009. Anthrax lethal toxin triggers the formation of a membrane-associated inflammasome complex in murine macrophages. Infection and Immunity 77: 1262–1271.PubMedPubMedCentral
7.
Zurück zum Zitat Chen, G.Y., and G. Nunez. 2010. Sterile inflammation: Sensing and reacting to damage. Nature Reviews Immunology 10: 826–837.PubMedPubMedCentral Chen, G.Y., and G. Nunez. 2010. Sterile inflammation: Sensing and reacting to damage. Nature Reviews Immunology 10: 826–837.PubMedPubMedCentral
8.
Zurück zum Zitat Lamkanfi, M. 2011. Emerging inflammasome effector mechanisms. Nature Reviews Immunology 11: 213–220.PubMed Lamkanfi, M. 2011. Emerging inflammasome effector mechanisms. Nature Reviews Immunology 11: 213–220.PubMed
9.
Zurück zum Zitat Martinon, F., K. Burns, and J. Tschopp. 2002. The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular Cell 10: 417–426.PubMed Martinon, F., K. Burns, and J. Tschopp. 2002. The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular Cell 10: 417–426.PubMed
10.
Zurück zum Zitat Srinivasula, S.M., J.L. Poyet, M. Razmara, P. Datta, Z. Zhang, and E.S. Alnemri. 2002. The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. Journal of Biological Chemistry 277: 21119–21122.PubMed Srinivasula, S.M., J.L. Poyet, M. Razmara, P. Datta, Z. Zhang, and E.S. Alnemri. 2002. The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. Journal of Biological Chemistry 277: 21119–21122.PubMed
11.
Zurück zum Zitat Boini, K.M., M. Xia, J.M. Abais, G. Li, A.L. Pitzer, T.W. Gehr, et al. 2014. Activation of inflammasomes in podocyte injury of mice on the high fat diet: Effects of ASC gene deletion and silencing. Biochimica et Biophysica Acta 1843: 836–845.PubMedPubMedCentral Boini, K.M., M. Xia, J.M. Abais, G. Li, A.L. Pitzer, T.W. Gehr, et al. 2014. Activation of inflammasomes in podocyte injury of mice on the high fat diet: Effects of ASC gene deletion and silencing. Biochimica et Biophysica Acta 1843: 836–845.PubMedPubMedCentral
12.
Zurück zum Zitat Griffiths, G., and K. Simons. 1986. The trans Golgi network: Sorting at the exit site of the Golgi complex. Science 234: 438–443.PubMed Griffiths, G., and K. Simons. 1986. The trans Golgi network: Sorting at the exit site of the Golgi complex. Science 234: 438–443.PubMed
13.
Zurück zum Zitat Gu, F., C.M. Crump, and G. Thomas. 2001. Trans-Golgi network sorting. Cellular and molecular life sciences : CMLS 58: 1067–1084.PubMed Gu, F., C.M. Crump, and G. Thomas. 2001. Trans-Golgi network sorting. Cellular and molecular life sciences : CMLS 58: 1067–1084.PubMed
14.
Zurück zum Zitat Colombo, M., G. Raposo, and C. Thery. 2014. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual Review of Cell and Developmental Biology 30: 255–289.PubMed Colombo, M., G. Raposo, and C. Thery. 2014. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual Review of Cell and Developmental Biology 30: 255–289.PubMed
15.
Zurück zum Zitat Schorey, J.S., and C.V. Harding. 2016. Extracellular vesicles and infectious diseases: New complexity to an old story. The Journal of Clinical Investigation 126: 1181–1189.PubMedPubMedCentral Schorey, J.S., and C.V. Harding. 2016. Extracellular vesicles and infectious diseases: New complexity to an old story. The Journal of Clinical Investigation 126: 1181–1189.PubMedPubMedCentral
16.
Zurück zum Zitat Li, G., J. Kidd, and P.L. Li. 2020. Podocyte lysosome dysfunction in chronic glomerular diseases. International journal of molecular sciences 21. Li, G., J. Kidd, and P.L. Li. 2020. Podocyte lysosome dysfunction in chronic glomerular diseases. International journal of molecular sciences 21.
17.
Zurück zum Zitat Takahashi, A., R. Okada, K. Nagao, Y. Kawamata, A. Hanyu, S. Yoshimoto, et al. 2017. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nature Communications 8: 15287.PubMedPubMedCentral Takahashi, A., R. Okada, K. Nagao, Y. Kawamata, A. Hanyu, S. Yoshimoto, et al. 2017. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nature Communications 8: 15287.PubMedPubMedCentral
18.
Zurück zum Zitat Eitan, E., C. Suire, S. Zhang, and M.P. Mattson. 2016. Impact of lysosome status on extracellular vesicle content and release. Ageing research reviews 32: 65–74.PubMedPubMedCentral Eitan, E., C. Suire, S. Zhang, and M.P. Mattson. 2016. Impact of lysosome status on extracellular vesicle content and release. Ageing research reviews 32: 65–74.PubMedPubMedCentral
19.
Zurück zum Zitat van Balkom, B.W., T. Pisitkun, M.C. Verhaar, and M.A. Knepper. 2011. Exosomes and the kidney: Prospects for diagnosis and therapy of renal diseases. Kidney International 80: 1138–1145.PubMedPubMedCentral van Balkom, B.W., T. Pisitkun, M.C. Verhaar, and M.A. Knepper. 2011. Exosomes and the kidney: Prospects for diagnosis and therapy of renal diseases. Kidney International 80: 1138–1145.PubMedPubMedCentral
20.
Zurück zum Zitat Zhou, H., H. Kajiyama, T. Tsuji, X. Hu, A. Leelahavanichkul, S. Vento, et al. 2013. Urinary exosomal Wilms’ tumor-1 as a potential biomarker for podocyte injury. American Journal of Physiology. Renal Physiology 305: F553–F559.PubMedPubMedCentral Zhou, H., H. Kajiyama, T. Tsuji, X. Hu, A. Leelahavanichkul, S. Vento, et al. 2013. Urinary exosomal Wilms’ tumor-1 as a potential biomarker for podocyte injury. American Journal of Physiology. Renal Physiology 305: F553–F559.PubMedPubMedCentral
21.
Zurück zum Zitat Erdbrugger, U., and T.H. Le. 2016. Extracellular vesicles in renal diseases: More than novel biomarkers? Journal of the American Society of Nephrology 27: 12–26.PubMed Erdbrugger, U., and T.H. Le. 2016. Extracellular vesicles in renal diseases: More than novel biomarkers? Journal of the American Society of Nephrology 27: 12–26.PubMed
22.
Zurück zum Zitat Hara, M., T. Yanagihara, I. Kihara, K. Higashi, K. Fujimoto, and T. Kajita. 2005. Apical cell membranes are shed into urine from injured podocytes: A novel phenomenon of podocyte injury. Journal of the American Society of Nephrology: JASN 16: 408–416.PubMed Hara, M., T. Yanagihara, I. Kihara, K. Higashi, K. Fujimoto, and T. Kajita. 2005. Apical cell membranes are shed into urine from injured podocytes: A novel phenomenon of podocyte injury. Journal of the American Society of Nephrology: JASN 16: 408–416.PubMed
23.
Zurück zum Zitat Lee, H., K.H. Han, S.E. Lee, S.H. Kim, H.G. Kang, and H.I. Cheong. 2012. Urinary exosomal WT1 in childhood nephrotic syndrome. Pediatric Nephrology(Berlin, Germany) 27: 317–320.PubMed Lee, H., K.H. Han, S.E. Lee, S.H. Kim, H.G. Kang, and H.I. Cheong. 2012. Urinary exosomal WT1 in childhood nephrotic syndrome. Pediatric Nephrology(Berlin, Germany) 27: 317–320.PubMed
24.
Zurück zum Zitat Lytvyn, Y., F. Xiao, C.R. Kennedy, B.A. Perkins, H.N. Reich, J.W. Scholey, et al. 2017. Assessment of urinary microparticles in normotensive patients with type 1 diabetes. Diabetologia 60: 581–584.PubMed Lytvyn, Y., F. Xiao, C.R. Kennedy, B.A. Perkins, H.N. Reich, J.W. Scholey, et al. 2017. Assessment of urinary microparticles in normotensive patients with type 1 diabetes. Diabetologia 60: 581–584.PubMed
25.
Zurück zum Zitat Stahl, A.L., K. Johansson, M. Mossberg, R. Kahn, and D. Karpman. 2019. Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatric nephrology 34: 11–30.PubMed Stahl, A.L., K. Johansson, M. Mossberg, R. Kahn, and D. Karpman. 2019. Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatric nephrology 34: 11–30.PubMed
26.
Zurück zum Zitat Tkaczyk, M., and Z. Baj. 2002. Surface markers of platelet function in idiopathic nephrotic syndrome in children. Pediatric nephrology 17: 673–677.PubMed Tkaczyk, M., and Z. Baj. 2002. Surface markers of platelet function in idiopathic nephrotic syndrome in children. Pediatric nephrology 17: 673–677.PubMed
27.
Zurück zum Zitat Hong, J., O.M. Bhat, G. Li, S.K. Dempsey, Q. Zhang, J.K. Ritter, et al. 2019. Lysosomal regulation of extracellular vesicle excretion during d-ribose-induced NLRP3 inflammasome activation in podocytes. Biochimica et Biophysica Acta, Molecular Cell Research 1866: 849–860.PubMed Hong, J., O.M. Bhat, G. Li, S.K. Dempsey, Q. Zhang, J.K. Ritter, et al. 2019. Lysosomal regulation of extracellular vesicle excretion during d-ribose-induced NLRP3 inflammasome activation in podocytes. Biochimica et Biophysica Acta, Molecular Cell Research 1866: 849–860.PubMed
28.
Zurück zum Zitat Huang, D., G. Li, Q. Zhang, O.M. Bhat, Y. Zou, J.K. Ritter, et al. 2021. Contribution of podocyte inflammatory exosome release to glomerular inflammation and sclerosis during hyperhomocysteinemia. Biochimica et Biophysica Acta, Molecular Basis of Disease 1867.PubMed Huang, D., G. Li, Q. Zhang, O.M. Bhat, Y. Zou, J.K. Ritter, et al. 2021. Contribution of podocyte inflammatory exosome release to glomerular inflammation and sclerosis during hyperhomocysteinemia. Biochimica et Biophysica Acta, Molecular Basis of Disease 1867.PubMed
29.
Zurück zum Zitat Li, G., D. Huang, N. Li, J.K. Ritter, and P.L. Li. 2021. Regulation of TRPML1 channel activity and inflammatory exosome release by endogenously produced reactive oxygen species in mouse podocytes. Redox biology 43.PubMedPubMedCentral Li, G., D. Huang, N. Li, J.K. Ritter, and P.L. Li. 2021. Regulation of TRPML1 channel activity and inflammatory exosome release by endogenously produced reactive oxygen species in mouse podocytes. Redox biology 43.PubMedPubMedCentral
30.
Zurück zum Zitat Kajimoto, T., T. Okada, S. Miya, L. Zhang, and S. Nakamura. 2013. Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nature communications 4: 2712.PubMed Kajimoto, T., T. Okada, S. Miya, L. Zhang, and S. Nakamura. 2013. Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nature communications 4: 2712.PubMed
31.
Zurück zum Zitat Trajkovic, K., C. Hsu, S. Chiantia, L. Rajendran, D. Wenzel, F. Wieland, et al. 2008. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319: 1244–1247.PubMed Trajkovic, K., C. Hsu, S. Chiantia, L. Rajendran, D. Wenzel, F. Wieland, et al. 2008. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319: 1244–1247.PubMed
32.
Zurück zum Zitat Yuyama, K., H. Sun, S. Mitsutake, and Y. Igarashi. 2012. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-beta by microglia. The Journal of biological chemistry 287: 10977–10989.PubMedPubMedCentral Yuyama, K., H. Sun, S. Mitsutake, and Y. Igarashi. 2012. Sphingolipid-modulated exosome secretion promotes clearance of amyloid-beta by microglia. The Journal of biological chemistry 287: 10977–10989.PubMedPubMedCentral
33.
Zurück zum Zitat Alvarez-Erviti, L., Y. Seow, A.H. Schapira, C. Gardiner, I.L. Sargent, M.J. Wood, et al. 2011. Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiology of Diseases 42: 360–367. Alvarez-Erviti, L., Y. Seow, A.H. Schapira, C. Gardiner, I.L. Sargent, M.J. Wood, et al. 2011. Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiology of Diseases 42: 360–367.
34.
Zurück zum Zitat Cui, Y., J. Luan, H. Li, X. Zhou, and J. Han. 2016. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression. FEBS Letters 590: 185–192.PubMed Cui, Y., J. Luan, H. Li, X. Zhou, and J. Han. 2016. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression. FEBS Letters 590: 185–192.PubMed
35.
Zurück zum Zitat Lee, M.J., J.R. Van Brocklyn, S. Thangada, C.H. Liu, A.R. Hand, R. Menzeleev, et al. 1998. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279: 1552–1555.PubMed Lee, M.J., J.R. Van Brocklyn, S. Thangada, C.H. Liu, A.R. Hand, R. Menzeleev, et al. 1998. Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279: 1552–1555.PubMed
36.
Zurück zum Zitat Li, P.L., Y. Zhang, J.M. Abais, J.K. Ritter, and F. Zhang. 2013. Cyclic ADP-ribose and NAADP in vascular regulation and diseases. Messenger 2: 63–85.PubMed Li, P.L., Y. Zhang, J.M. Abais, J.K. Ritter, and F. Zhang. 2013. Cyclic ADP-ribose and NAADP in vascular regulation and diseases. Messenger 2: 63–85.PubMed
37.
Zurück zum Zitat Liebau, M.C., F. Braun, K. Hopker, C. Weitbrecht, V. Bartels, R.U. Muller, et al. 2013. Dysregulated autophagy contributes to podocyte damage in Fabry’s disease. PLoS One1 8. Liebau, M.C., F. Braun, K. Hopker, C. Weitbrecht, V. Bartels, R.U. Muller, et al. 2013. Dysregulated autophagy contributes to podocyte damage in Fabry’s disease. PLoS One1 8.
38.
Zurück zum Zitat Lorber, D. 2014. Importance of cardiovascular disease risk management in patients with type 2 diabetes mellitus. Diabetes, Metabolic Syndrome and Obesity 7: 169–183.PubMedPubMedCentral Lorber, D. 2014. Importance of cardiovascular disease risk management in patients with type 2 diabetes mellitus. Diabetes, Metabolic Syndrome and Obesity 7: 169–183.PubMedPubMedCentral
39.
Zurück zum Zitat Boulanger, C.M., X. Loyer, P.E. Rautou, and N. Amabile. 2017. Extracellular vesicles in coronary artery disease. Nature Reviews. Cardiology 14: 259–272.PubMed Boulanger, C.M., X. Loyer, P.E. Rautou, and N. Amabile. 2017. Extracellular vesicles in coronary artery disease. Nature Reviews. Cardiology 14: 259–272.PubMed
40.
Zurück zum Zitat Chistiakov, D.A., A.N. Orekhov, and Y.V. Bobryshev. 2015. Extracellular vesicles and atherosclerotic disease. Cellular and molecular life sciences: CMLS 72: 2697–2708.PubMed Chistiakov, D.A., A.N. Orekhov, and Y.V. Bobryshev. 2015. Extracellular vesicles and atherosclerotic disease. Cellular and molecular life sciences: CMLS 72: 2697–2708.PubMed
41.
Zurück zum Zitat Hessvik, N.P., and A. Llorente. 2018. Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences 75: 193–208.PubMed Hessvik, N.P., and A. Llorente. 2018. Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences 75: 193–208.PubMed
42.
Zurück zum Zitat Li, G., D. Huang, J. Hong, O.M. Bhat, X. Yuan, and P.L. Li. 2019. Control of lysosomal TRPML1 channel activity and exosome release by acid ceramidase in mouse podocytes. American Journal of Physiology Cell Physiology 317: C481–C491.PubMedPubMedCentral Li, G., D. Huang, J. Hong, O.M. Bhat, X. Yuan, and P.L. Li. 2019. Control of lysosomal TRPML1 channel activity and exosome release by acid ceramidase in mouse podocytes. American Journal of Physiology Cell Physiology 317: C481–C491.PubMedPubMedCentral
43.
Zurück zum Zitat Li, G., D. Huang, O.M. Bhat, J.L. Poklis, A. Zhang, Y. Zou, et al. 2020. Abnormal podocyte TRPML1 channel activity and exosome release in mice with podocyte-specific Asah1 gene deletion. Biochimica et biophysica acta Molecular and cell biology of lipids 1866.PubMedPubMedCentral Li, G., D. Huang, O.M. Bhat, J.L. Poklis, A. Zhang, Y. Zou, et al. 2020. Abnormal podocyte TRPML1 channel activity and exosome release in mice with podocyte-specific Asah1 gene deletion. Biochimica et biophysica acta Molecular and cell biology of lipids 1866.PubMedPubMedCentral
44.
Zurück zum Zitat Gupta, S., R. Natarajan, S.G. Payne, E.J. Studer, S. Spiegel, P. Dent, et al. 2004. Deoxycholic acid activates the c-Jun N-terminal kinase pathway via FAS receptor activation in primary hepatocytes. Role of acidic sphingomyelinase-mediated ceramide generation in FAS receptor activation. The Journal of biological chemistry 279: 5821–8.PubMed Gupta, S., R. Natarajan, S.G. Payne, E.J. Studer, S. Spiegel, P. Dent, et al. 2004. Deoxycholic acid activates the c-Jun N-terminal kinase pathway via FAS receptor activation in primary hepatocytes. Role of acidic sphingomyelinase-mediated ceramide generation in FAS receptor activation. The Journal of biological chemistry 279: 5821–8.PubMed
45.
Zurück zum Zitat Maric, I., J.P. Krieger, P. van der Velden, S. Borchers, M. Asker, M. Vujicic, et al. 2022. Sex and species differences in the development of diet-induced obesity and metabolic disturbances in rodents. Frontiers in nutrition 9.PubMedPubMedCentral Maric, I., J.P. Krieger, P. van der Velden, S. Borchers, M. Asker, M. Vujicic, et al. 2022. Sex and species differences in the development of diet-induced obesity and metabolic disturbances in rodents. Frontiers in nutrition 9.PubMedPubMedCentral
46.
Zurück zum Zitat Shah, B., K. Tombeau Cost, A. Fuller, C.S. Birken, and L.N. Anderson. 2020. Sex and gender differences in childhood obesity: Contributing to the research agenda. BMJ Nutrition, Prevention & Health 3: 387–390. Shah, B., K. Tombeau Cost, A. Fuller, C.S. Birken, and L.N. Anderson. 2020. Sex and gender differences in childhood obesity: Contributing to the research agenda. BMJ Nutrition, Prevention & Health 3: 387–390.
47.
Zurück zum Zitat Li, G., J. Kidd, C. Kaspar, S. Dempsey, O.M. Bhat, S. Camus, et al. 2020. Podocytopathy and nephrotic syndrome in mice with podocyte-specific deletion of the Asah1 gene: Role of ceramide accumulation in glomeruli. The American journal of pathology 190: 1211–1223.PubMedPubMedCentral Li, G., J. Kidd, C. Kaspar, S. Dempsey, O.M. Bhat, S. Camus, et al. 2020. Podocytopathy and nephrotic syndrome in mice with podocyte-specific deletion of the Asah1 gene: Role of ceramide accumulation in glomeruli. The American journal of pathology 190: 1211–1223.PubMedPubMedCentral
48.
Zurück zum Zitat Huang, D., G. Li, O.M. Bhat, Y. Zou, N. Li, J.K. Ritter, et al. 2022. Exosome biogenesis and lysosome function determine podocyte exosome release and glomerular inflammatory response during hyperhomocysteinemia. The American journal of pathology 192: 43–55.PubMedPubMedCentral Huang, D., G. Li, O.M. Bhat, Y. Zou, N. Li, J.K. Ritter, et al. 2022. Exosome biogenesis and lysosome function determine podocyte exosome release and glomerular inflammatory response during hyperhomocysteinemia. The American journal of pathology 192: 43–55.PubMedPubMedCentral
49.
Zurück zum Zitat Koka, S., M. Xia, C. Zhang, Y. Zhang, P.L. Li, and K.M. Boini. 2019. Podocyte NLRP3 inflammasome activation and formation by adipokine visfatin. Cellular physiology and biochemistry: International journal of experimental cellular physiology, biochemistry, and pharmacology 53: 355–365.PubMed Koka, S., M. Xia, C. Zhang, Y. Zhang, P.L. Li, and K.M. Boini. 2019. Podocyte NLRP3 inflammasome activation and formation by adipokine visfatin. Cellular physiology and biochemistry: International journal of experimental cellular physiology, biochemistry, and pharmacology 53: 355–365.PubMed
50.
Zurück zum Zitat Chen, Y., A.L. Pitzer, X. Li, P.L. Li, L. Wang, and Y. Zhang. 2015. Instigation of endothelial Nlrp3 inflammasome by adipokine visfatin promotes inter-endothelial junction disruption: Role of HMGB1. Journal of cellular and molecular medicine 19: 2715–2727.PubMedPubMedCentral Chen, Y., A.L. Pitzer, X. Li, P.L. Li, L. Wang, and Y. Zhang. 2015. Instigation of endothelial Nlrp3 inflammasome by adipokine visfatin promotes inter-endothelial junction disruption: Role of HMGB1. Journal of cellular and molecular medicine 19: 2715–2727.PubMedPubMedCentral
51.
Zurück zum Zitat Xia, M., C. Zhang, K.M. Boini, A.M. Thacker, and P.L. Li. 2011. Membrane raft-lysosome redox signalling platforms in coronary endothelial dysfunction induced by adipokine visfatin. Cardiovascular research 89: 401–409.PubMed Xia, M., C. Zhang, K.M. Boini, A.M. Thacker, and P.L. Li. 2011. Membrane raft-lysosome redox signalling platforms in coronary endothelial dysfunction induced by adipokine visfatin. Cardiovascular research 89: 401–409.PubMed
52.
Zurück zum Zitat Boini, K.M., C. Zhang, M. Xia, W.Q. Han, C. Brimson, J.L. Poklis, et al. 2010. Visfatin-induced lipid raft redox signaling platforms and dysfunction in glomerular endothelial cells. Biochimica et biophysica acta 1801: 1294–1304.PubMedPubMedCentral Boini, K.M., C. Zhang, M. Xia, W.Q. Han, C. Brimson, J.L. Poklis, et al. 2010. Visfatin-induced lipid raft redox signaling platforms and dysfunction in glomerular endothelial cells. Biochimica et biophysica acta 1801: 1294–1304.PubMedPubMedCentral
53.
Zurück zum Zitat Speakman, J.R. 2019. Use of high-fat diets to study rodent obesity as a model of human obesity. International journal of obesity 43: 1491–1492.PubMed Speakman, J.R. 2019. Use of high-fat diets to study rodent obesity as a model of human obesity. International journal of obesity 43: 1491–1492.PubMed
54.
Zurück zum Zitat Tilg, H., and A.R. Moschen. 2008. Role of adiponectin and PBEF/visfatin as regulators of inflammation: Involvement in obesity-associated diseases. Clinical science 114: 275–288.PubMed Tilg, H., and A.R. Moschen. 2008. Role of adiponectin and PBEF/visfatin as regulators of inflammation: Involvement in obesity-associated diseases. Clinical science 114: 275–288.PubMed
55.
Zurück zum Zitat Hasegawa, M., R. Imamura, K. Motani, T. Nishiuchi, N. Matsumoto, T. Kinoshita, et al. 2009. Mechanism and repertoire of ASC-mediated gene expression. Journal of immunology 182: 7655–7662. Hasegawa, M., R. Imamura, K. Motani, T. Nishiuchi, N. Matsumoto, T. Kinoshita, et al. 2009. Mechanism and repertoire of ASC-mediated gene expression. Journal of immunology 182: 7655–7662.
56.
Zurück zum Zitat Tang, J., H. Yan, and S. Zhuang. 2012. Inflammation and oxidative stress in obesity-related glomerulopathy. International journal of nephrology 2012.PubMedPubMedCentral Tang, J., H. Yan, and S. Zhuang. 2012. Inflammation and oxidative stress in obesity-related glomerulopathy. International journal of nephrology 2012.PubMedPubMedCentral
57.
Zurück zum Zitat Mima, A., T. Yasuzawa, G.L. King, and S. Ueshima. 2018. Obesity-associated glomerular inflammation increases albuminuria without renal histological changes. FEBS Open Bio 8: 664–670.PubMedPubMedCentral Mima, A., T. Yasuzawa, G.L. King, and S. Ueshima. 2018. Obesity-associated glomerular inflammation increases albuminuria without renal histological changes. FEBS Open Bio 8: 664–670.PubMedPubMedCentral
58.
Zurück zum Zitat Hou, X.X., H.R. Dong, L.J. Sun, M. Yang, H. Cheng, and Y.P. Chen. 2018. Purinergic 2X7 Receptor is involved in the podocyte damage of obesity-related glomerulopathy via activating nucleotide-binding and oligomerization domain-like receptor protein 3 inflammasome. Chinese medical journal 131: 2713–2725.PubMedPubMedCentral Hou, X.X., H.R. Dong, L.J. Sun, M. Yang, H. Cheng, and Y.P. Chen. 2018. Purinergic 2X7 Receptor is involved in the podocyte damage of obesity-related glomerulopathy via activating nucleotide-binding and oligomerization domain-like receptor protein 3 inflammasome. Chinese medical journal 131: 2713–2725.PubMedPubMedCentral
59.
Zurück zum Zitat Xu, X., X. Huang, L. Zhang, X. Huang, Z. Qin, and F. Hua. 2021. Adiponectin protects obesity-related glomerulopathy by inhibiting ROS/NF-kappaB/NLRP3 inflammation pathway. BMC nephrology 22: 218.PubMedPubMedCentral Xu, X., X. Huang, L. Zhang, X. Huang, Z. Qin, and F. Hua. 2021. Adiponectin protects obesity-related glomerulopathy by inhibiting ROS/NF-kappaB/NLRP3 inflammation pathway. BMC nephrology 22: 218.PubMedPubMedCentral
60.
Zurück zum Zitat Boini, K.M., C. Zhang, M. Xia, J.L. Poklis, and P.L. Li. 2010. Role of sphingolipid mediator ceramide in obesity and renal injury in mice fed a high-fat diet. The Journal of pharmacology and experimental therapeutics 334: 839–846.PubMedPubMedCentral Boini, K.M., C. Zhang, M. Xia, J.L. Poklis, and P.L. Li. 2010. Role of sphingolipid mediator ceramide in obesity and renal injury in mice fed a high-fat diet. The Journal of pharmacology and experimental therapeutics 334: 839–846.PubMedPubMedCentral
61.
Zurück zum Zitat Zhang, A.Y., F. Yi, S. Jin, M. Xia, Q.Z. Chen, E. Gulbins, et al. 2007. Acid sphingomyelinase and its redox amplification in formation of lipid raft redox signaling platforms in endothelial cells. Antioxidants & redox signaling 9: 817–828. Zhang, A.Y., F. Yi, S. Jin, M. Xia, Q.Z. Chen, E. Gulbins, et al. 2007. Acid sphingomyelinase and its redox amplification in formation of lipid raft redox signaling platforms in endothelial cells. Antioxidants & redox signaling 9: 817–828.
62.
Zurück zum Zitat Evavold, C.L., J. Ruan, Y. Tan, S. Xia, H. Wu, and J.C. Kagan. 2018. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48 (35–44). Evavold, C.L., J. Ruan, Y. Tan, S. Xia, H. Wu, and J.C. Kagan. 2018. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48 (35–44).
63.
Zurück zum Zitat He, W.T., H. Wan, L. Hu, P. Chen, X. Wang, Z. Huang, et al. 2015. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell research 25: 1285–1298.PubMedPubMedCentral He, W.T., H. Wan, L. Hu, P. Chen, X. Wang, Z. Huang, et al. 2015. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell research 25: 1285–1298.PubMedPubMedCentral
64.
Zurück zum Zitat Carta, S., S. Tassi, I. Pettinati, L. Delfino, C.A. Dinarello, and A. Rubartelli. 2011. The rate of interleukin-1beta secretion in different myeloid cells varies with the extent of redox response to Toll-like receptor triggering. Journal of Biological Chemistry 286: 27069–27080.PubMedPubMedCentral Carta, S., S. Tassi, I. Pettinati, L. Delfino, C.A. Dinarello, and A. Rubartelli. 2011. The rate of interleukin-1beta secretion in different myeloid cells varies with the extent of redox response to Toll-like receptor triggering. Journal of Biological Chemistry 286: 27069–27080.PubMedPubMedCentral
65.
Zurück zum Zitat Carta, S., F. Penco, R. Lavieri, A. Martini, C.A. Dinarello, M. Gattorno, et al. 2015. Cell stress increases ATP release in NLRP3 inflammasome-mediated autoinflammatory diseases, resulting in cytokine imbalance. Proceedings of the National Academy of Sciences USA 112: 2835–2840. Carta, S., F. Penco, R. Lavieri, A. Martini, C.A. Dinarello, M. Gattorno, et al. 2015. Cell stress increases ATP release in NLRP3 inflammasome-mediated autoinflammatory diseases, resulting in cytokine imbalance. Proceedings of the National Academy of Sciences USA 112: 2835–2840.
66.
Zurück zum Zitat Liston, A., and S.L. Masters. 2017. Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nature Reviews Immunology 17: 208–214.PubMed Liston, A., and S.L. Masters. 2017. Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nature Reviews Immunology 17: 208–214.PubMed
67.
Zurück zum Zitat Yamagishi, R., F. Kamachi, M. Nakamura, S. Yamazaki, T. Kamiya, M. Takasugi, et al. 2022. Gasdermin D-mediated release of IL-33 from senescent hepatic stellate cells promotes obesity-associated hepatocellular carcinoma. Science immunology 7: eabl7209.PubMed Yamagishi, R., F. Kamachi, M. Nakamura, S. Yamazaki, T. Kamiya, M. Takasugi, et al. 2022. Gasdermin D-mediated release of IL-33 from senescent hepatic stellate cells promotes obesity-associated hepatocellular carcinoma. Science immunology 7: eabl7209.PubMed
68.
Zurück zum Zitat Rodriguez-Antonio, I., G.N. Lopez-Sanchez, M. Uribe, N.C. Chavez-Tapia, and N. Nuno-Lambarri. 2021. Role of the inflammasome, gasdermin D, and pyroptosis in non-alcoholic fatty liver disease. Journal of gastroenterology and hepatology 36: 2720–2727.PubMed Rodriguez-Antonio, I., G.N. Lopez-Sanchez, M. Uribe, N.C. Chavez-Tapia, and N. Nuno-Lambarri. 2021. Role of the inflammasome, gasdermin D, and pyroptosis in non-alcoholic fatty liver disease. Journal of gastroenterology and hepatology 36: 2720–2727.PubMed
69.
Zurück zum Zitat Xu, B., M. Jiang, Y. Chu, W. Wang, D. Chen, X. Li, et al. 2018. Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice. Journal of hepatology 68: 773–782.PubMed Xu, B., M. Jiang, Y. Chu, W. Wang, D. Chen, X. Li, et al. 2018. Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice. Journal of hepatology 68: 773–782.PubMed
70.
Zurück zum Zitat Settembre, C., and A. Ballabio. 2014. Lysosomal adaptation: how the lysosome responds to external cues. Cold Spring Harbor perspectives in biology 6. Settembre, C., and A. Ballabio. 2014. Lysosomal adaptation: how the lysosome responds to external cues. Cold Spring Harbor perspectives in biology 6.
71.
Zurück zum Zitat Xia, M., K.M. Boini, J.M. Abais, M. Xu, Y. Zhang, and P.L. Li. 2014. Endothelial NLRP3 inflammasome activation and enhanced neointima formation in mice by adipokine visfatin. The American journal of pathology 184: 1617–1628.PubMedPubMedCentral Xia, M., K.M. Boini, J.M. Abais, M. Xu, Y. Zhang, and P.L. Li. 2014. Endothelial NLRP3 inflammasome activation and enhanced neointima formation in mice by adipokine visfatin. The American journal of pathology 184: 1617–1628.PubMedPubMedCentral
Metadaten
Titel
Regulation of NLRP3 Inflammasome Activation and Inflammatory Exosome Release in Podocytes by Acid Sphingomyelinase During Obesity
verfasst von
Dandan Huang
Jason M. Kidd
Yao Zou
Xiaoyuan Wu
Todd W. B. Gehr
Pin-Lan Li
Guangbi Li
Publikationsdatum
21.07.2023
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2023
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01861-y

Weitere Artikel der Ausgabe 5/2023

Inflammation 5/2023 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.